1
|
Mohammadnabi S, Moslemy N, Taghvaei H, Zia AW, Askarinejad S, Shalchy F. Role of artificial intelligence in data-centric additive manufacturing processes for biomedical applications. J Mech Behav Biomed Mater 2025; 166:106949. [PMID: 40036906 DOI: 10.1016/j.jmbbm.2025.106949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
The role of additive manufacturing (AM) for healthcare applications is growing, particularly in the aspiration to meet subject-specific requirements. This article reviews the application of artificial intelligence (AI) to enhance pre-, during-, and post-AM processes to meet a wider range of subject-specific requirements of healthcare interventions. This article introduces common AM processes and AI tools, such as supervised learning, unsupervised learning, deep learning, and reinforcement learning. The role of AI in pre-processing is described in the core dimensions like structural design and image reconstruction, material design and formulations, and processing parameters. The role of AI in a printing process is described based on hardware specifications, printing configurations, and core operational parameters such as temperature. Likewise, the post-processing describes the role of AI for surface finishing, dimensional accuracy, curing processes, and a relationship between AM processes and bioactivity. The later sections provide detailed scientometric studies, thematic evaluation of the subject topic, and also reflect on AI ethics in AM for biomedical applications. This review article perceives AI as a robust and powerful tool for AM of biomedical products. From tissue engineering (TE) to prosthesis, lab-on-chip to organs-on-a-chip, and additive biofabrication for range of products; AI holds a high potential to screen desired process-property-performance relationships for resource-efficient pre- to post-AM cycle to develop high-quality healthcare products with enhanced subject-specific compliance specification.
Collapse
Affiliation(s)
- Saman Mohammadnabi
- Energy and Mechanical Engineering Department, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Nima Moslemy
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Scotland, UK
| | - Hadi Taghvaei
- Energy and Mechanical Engineering Department, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Abdul Wasy Zia
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Scotland, UK
| | - Sina Askarinejad
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Faezeh Shalchy
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Scotland, UK.
| |
Collapse
|
2
|
Bour RK, Garner GT, Peirce SM, Christ GJ. Optimized Biomanufacturing for Treatment of Volumetric Muscle Loss Enables Physiomimetic Recovery. Tissue Eng Part A 2025; 31:373-386. [PMID: 38832858 DOI: 10.1089/ten.tea.2023.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Volumetric muscle loss (VML) injuries are defined by loss of sufficient skeletal muscle to produce persistent deficits in muscle form and function, with devastating lifelong consequences to both soldiers and civilians. There are currently no satisfactory treatments for VML injuries. The work described herein details the implementation of a fully enclosed bioreactor environment (FEBE) system that efficiently interfaces with our existing automated bioprinting and advanced biomanufacturing methods for cell deposition on sheet-based scaffolds for our previously described tissue-engineered muscle repair (TEMR) technology platform. Briefly, the TEMR technology consists of a porcine bladder acellular matrix seeded with skeletal muscle progenitor cells and preconditioned via 10% uniaxial cyclic stretch in a bioreactor. Overall, TEMR implantation in an established rat tibialis anterior (TA) VML injury model can result in 60 to ∼90% functional recovery. However, our original study documented >50% failure rate. That is, more than half of the implanted TEMR constructs produced no functional improvement beyond no treatment/repair. The high failure rate was attributed to the untoward mechanical disruption of TEMR during surgical implantation. In a follow-up study, adjustments were made to the geometry of both the VML injury and the TEMR construct, and the "nonresponder" group was reduced from over half the TEMR-treated animals to just 33%. Nonetheless, additional improvement is needed for clinical applicability. The main objectives of the current study were twofold: (1) explore the use of advanced biomanufacturing methods (i.e., FEBE bioreactor) to further improve TEMR reliability (i.e., increase functional response rate), (2) determine if previously established bioprinting methods, when coupled to the customized FEBE system would further improve the rate, magnitude or amplitude of functional outcomes following TEMR implantation in the same rat TA VML injury model. The current study demonstrates the unequivocal benefits of a customized bioreactor system that reduces manipulation of TEMR during cell seeding and maturation via bioprinting while simultaneously maximizing TEMR stability throughout the biofabrication process. This new biomanufacturing strategy not only accelerated the rate of functional recovery, but also eliminated all TEMR failures. In addition, implementation of bioprinting resulted in more physiomimetic skeletal muscle characteristics of repaired muscle tissue.
Collapse
Affiliation(s)
- Rachel K Bour
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Gavin T Garner
- Department of Mechanical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Plastic Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - George J Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Sonaye SY, Sikder P. Bioengineered Constructs as a Tissue Engineering-Based Therapy for Volumetric Muscle Loss. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40265282 DOI: 10.1089/ten.teb.2025.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Severe skeletal muscle injuries involving substantial tissue loss can significantly impair muscle strength and functionality, reducing the quality of life for affected individuals. Such injuries, termed volumetric muscle loss, require extensive clinical intervention, as the body's innate healing mechanisms are insufficient to regenerate functional muscle. The current standard of care primarily involves autologous muscle tissue transfer, with some consideration of acellular synthetic constructs. However, both approaches have limited therapeutic efficacy, presenting challenges such as donor-site morbidity, infection risks, and suboptimal functional recovery. Over the past decade, skeletal muscle tissue engineering (SMTE) has emerged as a promising strategy for regenerating functional muscle through bioengineered constructs. Advanced biofabrication techniques, including bioprinting, have further enabled the development of synthetic constructs that closely mimic native muscle architecture. Given these advancements, a critical review of recent therapeutic strategies, their achievements, and limitations is necessary. This review examines the spectrum of bioengineered constructs developed from various biomaterials and evaluates their therapeutic potential. Special emphasis is placed on 3D bioprinting strategies and their role in creating physiologically relevant constructs for functional muscle restoration. In addition, the integration of machine learning in optimizing construct design, predicting cellular behavior, and enhancing tissue integration is discussed. The review indicates that despite significant progress in SMTE, key challenges remain, including replicating the complex structural organization of muscle tissue, minimizing fibrosis, and achieving vascularization and innervation to regenerate functional, strengthened muscle. Future research should address these barriers while prioritizing the development of translational, clinically relevant regenerative constructs. In addition, efforts should focus on advancing scalable, construct-based regenerative treatments that are readily available at the point of care and easily managed in surgical settings.
Collapse
Affiliation(s)
| | - Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Afghah F, Altunbek M, Zahrabi M, Koc B. Microstructural Effects of Melt Electrowritten-Reinforced Hydrogel Scaffolds for Engineering Thick Skin Substitutes. ACS APPLIED BIO MATERIALS 2025; 8:2875-2887. [PMID: 40130574 PMCID: PMC12015962 DOI: 10.1021/acsabm.4c01541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025]
Abstract
Engineering thick skin tissue substitutes resembling the physiochemical and mechanical properties of native tissue is a significant challenge. Melt electrowriting (MEW) is a powerful technique with the capability of fabricating highly ordered structures with fine fiber diameters, closely replicating the native extracellular matrix (ECM). In this study, we constructed melt electrowritten porous polycaprolactone (PCL) scaffolds with three different geometries by depositing fibers at 0-90 and 60-120° in a mesh structure and in a honeycomb-like orientation to assess the effects of the microstructure on the mechanical strength of the scaffold and cellular behavior. These scaffolds were subsequently infilled with gelatin hydrogel, encapsulating human skin dermal fibroblasts (HSFs) and human umbilical vein endothelial cells (HUVECs). Mechanical tensile tests revealed that the honeycomb microstructure of the hybrid PCL/gelatin scaffold exhibited greater elongation at failure, along with an acceptable elastic modulus suitable for skin tissue applications. All scaffolds provided a cytocompatible microenvironment that maintained over 90% cell viability and preserved typical cell morphology. HSFs were guided through the PCL fibers to the apical surface, while HUVECs were distributed within the gelatin hydrogel within the hybrid structure. Additionally, HSFs' alignment was regulated by the scaffold geometry. Notably, the expression of CD31 in HUVECs─a key transmembrane protein for capillary formation─increased significantly over a 14 day incubation period. Among those, 0-90° mesh and honeycomb geometries showed the greatest effects on the upregulation of CD31. These findings demonstrate that the microstructural guidance of HSFs and their interaction with HUVECs in hybrid structures play a crucial role in promoting vascularization. In conclusion, the honeycomb MEW-gelatin hybrid scaffold demonstrates significant potential for effectively replicating both the mechanical and physicochemical properties essential for full-thickness skin tissue substitutes.
Collapse
Affiliation(s)
- Ferdows Afghah
- Sabanci
University Nanotechnology Research and Application Center, Istanbul 34956, Turkey
- Sabanci
University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
- Sabanci
University Integrated Manufacturing Technologies Research and Application
Center, Istanbul 34906, Turkey
| | - Mine Altunbek
- Sabanci
University Nanotechnology Research and Application Center, Istanbul 34956, Turkey
| | - Mahdiyeh Zahrabi
- Sabanci
University Nanotechnology Research and Application Center, Istanbul 34956, Turkey
- Sabanci
University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| | - Bahattin Koc
- Sabanci
University Nanotechnology Research and Application Center, Istanbul 34956, Turkey
- Sabanci
University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
- Sabanci
University Integrated Manufacturing Technologies Research and Application
Center, Istanbul 34906, Turkey
| |
Collapse
|
5
|
Heisser RH, Bawa M, Shah J, Bu A, Raman R. Soft Biological Actuators for Meter-Scale Homeostatic Biohybrid Robots. Chem Rev 2025; 125:3976-4007. [PMID: 40138615 DOI: 10.1021/acs.chemrev.4c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Skeletal muscle's elegant protein-based architecture powers motion throughout the animal kingdom, with its constituent actomyosin complexes driving intra- and extra-cellular motion. Classical motors and recently developed soft actuators cannot match the packing density and contractility of individual muscle fibers that scale to power the motion of ants and elephants alike. Accordingly, the interdisciplinary fields of robotics and tissue engineering have combined efforts to build living muscle actuators that can power a new class of robots to be more energy-efficient, dexterous, and safe than existing motor-powered and hydraulic paradigms. Doing so ethically and at scale─creating meter-scale tissue constructs from sustainable muscle progenitor cell lines─has inspired innovations in biomaterials and tissue culture methodology. We weave discussions of muscle cell biology, materials chemistry, tissue engineering, and biohybrid design to review the state of the art in soft actuator biofabrication. Looking forward, we outline a vision for meter-scale biohybrid robotic systems and tie discussions of recent progress to long-term research goals.
Collapse
Affiliation(s)
- Ronald H Heisser
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Maheera Bawa
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Jessica Shah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 45 Carleton St., Cambridge, Massachusetts 02142, United States of America
| | - Angel Bu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| |
Collapse
|
6
|
Nie M, Shima A, Yamamoto M, Takeuchi S. Scalable tissue biofabrication via perfusable hollow fiber arrays for cultured meat applications. Trends Biotechnol 2025:S0167-7799(25)00085-X. [PMID: 40246628 DOI: 10.1016/j.tibtech.2025.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 04/19/2025]
Abstract
Creating perfusable channels within engineered tissues is crucial for the development of large-scale tissues. Unfortunately, existing technologies have not achieved uniformly distributed, perfusable networks on a large scale. To overcome this, we developed a method using a hollow fiber bioreactor (HFB) equipped with an array of closely packed semipermeable hollow fibers that function as artificial circulation systems, ensuring uniform nutrient and oxygen distribution throughout the tissue. Furthermore, the HFB includes microfabricated anchors for promoting cell alignment. When using active perfusion, biofabricated centimeter-scale chicken muscle tissue exhibited an elevated level of marker protein expression and sarcomere formation throughout the tissue, along with improved texture and flavor. In addition, a robotic-assisted fiber threading system was developed to achieve efficient assembly of the HFBs. Future full automation of this approach may revolutionize both the cultured meat industry and the tissue engineering field, which aims to create large-scale, tissue-engineered organs.
Collapse
Affiliation(s)
- Minghao Nie
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ai Shima
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Mikihisa Yamamoto
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan; Institute of Industrial Science (IIS), The University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
7
|
Cho HB, Kim H, Lee S, Cho CW, Park J, Youn S, So G, Kang S, Kim HJ, Park K. Near Infrared-Mediated Intracellular NADH Delivery Strengthens Mitochondrial Function and Stability in Muscle Dysfunction Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415303. [PMID: 39887582 PMCID: PMC11948086 DOI: 10.1002/advs.202415303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Mitochondrial transfer emerges as a promising therapy for the restoration of mitochondrial function in damaged cells, mainly due to its limited immunogenicity. However, isolated mitochondria rapidly lose function because they produce little energy outside cells. Therefore, this study investigates whether near infrared (NIR)-mediated nicotinamide adenine dinucleotide (NADH) pre-treatment enhances mitochondrial function and stability in mitochondria-donor cells prior to transplantation. Clinical applications of NADH, an essential electron donor in the oxidative phosphorylation process, are restricted due to the limited cellular uptake of NADH. To address this, a photo-mediated method optimizes direct NADH delivery into cells and increases NADH absorption. L6 cells treated with NADH and irradiated with NIR enhanced NADH uptake, significantly improving mitochondrial energy production and function. Importantly, the improved functional characteristics of the mitochondria are maintained even after isolation from cells. Primed mitochondria, i.e., those enhanced by NIR-mediated NADH uptake (P-MT), are encapsulated in fusogenic liposomes and delivered into muscle cells with mitochondrial dysfunction. Compared to conventional mitochondria, P-MT mitochondria promote greater mitochondrial recovery and muscle regeneration. These findings suggest that NIR-mediated NADH delivery is an effective strategy for improving mitochondrial function, and has the potential to lead to novel treatments for mitochondrial disorders and muscle degeneration.
Collapse
Affiliation(s)
- Hui Bang Cho
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| | - Hye‐Ryoung Kim
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| | - Sujeong Lee
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| | - Chae Won Cho
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| | - Ji‐In Park
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| | - Seulki Youn
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| | - Gyuwon So
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| | - Sumin Kang
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| | - Hye Jin Kim
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| | - Keun‐Hong Park
- Department of Nano‐regenerative Medical EngineeringCollege of Life ScienceCHA University6F, CHA Biocomplex, Sampyeong‐Dong, Bundang‐guSeongnam‐si13488Republic of Korea
| |
Collapse
|
8
|
Briones Y, Pascua B, Tiangco N, Crisostomo I, Casiguran S, Remenyi R. Assessing the landscape of clinical and observational trials involving bioprinting: a scoping review. 3D Print Med 2025; 11:5. [PMID: 39961914 PMCID: PMC11834296 DOI: 10.1186/s41205-025-00253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/01/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVE Bioprinting is a tissue engineering technique that is rapidly evolving to include complex clinical applications. However, there is limited evidence describing how far bioprinting has progressed past the pre-clinical stage. Thus, we conducted a scoping review to assess the landscape of clinical studies, including interventional and observational trials, involving bioprinting by charting trends in general characteristics, bioprinting application, and trial design. METHODS The term "bioprint" and its variants were searched in five trial databases (ICTRP, ScanMedicine, CENTRAL, NIHCC, HCCTD) and two registries (ClinicalTrials.gov, PHRR) on 22 February 2024. This was followed by duplicate removal and dual independent review to finalize the inclusion list. We included trials published in or translated to English mentioning "bioprint" in their design, while we excluded those that did not adhere to our definition of bioprinting. Finally, data were charted and synthesized narratively. RESULTS Of 36 total search records, 11 trials met the inclusion criteria. Registration dates ranged from 2016 to 2023, with China conducting the most trials globally. Four trials had published results, while the remaining were still in progress. Four interventional trials aimed to implant bioprinted tissues made with autologous cells, including blood vessels, trachea, external ear, and wound dressings. The other seven studies were interventional and observational trials aiming to bioprint autologous cell-laden in vitro models to study conditions such as cancer. CONCLUSION Bioprinting is still in the early stages of clinical research, with a focus on producing patient-specific tissues for cancer precision medicine and regenerative purposes. More standardized reporting of bioprinting-related information is needed to improve research transparency and replicability. As the body of evidence grows, our review may be used as a framework to monitor the clinical translation of bioprinting over the years.
Collapse
Affiliation(s)
- Yumi Briones
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City, 1600, Metro Manila, Philippines.
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, 550 First Avenue, New York, 10016, New York, United States of America.
| | - Beatrice Pascua
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City, 1600, Metro Manila, Philippines
- College of Medicine, University of the East Ramon Magsaysay Memorial Medical Center Inc., 64 Aurora Boulevard, Quezon City, 1113, Metro Manila, Philippines
| | - Narra Tiangco
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City, 1600, Metro Manila, Philippines
- Ecology and Biodiversity, Institute for Marine and Antarctic Sciences, 20 Castray Esplanade, Battery Point, 7004, Tasmania, Australia
| | - Isabel Crisostomo
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City, 1600, Metro Manila, Philippines
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Samantha Casiguran
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City, 1600, Metro Manila, Philippines
| | - Roland Remenyi
- Biomedical Research Unit, Clinical and Translational Research Institute, The Medical City, Ortigas Avenue, Pasig City, 1600, Metro Manila, Philippines.
| |
Collapse
|
9
|
Mehanna LE, Boyd JD, Remus-Williams S, Racca NM, Spraggins DP, Grady ME, Berron BJ. Improvement of cellular pattern organization and clarity through centrifugal force. Biomed Mater 2025; 20:025025. [PMID: 39746325 PMCID: PMC11823422 DOI: 10.1088/1748-605x/ada508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
Rapid and strategic cell placement is necessary for high throughput tissue fabrication. Current adhesive cell patterning systems rely on fluidic shear flow to remove cells outside of the patterned regions, but limitations in washing complexity and uniformity prevent adhesive patterns from being widely applied. Centrifugation is commonly used to study the adhesive strength of cells to various substrates; however, the approach has not been applied to selective cell adhesion systems to create highly organized cell patterns. This study shows centrifugation as a promising method to wash cellular patterns after selective binding of cells to the surface has taken place. After patterning H9C2 cells using biotin-streptavidin as a model adhesive patterning system and washing with centrifugation, there is a significant number of cells removed outside of the patterned areas of the substrate compared to the initial seeding, while there is not a significant number removed from the desired patterned areas. This method is effective in patterning multiple size and linear structures from line widths of 50-200 μm without compromising immediate cell viability below 80%. We also test this procedure on a variety of tube-forming cell lines (MPCs, HUVECs) on various tissue-like surface materials (collagen 1 and Matrigel) with no significant differences in their respective tube formation metrics when the cells were seeded directly on their unconjugated surface versus patterned and washed through centrifugation. This result demonstrates that our patterning and centrifugation system can be adapted to a variety of cell types and substrates to create patterns tailored to many biological applications.
Collapse
Affiliation(s)
- Lauren E Mehanna
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, United States of America
| | - James D Boyd
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, United States of America
| | - Shelley Remus-Williams
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, United States of America
| | - Nicole M Racca
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Dawson P Spraggins
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, United States of America
| | - Martha E Grady
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, United States of America
| | - Brad J Berron
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, United States of America
| |
Collapse
|
10
|
Piantino M, Muller Q, Nakadozono C, Yamada A, Matsusaki M. Towards more realistic cultivated meat by rethinking bioengineering approaches. Trends Biotechnol 2025; 43:364-382. [PMID: 39271415 DOI: 10.1016/j.tibtech.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Cultivated meat (CM) refers to edible lab-grown meat that incorporates cultivated animal cells. It has the potential to address some issues associated with real meat (RM) production, including the ethical and environmental impact of animal farming, and health concerns. Recently, various biomanufacturing methods have been developed to attempt to recreate realistic meat in the laboratory. We therefore overview recent achievements and challenges in the production of CM. We also discuss the issues that need to be addressed and suggest additional recommendations and potential criteria to help to bridge the gap between CM and RM from an engineering standpoint.
Collapse
Affiliation(s)
- Marie Piantino
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan
| | - Quentin Muller
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan
| | - Chika Nakadozono
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan; Shimadzu Analytical Innovation Research Laboratories, Osaka University, Osaka, Japan; Shimadzu Corporation, Kyoto, Japan
| | - Asuka Yamada
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan; Toppan Holdings Inc., Business Development Division, Technical Research Institute, Saitama, Japan
| | - Michiya Matsusaki
- Consortium for Future Innovation by Cultured Meat, Osaka, Japan; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan.
| |
Collapse
|
11
|
Ma WWS, Yang H, Zhao Y, Li X, Ding J, Qu S, Liu Q, Hu Z, Li R, Tao Q, Mo H, Zhai W, Song X. Multi-Physical Lattice Metamaterials Enabled by Additive Manufacturing: Design Principles, Interaction Mechanisms, and Multifunctional Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405835. [PMID: 39834122 PMCID: PMC11848643 DOI: 10.1002/advs.202405835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/21/2024] [Indexed: 01/22/2025]
Abstract
Lattice metamaterials emerge as advanced architected materials with superior physical properties and significant potential for lightweight applications. Recent developments in additive manufacturing (AM) techniques facilitate the manufacturing of lattice metamaterials with intricate microarchitectures and promote their applications in multi-physical scenarios. Previous reviews on lattice metamaterials have largely focused on a specific/single physical field, with limited discussion on their multi-physical properties, interaction mechanisms, and multifunctional applications. Accordingly, this article critically reviews the design principles, structure-mechanism-property relationships, interaction mechanisms, and multifunctional applications of multi-physical lattice metamaterials enabled by AM techniques. First, lattice metamaterials are categorized into homogeneous lattices, inhomogeneous lattices, and other forms, whose design principles and AM processes are critically discussed, including the benefits and drawbacks of different AM techniques for fabricating different types of lattices. Subsequently, the structure-mechanism-property relationships and interaction mechanisms of lattice metamaterials in a range of physical fields, including mechanical, acoustic, electromagnetic/optical, and thermal disciplines, are summarized to reveal critical design principles. Moreover, the multifunctional applications of lattice metamaterials, such as sound absorbers, insulators, and manipulators, sensors, actuators, and soft robots, thermal management, invisible cloaks, and biomedical implants, are enumerated. These design principles and structure-mechanism-property relationships provide effective design guidelines for lattice metamaterials in multifunctional applications.
Collapse
Affiliation(s)
- Winston Wai Shing Ma
- Department of Mechanical and Automation EngineeringChinese University of Hong KongSha TinHong Kong999077China
| | - Hang Yang
- Department of Mechanical EngineeringNational University of SingaporeSingapore117575Singapore
| | - Yijing Zhao
- Department of Mechanical EngineeringNational University of SingaporeSingapore117575Singapore
| | - Xinwei Li
- Faculty of Science, Agriculture, and EngineeringNewcastle UniversitySingapore567739Singapore
| | - Junhao Ding
- Department of Mechanical and Automation EngineeringChinese University of Hong KongSha TinHong Kong999077China
| | - Shuo Qu
- Department of Mechanical and Automation EngineeringChinese University of Hong KongSha TinHong Kong999077China
| | - Quyang Liu
- Department of Mechanical EngineeringNational University of SingaporeSingapore117575Singapore
| | - Zongxin Hu
- Department of Mechanical and Automation EngineeringChinese University of Hong KongSha TinHong Kong999077China
| | - Rui Li
- Department of Mechanical and Automation EngineeringChinese University of Hong KongSha TinHong Kong999077China
| | - Quanqing Tao
- Department of Mechanical and Automation EngineeringChinese University of Hong KongSha TinHong Kong999077China
| | - Haoming Mo
- Department of Mechanical and Automation EngineeringChinese University of Hong KongSha TinHong Kong999077China
| | - Wei Zhai
- Department of Mechanical EngineeringNational University of SingaporeSingapore117575Singapore
| | - Xu Song
- Department of Mechanical and Automation EngineeringChinese University of Hong KongSha TinHong Kong999077China
| |
Collapse
|
12
|
Fischer EO, Tsukerman A, Machour M, Shuhmaher M, Silverstein A, Yaakov M, Bar-Am O, Debbi L, Levenberg S. Bioprinting Perfusable and Vascularized Skeletal Muscle Flaps for the Treatment of Volumetric Muscle Loss. Adv Healthc Mater 2025:e2404542. [PMID: 39887963 DOI: 10.1002/adhm.202404542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Volumetric muscle loss (VML) refers to muscle tissue loss exceeding 20% within a functional area due to trauma or surgery, often leading to physical disabilities. VML treatment relies on the transplantation of autologous flaps harvested from a healthy-donor site while minimizing the probability of immune rejection. However, this approach often leads to donor-site morbidity and relies on a restricted supply of muscle tissue. Current solutions in tissue engineering focus on engineered grafts lacking hierarchical vasculature with a feeding vessel, thus limited by diffusion. This study expanded upon a new approach of multimodal bioprinting which enabled the fabrication of thick hierarchical vascular muscle flaps composed of bioprinted and vascularized skeletal muscle tissue, and a 3D-printed engineered macrovessel, which successfully repaired VML injury in-vivo. The flaps are implanted by anastomosing the macrovessel via microsurgery to the femoral artery in proximity to an induced VML injury in Sprague-Dawley rat hindlimbs. Immediate perfusion of the flaps is demonstrated, as is flap endurance to physiological blood pressure, flow, and shear stress. Flap implantation enhanced myocyte differentiation, and vascular ingrowth and facilitated tissue viability and integration. These results obtained by utilizing human-origin cells provide a foundation for fabricating patient-specific flaps for the treatment of extensive soft tissue defects.
Collapse
Affiliation(s)
- Eliana O Fischer
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Anna Tsukerman
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Interdisciplinary Program for Biotechnology Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Majd Machour
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Margarita Shuhmaher
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Asaf Silverstein
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maya Yaakov
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Orit Bar-Am
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Lior Debbi
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
13
|
Lee HS, Samolyk BL, Pins GD. Extrusion-Based Printing of Myoblast-Loaded Fibrin Microthreads to Induce Myogenesis. J Funct Biomater 2025; 16:21. [PMID: 39852577 PMCID: PMC11765554 DOI: 10.3390/jfb16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Large skeletal muscle injuries such as volumetric muscle loss (VML) disrupt native tissue structures, including biophysical and biochemical signaling cues that promote the regeneration of functional skeletal muscle. Various biofabrication strategies have been developed to create engineered skeletal muscle constructs that mimic native matrix and cellular microenvironments to enhance muscle regeneration; however, there remains a need to create scalable engineered tissues that provide mechanical stability as well as structural and spatiotemporal signaling cues to promote cell-mediated regeneration of contractile skeletal muscle. We describe a novel strategy for bioprinting multifunctional myoblast-loaded fibrin microthreads (myothreads) that recapitulate the cellular microniches to drive myogenesis and aligned myotube formation. We characterized myoblast alignment, myotube formation, and tensile properties of myothreads as a function of cell-loading density and culture time. We showed that increasing myoblast loading densities enhances myotube formation. Additionally, alignment analyses indicate that the bioprinting process confers myoblast alignment in the constructs. Finally, tensile characterizations suggest that myothreads possess the structural stability to serve as a potential platform for developing scalable muscle scaffolds. We anticipate that our myothread biofabrication approach will enable us to strategically investigate biophysical and biochemical signaling cues and cellular mechanisms that enhance functional skeletal muscle regeneration for the treatment of VML.
Collapse
Affiliation(s)
| | | | - George D. Pins
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.S.L.); (B.L.S.)
| |
Collapse
|
14
|
Lee SJ, Jeong W, Atala A. 3D Bioprinting for Engineered Tissue Constructs and Patient-Specific Models: Current Progress and Prospects in Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408032. [PMID: 39420757 PMCID: PMC11875024 DOI: 10.1002/adma.202408032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Advancements in bioprinting technology are driving the creation of complex, functional tissue constructs for use in tissue engineering and regenerative medicine. Various methods, including extrusion, jetting, and light-based bioprinting, have their unique advantages and drawbacks. Over the years, researchers and industry leaders have made significant progress in enhancing bioprinting techniques and materials, resulting in the production of increasingly sophisticated tissue constructs. Despite this progress, challenges still need to be addressed in achieving clinically relevant, human-scale tissue constructs, presenting a hurdle to widespread clinical translation. However, with ongoing interdisciplinary research and collaboration, the field is rapidly evolving and holds promise for personalized medical interventions. Continued development and refinement of bioprinting technologies have the potential to address complex medical needs, enabling the development of functional, transplantable tissues and organs, as well as advanced in vitro tissue models.
Collapse
Affiliation(s)
| | | | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
15
|
Kwon J, Eom S, Kong JS, Cho DW, Kim DS, Kim J. Engineered Regenerative Isolated Peripheral Nerve Interface for Targeted Reinnervation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406652. [PMID: 39051516 DOI: 10.1002/adma.202406652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Indexed: 07/27/2024]
Abstract
A regenerative peripheral nerve interface (RPNI) offers a therapeutic solution for nerve injury through reconstruction of the target muscle. However, implanting a transected peripheral nerve into an autologous skeletal muscle graft in RPNI causes donor-site morbidity, highlighting the need for tissue-engineered skeletal muscle constructs. Here, an engineered regenerative isolated peripheral nerve interface (eRIPEN) is developed using 3D skeletal cell printing combined with direct electrospinning to create a nanofiber membrane envelop for host nerve implantation. In this in vivo study, after over 8 months of RPNI surgery, the eRIPEN exhibits a minimum Feret diameter of 15-20 µm with a cross-sectional area of 100-500 µm2, representing the largest distribution of myofibers. Furthermore, neuromuscular junction formation and muscle contraction with a force of ≈28 N are observed. Notably, the decreased hypersensitivity to mechanical/thermal stimuli and an improved tibial functional index from -77 to -56 are found in the eRIPEN group. The present novel concept of eRIPEN paves the way for the utilization and application of tissue-engineered constructs in RPNI, ultimately realizing neuroprosthesis control through synaptic connections.
Collapse
Affiliation(s)
- Jinju Kwon
- Department of Health Science, Graduate School, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seongsu Eom
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jeong Sik Kong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- POSTECH-Catholic Biomedical Engineering Institute, POSTECH, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- POSTECH-Catholic Biomedical Engineering Institute, POSTECH, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Junesun Kim
- Department of Health Science, Graduate School, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Health and Environmental Science, Undergraduate School, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
16
|
Mashanov V, Billman E, Poerio A, Kaufmann M, Lai D, Vaughan JW, Kim I, Ju YM, Atala A, Yoo JJ, Kim JH. Accelerated innervation of biofabricated skeletal muscle implants containing a neurotrophic factor delivery system. Front Bioeng Biotechnol 2024; 12:1476370. [PMID: 39530055 PMCID: PMC11550949 DOI: 10.3389/fbioe.2024.1476370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Volumetric muscle loss (VML) is one of the most severe and debilitating conditions in orthopedic and regenerative medicine. Current treatment modalities often fail to restore the normal structure and function of the damaged skeletal muscle. Bioengineered tissue constructs using the patient's own cells have emerged as a promising alternative treatment option, showing positive outcomes in fostering new muscle tissue formation. However, achieving timely and proper innervation of the implanted muscle constructs remains a significant challenge. In this study, we present a clinically relevant strategy aimed at enhancing and sustaining the natural regenerative response of peripheral nerves to accelerate the innervation of biofabricated skeletal muscle implants. Methods We previously developed a controlled-release neurotrophic factor delivery system using poly (lactic-co-glycolic acid) (PLGA) microspheres encapsulating ciliary neurotrophic factor (CNTF) and glial cell line-derived neurotrophic factor (GDNF). Here, we incorporate this neurotrophic factor delivery system into bioprinted muscle constructs to facilitate innervation in vivo. Results Our results demonstrate that the neurotrophic factors released from the microspheres provide a chemical cue, significantly enhancing the neurite sprouting and functional innervation of the muscle cells in the biofabricated muscle construct within 12 weeks post-implantation. Discussion Our approach provides a clinically applicable treatment option for VML through accelerated innervation of biomanufactured muscle implants and subsequent improvements in functionality.
Collapse
Affiliation(s)
- Vladimir Mashanov
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Erika Billman
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Aurelia Poerio
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Institut Jean Lamour, Université de Lorraine, Nancy, France
| | - Mary Kaufmann
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dehui Lai
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Urology, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - J. William Vaughan
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Ickhee Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Young Min Ju
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
17
|
Luo Y, Xu R, Hu Z, Ni R, Zhu T, Zhang H, Zhu Y. Gel-Based Suspension Medium Used in 3D Bioprinting for Constructing Tissue/Organ Analogs. Gels 2024; 10:644. [PMID: 39451297 PMCID: PMC11507232 DOI: 10.3390/gels10100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Constructing tissue/organ analogs with natural structures and cell types in vitro offers a valuable strategy for the in situ repair of damaged tissues/organs. Three-dimensional (3D) bioprinting is a flexible method for fabricating these analogs. However, extrusion-based 3D bioprinting faces the challenge of balancing the use of soft bioinks with the need for high-fidelity geometric shapes. To address these challenges, recent advancements have introduced various suspension mediums based on gelatin, agarose, and gellan gum microgels. The emergence of these gel-based suspension mediums has significantly advanced the fabrication of tissue/organ constructs using 3D bioprinting. They effectively stabilize and support soft bioinks, enabling the formation of complex spatial geometries. Moreover, they provide a stable, cell-friendly environment that maximizes cell viability during the printing process. This minireview will summarize the properties, preparation methods, and potential applications of gel-based suspension mediums in constructing tissue/organ analogs, while also addressing current challenges and providing an outlook on the future of 3D bioprinting.
Collapse
Affiliation(s)
- Yang Luo
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Rong Xu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Renhao Ni
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Tong Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Hua Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo 315211, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
18
|
Sprenger L, Lu HH, Trippmacher S, Mansfeld U, Milkin P, Ionov L, Papastavrou G, Boccaccini AR, Salehi S. Composite Alginate Dialdehyde-Gelatin (ADA-GEL) Hydrogel Containing Short Ribbon-Shaped Fillers for Skeletal Muscle Tissue Biofabrication. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44605-44622. [PMID: 39159061 DOI: 10.1021/acsami.4c10751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Skeletal muscle tissue can be severely damaged by disease or trauma beyond its ability to self-repair, necessitating the further development of biofabrication and tissue-engineering tools for reconstructive processes. Hence, in this study, a composite bioink of oxidized alginate (ADA) and gelatin (GEL) including cell-laden ribbon-shaped fillers is used for enhancing cell alignment and the formation of an anisotropic structure. Different plasma treatments combined with protein coatings were evaluated for the improvement of cell adhesion to poly(lactic-co-glycolic acid) (PLGA) ribbon surfaces. Oxygen plasma activation of 30 W for 5 min showed high immobilization of fibronectin as a protein coating on the PLGA ribbon surface, which resulted in enhanced cell adhesion and differentiation of muscle cells. Furthermore, the effect of various concentrations of CaCl2 solution, used for ionic cross-linking of ADA, on ADA-GEL physical and mechanical properties as well as encapsulated C2C12 cell viability and proliferation behavior was investigated. The pore area was measured via two approaches, cryofixation and lyophilization, which, in accordance with degradation tests and mechanical analysis, showed that 60 mM CaCl2 concentration is the optimum range for cross-linking of the formulation of ADA 2.5%w/v-GEL 3.75%w/v. These cross-linked hydrogels showed a compression modulus of 11.5 kPa (similar to the native skeletal muscle tissue), a high viability of C2C12 muscle cells (>80%), and a high proliferation rate during 7 days of culture. Rheological characterization of the ADA-GEL composite hydrogel containing short fillers (100 μm long) showed its suitability as a bioink with shear-thinning and flow behavior compared to ADA-GEL.
Collapse
Affiliation(s)
- Lys Sprenger
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, 95447 Bayreuth, Germany
| | - Hsuan-Heng Lu
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Steffen Trippmacher
- Department of Physical Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Ulrich Mansfeld
- Bavarian Polymer Institute (BPI), KeyLAB, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Pavel Milkin
- Department of Biofabrication, Faculty of Engineering Sciences, University of Bayreuth, Ludwig-Thoma-Straße 36A, 95447 Bayreuth, Germany
| | - Leonid Ionov
- Department of Biofabrication, Faculty of Engineering Sciences, University of Bayreuth, Ludwig-Thoma-Straße 36A, 95447 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Georg Papastavrou
- Department of Physical Chemistry II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Sahar Salehi
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, 95447 Bayreuth, Germany
| |
Collapse
|
19
|
Nguyen ML, Demri N, Lapin B, Di Federico F, Gropplero G, Cayrac F, Hennig K, Gomes ER, Wilhelm C, Roman W, Descroix S. Studying the impact of geometrical and cellular cues on myogenesis with a skeletal muscle-on-chip. LAB ON A CHIP 2024; 24:4147-4160. [PMID: 39072529 DOI: 10.1039/d4lc00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
In the skeletal muscle tissue, cells are organized following an anisotropic architecture, which is both required during myogenesis when muscle precursor cells fuse to generate myotubes and for its contractile function. To build an in vitro skeletal muscle tissue, it is therefore essential to develop methods to organize cells in an anisotropic fashion, which can be particularly challenging, especially in 3D. In this study, we present a versatile muscle-on-chip system with adjustable collagen hollow tubes that can be seeded with muscle precursor cells. The collagen acts both as a tube-shaped hollow mold and as an extracellular matrix scaffold that can house other cell types for co-culture. We found that the diameter of the channel affects the organization of the muscle cells and that proper myogenesis was obtained at a diameter of 75 μm. In these conditions, muscle precursor cells fused into long myotubes aligned along these collagen channels, resulting in a fascicle-like structure. These myotubes exhibited actin striations and upregulation of multiple myogenic genes, reflecting their maturation. Moreover, we showed that our chip allowed muscle tissue culture and maturation over a month, with the possibility of fibroblast co-culture embedding in the collagen matrix.
Collapse
Affiliation(s)
- M-L Nguyen
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - N Demri
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - B Lapin
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - F Di Federico
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - G Gropplero
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - F Cayrac
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - K Hennig
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Edgar R Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - C Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - W Roman
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Australian Regenerative Medicine Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - S Descroix
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| |
Collapse
|
20
|
Ianovici I, Zagury Y, Afik N, Hendel M, Lavon N, Levenberg S. Embedded three-dimensional printing of thick pea-protein-enriched constructs for large, customized structured cell-based meat production. Biofabrication 2024; 16:045023. [PMID: 38996408 DOI: 10.1088/1758-5090/ad628f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Recent 3D-printing research showed the potential of using plant-protein-enriched inks to fabricate cultivated meat (CM) via agar-based support baths. However, for fabricating large, customized, structured, thick cellular constructs and further cultivation, improved 3D-printing capabilities and diffusion limit circumvention are warranted. The presented study harnesses advanced printing and thick tissue engineering concepts for such purpose. By improving bath composition and altering printing design and execution, large-scale, marbled, 0.5-cm-thick rib-eye shaped constructs were obtained. The constructs featured stable fibrous architectures comparable to those of structured-meat products. Customized multi-cellular constructs with distinct regions were produced as well. Furthermore, sustainable 1-cm-thick cellular constructs were carefully designed and produced, which successfully maintained cell viability and activity for 3 weeks, through the combined effects of void-incorporation and dynamic culturing. As large, geometrically complex construct fabrication suitable for long-term cellular cultivation was demonstrated, these findings hold great promise for advancing structured CM research.
Collapse
Affiliation(s)
- Iris Ianovici
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yedidya Zagury
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Noa Afik
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Neta Lavon
- Aleph-Farms Ltd, Rehovot 7670609, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Aleph-Farms Ltd, Rehovot 7670609, Israel
| |
Collapse
|
21
|
St Clair-Glover M, Finol-Urdaneta RK, Maddock M, Wallace E, Miellet S, Wallace G, Yue Z, Dottori M. Efficient fabrication of 3D bioprinted functional sensory neurons using an inducible Neurogenin-2 human pluripotent stem cell line. Biofabrication 2024; 16:045022. [PMID: 39084624 DOI: 10.1088/1758-5090/ad69c4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Three-dimensional (3D) tissue models have gained recognition for their improved ability to mimic the native cell microenvironment compared to traditional two-dimensional models. This progress has been driven by advances in tissue-engineering technologies such as 3D bioprinting, a promising method for fabricating biomimetic living tissues. While bioprinting has succeeded in generating various tissues to date, creating neural tissue models remains challenging. In this context, we present an accelerated approach to fabricate 3D sensory neuron (SN) structures using a transgenic human pluripotent stem cell (hPSC)-line that contains an inducible Neurogenin-2 (NGN2) expression cassette. The NGN2 hPSC line was first differentiated to neural crest cell (NCC) progenitors, then incorporated into a cytocompatible gelatin methacryloyl-based bioink for 3D bioprinting. Upregulated NGN2 expression in the bioprinted NCCs resulted in induced SN (iSN) populations that exhibited specific cell markers, with 3D analysis revealing widespread neurite outgrowth through the scaffold volume. Calcium imaging demonstrated functional activity of iSNs, including membrane excitability properties and voltage-gated sodium channel (NaV) activity. This efficient approach to generate 3D bioprinted iSN structures streamlines the development of neural tissue models, useful for the study of neurodevelopment and disease states and offering translational potential.
Collapse
Affiliation(s)
- Mitchell St Clair-Glover
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Medical, Indigenous, and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW 2522, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Medical, Indigenous, and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marnie Maddock
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Medical, Indigenous, and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Eileen Wallace
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Medical, Indigenous, and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW 2522, Australia
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Medical, Indigenous, and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gordon Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW 2522, Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW 2522, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Medical, Indigenous, and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
22
|
Wang X, Chen Q, Li J, Tian W, Liu Z, Chen T. Recent adavances of functional modules for tooth regeneration. J Mater Chem B 2024; 12:7497-7518. [PMID: 39021127 DOI: 10.1039/d4tb01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Dental diseases, such as dental caries and periodontal disorders, constitute a major global health challenge, affecting millions worldwide and often resulting in tooth loss. Traditional dental treatments, though beneficial, typically cannot fully restore the natural functions and structures of teeth. This limitation has prompted growing interest in innovative strategies for tooth regeneration methods. Among these, the use of dental stem cells to generate functional tooth modules represents an emerging and promising approach in dental tissue engineering. These modules aim to closely replicate the intricate morphology and essential physiological functions of dental tissues. Recent advancements in regenerative research have not only enhanced the assembly techniques for these modules but also highlighted their therapeutic potential in addressing various dental diseases. In this review, we discuss the latest progress in the construction of functional tooth modules, especially on regenerating dental pulp, periodontal tissue, and tooth roots.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qiuyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jiayi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tian Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
23
|
Buonvino S, Di Giuseppe D, Filippi J, Martinelli E, Seliktar D, Melino S. 3D Cell Migration Chip (3DCM-Chip): A New Tool toward the Modeling of 3D Cellular Complex Systems. Adv Healthc Mater 2024; 13:e2400040. [PMID: 38739022 DOI: 10.1002/adhm.202400040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/24/2024] [Indexed: 05/14/2024]
Abstract
3D hydrogel-based cell cultures provide models for studying cell behavior and can efficiently replicate the physiologic environment. Hydrogels can be tailored to mimic mechanical and biochemical properties of specific tissues and allow to produce gel-in-gel models. In this system, microspheres encapsulating cells are embedded in an outer hydrogel matrix, where cells are able to migrate. To enhance the efficiency of such studies, a lab-on-a-chip named 3D cell migration-chip (3DCM-chip) is designed, which offers substantial advantages over traditional methods. 3DCM-chip facilitates the analysis of biochemical and physical stimuli effects on cell migration/invasion in different cell types, including stem, normal, and tumor cells. 3DCM-chip provides a smart platform for developing more complex cell co-cultures systems. Herein the impact of human fibroblasts on MDA-MB 231 breast cancer cells' invasiveness is investigated. Moreover, how the presence of different cellular lines, including mesenchymal stem cells, normal human dermal fibroblasts, and human umbilical vein endothelial cells, affects the invasive behavior of cancer cells is investigated using 3DCM-chip. Therefore, predictive tumoroid models with a more complex network of interactions between cells and microenvironment are here produced. 3DCM-chip moves closer to the creation of in vitro systems that can potentially replicate key aspects of the physiological tumor microenvironment.
Collapse
Affiliation(s)
- Silvia Buonvino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Davide Di Giuseppe
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Joanna Filippi
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Dror Seliktar
- Department of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica, Rome, 00133, Italy
- NAST Center- University of Rome Tor Vergata, via della ricerca scientifica, Rome, 00133, Italy
| |
Collapse
|
24
|
Chandra DK, Reis RL, Kundu SC, Kumar A, Mahapatra C. Nanomaterials-Based Hybrid Bioink Platforms in Advancing 3D Bioprinting Technologies for Regenerative Medicine. ACS Biomater Sci Eng 2024; 10:4145-4174. [PMID: 38822783 DOI: 10.1021/acsbiomaterials.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
3D bioprinting is recognized as the ultimate additive biomanufacturing technology in tissue engineering and regeneration, augmented with intelligent bioinks and bioprinters to construct tissues or organs, thereby eliminating the stipulation for artificial organs. For 3D bioprinting of soft tissues, such as kidneys, hearts, and other human body parts, formulations of bioink with enhanced bioinspired rheological and mechanical properties were essential. Nanomaterials-based hybrid bioinks have the potential to overcome the above-mentioned problem and require much attention among researchers. Natural and synthetic nanomaterials such as carbon nanotubes, graphene oxides, titanium oxides, nanosilicates, nanoclay, nanocellulose, etc. and their blended have been used in various 3D bioprinters as bioinks and benefitted enhanced bioprintability, biocompatibility, and biodegradability. A limited number of articles were published, and the above-mentioned requirement pushed us to write this review. We reviewed, explored, and discussed the nanomaterials and nanocomposite-based hybrid bioinks for the 3D bioprinting technology, 3D bioprinters properties, natural, synthetic, and nanomaterial-based hybrid bioinks, including applications with challenges, limitations, ethical considerations, potential solution for future perspective, and technological advancement of efficient and cost-effective 3D bioprinting methods in tissue regeneration and healthcare.
Collapse
Affiliation(s)
- Dilip Kumar Chandra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| |
Collapse
|
25
|
Luo W, Zhang H, Wan R, Cai Y, Liu Y, Wu Y, Yang Y, Chen J, Zhang D, Luo Z, Shang X. Biomaterials-Based Technologies in Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2024; 13:e2304196. [PMID: 38712598 DOI: 10.1002/adhm.202304196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
For many clinically prevalent severe injuries, the inherent regenerative capacity of skeletal muscle remains inadequate. Skeletal muscle tissue engineering (SMTE) seeks to meet this clinical demand. With continuous progress in biomedicine and related technologies including micro/nanotechnology and 3D printing, numerous studies have uncovered various intrinsic mechanisms regulating skeletal muscle regeneration and developed tailored biomaterial systems based on these understandings. Here, the skeletal muscle structure and regeneration process are discussed and the diverse biomaterial systems derived from various technologies are explored in detail. Biomaterials serve not merely as local niches for cell growth, but also as scaffolds endowed with structural or physicochemical properties that provide tissue regenerative cues such as topographical, electrical, and mechanical signals. They can also act as delivery systems for stem cells and bioactive molecules that have been shown as key participants in endogenous repair cascades. To achieve bench-to-bedside translation, the typical effect enabled by biomaterial systems and the potential underlying molecular mechanisms are also summarized. Insights into the roles of biomaterials in SMTE from cellular and molecular perspectives are provided. Finally, perspectives on the advancement of SMTE are provided, for which gene therapy, exosomes, and hybrid biomaterials may hold promise to make important contributions.
Collapse
Affiliation(s)
- Wei Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hanli Zhang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Renwen Wan
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuxi Cai
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Yang Wu
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yimeng Yang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jiani Chen
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, Hong Kong
| | - Zhiwen Luo
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiliang Shang
- Department of Sports Medicine Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
26
|
Sabetkish S, Currie P, Meagher L. Recent trends in 3D bioprinting technology for skeletal muscle regeneration. Acta Biomater 2024; 181:46-66. [PMID: 38697381 DOI: 10.1016/j.actbio.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Skeletal muscle is a pro-regenerative tissue, that utilizes a tissue-resident stem cell system to effect repair upon injury. Despite the demonstrated efficiency of this system in restoring muscle mass after many acute injuries, in conditions of severe trauma such as those evident in volumetric muscle loss (VML) (>20 % by mass), this self-repair capability is unable to restore tissue architecture, requiring interventions which currently are largely surgical. As a possible alternative, the generation of artificial muscle using tissue engineering approaches may also be of importance in the treatment of VML and muscle diseases such as dystrophies. Three-dimensional (3D) bioprinting has been identified as a promising technique for regeneration of the complex architecture of skeletal muscle. This review discusses existing treatment strategies following muscle damage, recent progress in bioprinting techniques, the bioinks used for muscle regeneration, the immunogenicity of scaffold materials, and in vitro and in vivo maturation techniques for 3D bio-printed muscle constructs. The pros and cons of these bioink formulations are also highlighted. Finally, we present the current limitations and challenges in the field and critical factors to consider for bioprinting approaches to become more translationa and to produce clinically relevant engineered muscle. STATEMENT OF SIGNIFICANCE: This review discusses the physiopathology of muscle injuries and existing clinical treatment strategies for muscle damage, the types of bioprinting techniques that have been applied to bioprinting of muscle, and the bioinks commonly used for muscle regeneration. The pros and cons of these bioinks are highlighted. We present a discussion of existing gaps in the literature and critical factors to consider for the translation of bioprinting approaches and to produce clinically relevant engineered muscle. Finally, we provide insights into what we believe will be the next steps required before the realization of the application of tissue-engineered muscle in humans. We believe this manuscript is an insightful, timely, and instructive review that will guide future muscle bioprinting research from a fundamental construct creation approach, down a translational pathway to achieve the desired impact in the clinic.
Collapse
Affiliation(s)
- Shabnam Sabetkish
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Peter Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
27
|
Tung Y, Chen Y, Derr K, Wilson K, Song MJ, Ferrer M. A 3D Bioprinted Human Neurovascular Unit Model of Glioblastoma Tumor Growth. Adv Healthc Mater 2024; 13:e2302831. [PMID: 38394389 PMCID: PMC11176035 DOI: 10.1002/adhm.202302831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/29/2024] [Indexed: 02/25/2024]
Abstract
A 3D bioprinted neurovascular unit (NVU) model is developed to study glioblastoma (GBM) tumor growth in a brain-like microenvironment. The NVU model includes human primary astrocytes, pericytes and brain microvascular endothelial cells, and patient-derived glioblastoma cells (JHH-520) are used for this study. Fluorescence reporters are used with confocal high content imaging to quantitate real-time microvascular network formation and tumor growth. Extensive validation of the NVU-GBM model includes immunostaining for brain relevant cellular markers and extracellular matrix components; single cell RNA sequencing (scRNAseq) to establish physiologically relevant transcriptomics changes; and secretion of NVU and GBM-relevant cytokines. The scRNAseq reveals changes in gene expression and cytokines secretion associated with wound healing/angiogenesis, including the appearance of an endothelial mesenchymal transition cell population. The NVU-GBM model is used to test 18 chemotherapeutics and anti-cancer drugs to assess the pharmacological relevance of the model and robustness for high throughput screening.
Collapse
Affiliation(s)
- Yen‐Ting Tung
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Yu‐Chi Chen
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Kristy Derr
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Kelli Wilson
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Min Jae Song
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences (NCATS)National Institutes of Health (NIH)RockvilleMD20850USA
| |
Collapse
|
28
|
Rodríguez C, Timóteo-Ferreira F, Minchiotti G, Brunelli S, Guardiola O. Cellular interactions and microenvironment dynamics in skeletal muscle regeneration and disease. Front Cell Dev Biol 2024; 12:1385399. [PMID: 38840849 PMCID: PMC11150574 DOI: 10.3389/fcell.2024.1385399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Skeletal muscle regeneration relies on the intricate interplay of various cell populations within the muscle niche-an environment crucial for regulating the behavior of muscle stem cells (MuSCs) and ensuring postnatal tissue maintenance and regeneration. This review delves into the dynamic interactions among key players of this process, including MuSCs, macrophages (MPs), fibro-adipogenic progenitors (FAPs), endothelial cells (ECs), and pericytes (PCs), each assuming pivotal roles in orchestrating homeostasis and regeneration. Dysfunctions in these interactions can lead not only to pathological conditions but also exacerbate muscular dystrophies. The exploration of cellular and molecular crosstalk among these populations in both physiological and dystrophic conditions provides insights into the multifaceted communication networks governing muscle regeneration. Furthermore, this review discusses emerging strategies to modulate the muscle-regenerating niche, presenting a comprehensive overview of current understanding and innovative approaches.
Collapse
Affiliation(s)
- Cristina Rodríguez
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| | | | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Ombretta Guardiola
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples, Italy
| |
Collapse
|
29
|
Albrecht FB, Ahlfeld T, Klatt A, Heine S, Gelinsky M, Kluger PJ. Biofabrication's Contribution to the Evolution of Cultured Meat. Adv Healthc Mater 2024; 13:e2304058. [PMID: 38339837 PMCID: PMC11468272 DOI: 10.1002/adhm.202304058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cultured Meat (CM) is a growing field in cellular agriculture, driven by the environmental impact of conventional meat production, which contributes to climate change and occupies ≈70% of arable land. As demand for meat alternatives rises, research in this area expands. CM production relies on tissue engineering techniques, where a limited number of animal cells are cultured in vitro and processed to create meat-like tissue comprising muscle and adipose components. Currently, CM is primarily produced on a small scale in pilot facilities. Producing a large cell mass based on suitable cell sources and bioreactors remains challenging. Advanced manufacturing methods and innovative materials are required to subsequently process this cell mass into CM products on a large scale. Consequently, CM is closely linked with biofabrication, a suite of technologies for precisely arranging cellular aggregates and cell-material composites to construct specific structures, often using robotics. This review provides insights into contemporary biomedical biofabrication technologies, focusing on significant advancements in muscle and adipose tissue biofabrication for CM production. Novel materials for biofabricating CM are also discussed, emphasizing their edibility and incorporation of healthful components. Finally, initial studies on biofabricated CM are examined, addressing current limitations and future challenges for large-scale production.
Collapse
Affiliation(s)
| | - Tilman Ahlfeld
- Technische Universität DresdenCentre for Translational BoneJoint and Soft Tissue Research01307DresdenGermany
| | - Annemarie Klatt
- Reutlingen UniversityReutlingen Research Institute72762ReutlingenGermany
| | - Simon Heine
- Reutlingen UniversityReutlingen Research Institute72762ReutlingenGermany
| | - Michael Gelinsky
- Technische Universität DresdenCentre for Translational BoneJoint and Soft Tissue Research01307DresdenGermany
| | | |
Collapse
|
30
|
Joseph A, Muhammad L F, S Vijayan A, Xavier J, K B M, Karthikeyan A, Gopinath N, P V M, Nair BG. 3D printed arrowroot starch-gellan scaffolds for wound healing applications. Int J Biol Macromol 2024; 264:130604. [PMID: 38447843 DOI: 10.1016/j.ijbiomac.2024.130604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Skin, the largest organ in the body, blocks the entry of environmental pollutants into the system. Any injury to this organ allows infections and other harmful substances into the body. 3D bioprinting, a state-of-the-art technique, is suitable for fabricating cell culture scaffolds to heal chronic wounds rapidly. This study uses starch extracted from Maranta arundinacea (Arrowroot plant) (AS) and gellan gum (GG) to develop a bioink for 3D printing a scaffold capable of hosting animal cells. Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction analysis (XRD) prove that the isolated AS is analogous to commercial starch. The cell culture scaffolds developed are superior to the existing monolayer culture. Infrared microscopy shows the AS-GG interaction and elucidates the mechanism of hydrogel formation. The physicochemical properties of the 3D-printed scaffold are analyzed to check the cell adhesion and growth; SEM images have confirmed that the AS-GG printed scaffold can support cell growth and proliferation, and the MTT assay shows good cell viability. Cell behavioral and migration studies reveal that cells are healthy. Since the scaffold is biocompatible, it can be 3D printed to any shape and structure and will biodegrade in the requisite time.
Collapse
Affiliation(s)
- Abey Joseph
- Department of Bioscience & Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Fathah Muhammad L
- Department of Bioscience & Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Athira S Vijayan
- School of Material Science and Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Joseph Xavier
- Toxicology division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, Kerala, India
| | - Megha K B
- Toxicology division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, Kerala, India
| | - Akash Karthikeyan
- Department of Bioscience & Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Nigina Gopinath
- Department of Bioscience & Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Mohanan P V
- Toxicology division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, Kerala, India
| | - Baiju G Nair
- Department of Bioscience & Engineering, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India.
| |
Collapse
|
31
|
Takahashi H, Ishiyama K, Takeda N, Shimizu T. Nutrient Rescue of Early Maturing and Deteriorating Satellite Cell-Derived Engineered Muscle Tissue. Tissue Eng Part A 2023; 29:633-644. [PMID: 37694582 DOI: 10.1089/ten.tea.2023.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Engineered human muscle tissue is a promising tool for tissue models to better understand muscle physiology and diseases, since they can replicate many biomimetic structures and functions of skeletal muscle in vitro. We have developed a method to produce contractile muscle sheet tissues from human myoblasts, based on our cell sheet fabrication technique. This study reports that our tissue engineering technique allowed us to discover unique characteristics of human muscle satellite cells as a cell source for our muscle sheet tissue. The tissues engineered from satellite cells functionally matured within several days, which is earlier than those created from myoblasts. On the other hand, satellite cell-derived muscle sheet tissues were unable to maintain the contractile ability, whereas the myoblast-derived tissues showed muscle contractions for several weeks. The sarcomere structures and membrane-like structures of laminin and dystrophin were lost along with early functional deterioration. Based on a hypothesis that an insufficiency of nutrients caused a shortened lifetime, we supplemented the culture medium for the satellite cell-derived muscle sheet tissues with 10% serum, although a lower serum medium is commonly used to produce muscle tissues. Further combined with the transforming growth factor (TGF-β1) receptor inhibitor, SB431542, the contractile ability of the muscle tissues was increased remarkably and the tissue microstructures were maintained for a longer term, while retaining the early functionalization and the enriched culture conditions prevented early deterioration. These results strengthened our understanding of the biology of myoblasts and satellite cells in muscle tissue formation and provided new insights into the applications of muscle tissue engineering.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), Tokyo, Japan
| | - Kaho Ishiyama
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Naoya Takeda
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), Tokyo, Japan
| |
Collapse
|
32
|
Kurowiak J, Klekiel T, Będziński R. Biodegradable Polymers in Biomedical Applications: A Review-Developments, Perspectives and Future Challenges. Int J Mol Sci 2023; 24:16952. [PMID: 38069272 PMCID: PMC10707259 DOI: 10.3390/ijms242316952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Biodegradable polymers are materials that, thanks to their remarkable properties, are widely understood to be suitable for use in scientific fields such as tissue engineering and materials engineering. Due to the alarming increase in the number of diagnosed diseases and conditions, polymers are of great interest in biomedical applications especially. The use of biodegradable polymers in biomedicine is constantly expanding. The application of new techniques or the improvement of existing ones makes it possible to produce materials with desired properties, such as mechanical strength, controlled degradation time and rate and antibacterial and antimicrobial properties. In addition, these materials can take virtually unlimited shapes as a result of appropriate design. This is additionally desirable when it is necessary to develop new structures that support or restore the proper functioning of systems in the body.
Collapse
Affiliation(s)
| | | | - Romuald Będziński
- Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Licealna 9 Street, 65-417 Zielona Gora, Poland; (J.K.); (T.K.)
| |
Collapse
|
33
|
Yeo M, Sarkar A, Singh YP, Derman ID, Datta P, Ozbolat IT. Synergistic coupling between 3D bioprinting and vascularization strategies. Biofabrication 2023; 16:012003. [PMID: 37944186 PMCID: PMC10658349 DOI: 10.1088/1758-5090/ad0b3f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/27/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Three-dimensional (3D) bioprinting offers promising solutions to the complex challenge of vascularization in biofabrication, thereby enhancing the prospects for clinical translation of engineered tissues and organs. While existing reviews have touched upon 3D bioprinting in vascularized tissue contexts, the current review offers a more holistic perspective, encompassing recent technical advancements and spanning the entire multistage bioprinting process, with a particular emphasis on vascularization. The synergy between 3D bioprinting and vascularization strategies is crucial, as 3D bioprinting can enable the creation of personalized, tissue-specific vascular network while the vascularization enhances tissue viability and function. The review starts by providing a comprehensive overview of the entire bioprinting process, spanning from pre-bioprinting stages to post-printing processing, including perfusion and maturation. Next, recent advancements in vascularization strategies that can be seamlessly integrated with bioprinting are discussed. Further, tissue-specific examples illustrating how these vascularization approaches are customized for diverse anatomical tissues towards enhancing clinical relevance are discussed. Finally, the underexplored intraoperative bioprinting (IOB) was highlighted, which enables the direct reconstruction of tissues within defect sites, stressing on the possible synergy shaped by combining IOB with vascularization strategies for improved regeneration.
Collapse
Affiliation(s)
- Miji Yeo
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Anwita Sarkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Yogendra Pratap Singh
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Irem Deniz Derman
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, United States of America
- Materials Research Institute, Penn State University, University Park, PA 16802, United States of America
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, United States of America
- Penn State Cancer Institute, Penn State University, Hershey, PA 17033, United States of America
- Biotechnology Research and Application Center, Cukurova University, Adana 01130, Turkey
| |
Collapse
|
34
|
Zarrabi A, Perrin D, Kavoosi M, Sommer M, Sezen S, Mehrbod P, Bhushan B, Machaj F, Rosik J, Kawalec P, Afifi S, Bolandi SM, Koleini P, Taheri M, Madrakian T, Łos MJ, Lindsey B, Cakir N, Zarepour A, Hushmandi K, Fallah A, Koc B, Khosravi A, Ahmadi M, Logue S, Orive G, Pecic S, Gordon JW, Ghavami S. Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies. Cancers (Basel) 2023; 15:5269. [PMID: 37958442 PMCID: PMC10650215 DOI: 10.3390/cancers15215269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.
Collapse
Affiliation(s)
- Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - David Perrin
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Micah Sommer
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
- Section of Physical Medicine and Rehabilitation, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Parvaneh Mehrbod
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Bhavya Bhushan
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Philip Kawalec
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Health Sciences Centre, Winnipeg, MB R3A 1R9, Canada
| | - Saba Afifi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Seyed Mohammadreza Bolandi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Peiman Koleini
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Benjamin Lindsey
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Nilufer Cakir
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Susan Logue
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
35
|
Luo Q, Shang K, Zhu J, Wu Z, Cao T, Ahmed AAQ, Huang C, Xiao L. Biomimetic cell culture for cell adhesive propagation for tissue engineering strategies. MATERIALS HORIZONS 2023; 10:4662-4685. [PMID: 37705440 DOI: 10.1039/d3mh00849e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Biomimetic cell culture, which involves creating a biomimetic microenvironment for cells in vitro by engineering approaches, has aroused increasing interest given that it maintains the normal cellular phenotype, genotype and functions displayed in vivo. Therefore, it can provide a more precise platform for disease modelling, drug development and regenerative medicine than the conventional plate cell culture. In this review, initially, we discuss the principle of biomimetic cell culture in terms of the spatial microenvironment, chemical microenvironment, and physical microenvironment. Then, the main strategies of biomimetic cell culture and their state-of-the-art progress are summarized. To create a biomimetic microenvironment for cells, a variety of strategies has been developed, ranging from conventional scaffold strategies, such as macroscopic scaffolds, microcarriers, and microgels, to emerging scaffold-free strategies, such as spheroids, organoids, and assembloids, to simulate the native cellular microenvironment. Recently, 3D bioprinting and microfluidic chip technology have been applied as integrative platforms to obtain more complex biomimetic structures. Finally, the challenges in this area are discussed and future directions are discussed to shed some light on the community.
Collapse
Affiliation(s)
- Qiuchen Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Keyuan Shang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Jing Zhu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Zhaoying Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Tiefeng Cao
- Department of Gynaecology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510070, China
| | - Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Chixiang Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
36
|
Bülow A, Schäfer B, Beier JP. Three-Dimensional Bioprinting in Soft Tissue Engineering for Plastic and Reconstructive Surgery. Bioengineering (Basel) 2023; 10:1232. [PMID: 37892962 PMCID: PMC10604458 DOI: 10.3390/bioengineering10101232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/05/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Skeletal muscle tissue engineering (TE) and adipose tissue engineering have undergone significant progress in recent years. This review focuses on the key findings in these areas, particularly highlighting the integration of 3D bioprinting techniques to overcome challenges and enhance tissue regeneration. In skeletal muscle TE, 3D bioprinting enables the precise replication of muscle architecture. This addresses the need for the parallel alignment of cells and proper innervation. Satellite cells (SCs) and mesenchymal stem cells (MSCs) have been utilized, along with co-cultivation strategies for vascularization and innervation. Therefore, various printing methods and materials, including decellularized extracellular matrix (dECM), have been explored. Similarly, in adipose tissue engineering, 3D bioprinting has been employed to overcome the challenge of vascularization; addressing this challenge is vital for graft survival. Decellularized adipose tissue and biomimetic scaffolds have been used as biological inks, along with adipose-derived stem cells (ADSCs), to enhance graft survival. The integration of dECM and alginate bioinks has demonstrated improved adipocyte maturation and differentiation. These findings highlight the potential of 3D bioprinting techniques in skeletal muscle and adipose tissue engineering. By integrating specific cell types, biomaterials, and printing methods, significant progress has been made in tissue regeneration. However, challenges such as fabricating larger constructs, translating findings to human models, and obtaining regulatory approvals for cellular therapies remain to be addressed. Nonetheless, these advancements underscore the transformative impact of 3D bioprinting in tissue engineering research and its potential for future clinical applications.
Collapse
Affiliation(s)
- Astrid Bülow
- Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen, 52074 Aachen, Germany; (B.S.); (J.P.B.)
| | | | | |
Collapse
|
37
|
Han S, Cruz SH, Park S, Shin SR. Nano-biomaterials and advanced fabrication techniques for engineering skeletal muscle tissue constructs in regenerative medicine. NANO CONVERGENCE 2023; 10:48. [PMID: 37864632 PMCID: PMC10590364 DOI: 10.1186/s40580-023-00398-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Engineered three-dimensional (3D) tissue constructs have emerged as a promising solution for regenerating damaged muscle tissue resulting from traumatic or surgical events. 3D architecture and function of the muscle tissue constructs can be customized by selecting types of biomaterials and cells that can be engineered with desired shapes and sizes through various nano- and micro-fabrication techniques. Despite significant progress in this field, further research is needed to improve, in terms of biomaterials properties and fabrication techniques, the resemblance of function and complex architecture of engineered constructs to native muscle tissues, potentially enhancing muscle tissue regeneration and restoring muscle function. In this review, we discuss the latest trends in using nano-biomaterials and advanced nano-/micro-fabrication techniques for creating 3D muscle tissue constructs and their regeneration ability. Current challenges and potential solutions are highlighted, and we discuss the implications and opportunities of a future perspective in the field, including the possibility for creating personalized and biomanufacturable platforms.
Collapse
Affiliation(s)
- Seokgyu Han
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Sebastián Herrera Cruz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.
| |
Collapse
|
38
|
Taravatfard AZ, Ceballos-Gonzalez C, Siddique AB, Bolivar-Monsalve J, Madadelahi M, Trujillo-de Santiago G, Moisés Alvarez M, Pramanick AK, Martinez Guerra E, Kulinsky L, Madou MJ, Martinez SO, Ray M. Nitrogen-functionalized graphene quantum dot incorporated GelMA microgels as fluorescent 3D-tissue Constructs. NANOSCALE 2023; 15:16277-16286. [PMID: 37650749 DOI: 10.1039/d3nr02612d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Biopolymer microgels present many opportunities in biomedicine and tissue engineering. To understand their in vivo behavior in therapeutic interventions, long-term monitoring is critical, which is usually achieved by incorporating fluorescent materials within the hydrogel matrix. Current research is limited due to issues concerning the biocompatibility and instability of the conventional fluorescent species, which also tend to adversely affect the bio-functionality of the hydrogels. Here, we introduce a microfluidic-based approach to generate nitrogen-functionalized graphene quantum dot (NGQD) incorporated gelatin methacryloyl (GelMA) hydrogel microspheres, capable of long-term monitoring while preserving or enhancing the other favorable features of 3D cell encapsulation. A multilayer droplet-based microfluidic device was designed and fabricated to make monodisperse NGQD-loaded GelMA hydrogel microspheres encapsulating skeletal muscle cells (C2C12). Control over the sizes of microspheres could be achieved by tuning the flow rates in the microfluidic device. Skeletal muscle cells encapsulated in these microgels exhibited high cell viability from day 1 (82.9 ± 6.50%) to day 10 (92.1 ± 3.90%). The NGQD-loaded GelMA microgels encapsulating the cells demonstrated higher metabolic activity compared to the GelMA microgels. Presence of sarcomeric α-actin was verified by immunofluorescence staining on day 10. A fluorescence signal was observed from the NGQD-loaded microgels during the entire period of the study. The investigation reveals the advantages of integrating NGQDs in microgels for non-invasive imaging and monitoring of cell-laden microspheres and presents new opportunities for future therapeutic applications.
Collapse
Affiliation(s)
- Aida Zahra Taravatfard
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, 64849, Mexico.
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
| | | | - Abu Bakar Siddique
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, 64849, Mexico.
| | | | - Masoud Madadelahi
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, 64849, Mexico.
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey 64849, Mexico
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey 64849, Mexico
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | | | - Eduardo Martinez Guerra
- Centro de Investigaciones en Materiales Avanzados, CIMAV Unidad Monterrey, Alianza Norte 202, Apodaca, Nuevo León, C.P. 66628, Mexico
| | - Lawrence Kulinsky
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
| | - Marc J Madou
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, 64849, Mexico.
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
| | - Sergio O Martinez
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, 64849, Mexico.
| | - Mallar Ray
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, 64849, Mexico.
| |
Collapse
|
39
|
Loi G, Scocozza F, Aliberti F, Rinvenuto L, Cidonio G, Marchesi N, Benedetti L, Ceccarelli G, Conti M. 3D Co-Printing and Substrate Geometry Influence the Differentiation of C2C12 Skeletal Myoblasts. Gels 2023; 9:595. [PMID: 37504474 PMCID: PMC10378771 DOI: 10.3390/gels9070595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023] Open
Abstract
Cells are influenced by several biomechanical aspects of their microenvironment, such as substrate geometry. According to the literature, substrate geometry influences the behavior of muscle cells; in particular, the curvature feature improves cell proliferation. However, the effect of substrate geometry on the myogenic differentiation process is not clear and needs to be further investigated. Here, we show that the 3D co-printing technique allows the realization of substrates. To test the influence of the co-printing technique on cellular behavior, we realized linear polycaprolactone substrates with channels in which a fibrinogen-based hydrogel loaded with C2C12 cells was deposited. Cell viability and differentiation were investigated up to 21 days in culture. The results suggest that this technology significantly improves the differentiation at 14 days. Therefore, we investigate the substrate geometry influence by comparing three different co-printed geometries-linear, circular, and hybrid structures (linear and circular features combined). Based on our results, all structures exhibit optimal cell viability (>94%), but the linear pattern allows to increase the in vitro cell differentiation, in particular after 14 days of culture. This study proposes an endorsed approach for creating artificial muscles for future skeletal muscle tissue engineering applications.
Collapse
Affiliation(s)
- Giada Loi
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100 Pavia, Italy
| | - Franca Scocozza
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100 Pavia, Italy
| | - Flaminia Aliberti
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Center for Inherited Cardiovascular Diseases, Transplant Research Area, 27100 Pavia, Italy
| | - Lorenza Rinvenuto
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Gianluca Cidonio
- Center for Life Nano- & Neuro-Science (CLN2S), Fondazione Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Nicola Marchesi
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Laura Benedetti
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Michele Conti
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100 Pavia, Italy
| |
Collapse
|
40
|
Filippi M, Yasa O, Giachino J, Graf R, Balciunaite A, Stefani L, Katzschmann RK. Perfusable Biohybrid Designs for Bioprinted Skeletal Muscle Tissue. Adv Healthc Mater 2023; 12:e2300151. [PMID: 36911914 PMCID: PMC11468554 DOI: 10.1002/adhm.202300151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Engineered, centimeter-scale skeletal muscle tissue (SMT) can mimic muscle pathophysiology to study development, disease, regeneration, drug response, and motion. Macroscale SMT requires perfusable channels to guarantee cell survival, and support elements to enable mechanical cell stimulation and uniaxial myofiber formation. Here, stable biohybrid designs of centimeter-scale SMT are realized via extrusion-based bioprinting of an optimized polymeric blend based on gelatin methacryloyl and sodium alginate, which can be accurately coprinted with other inks. A perfusable microchannel network is designed to functionally integrate with perfusable anchors for insertion into a maturation culture template. The results demonstrate that i) coprinted synthetic structures display highly coherent interfaces with the living tissue, ii) perfusable designs preserve cells from hypoxia all over the scaffold volume, iii) constructs can undergo passive mechanical tension during matrix remodeling, and iv) the constructs can be used to study the distribution of drugs. Extrusion-based multimaterial bioprinting with the inks and design realizes in vitro matured biohybrid SMT for biomedical applications.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Oncay Yasa
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Jan Giachino
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Reto Graf
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Aiste Balciunaite
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Lisa Stefani
- Soft Robotics LaboratoryETH ZurichTannenstrasse 3Zurich8092Switzerland
| | | |
Collapse
|
41
|
Chatterjee N, Misra SK. Nanocarbon-Enforced Anisotropic MusCAMLR for Rapid Rescue of Mechanically Damaged Skeletal Muscles. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37257065 DOI: 10.1021/acsami.3c01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mechanical damages to skeletal muscles could be detrimental to the active work hours and lifestyle of athletes, mountaineers, and security personnel. In this regard, the slowness of conventional treatment strategies and drug-associated side effects greatly demand the design and development of novel biomaterials, which can rescue such mechanically damaged skeletal muscles. To accomplish this demand, we have developed a musculoresponsive polymer-carbon composite for assisting myotubular regeneration (MusCAMLR). The MusCAMLR is enforced to attain anisotropic muscle-like characteristics while incorporating a smartly passivated nanoscale carbon material in the PNIPAM gel under physiological conditions as a stimulus, which is not achieved by the pristine nanocarbon system. The MusCAMLR establishes a specific mechanical interaction with muscle cells, supports myotube regeneration, maintains excellent mechanical similarity with the myotube, and restores the structural integrity and biochemical parameters of mechanically damaged muscles in a delayed onset muscle soreness (DOMS) rat model within a short period of 72 h. Concisely, this study discloses the potential of smartly passivated nanocarbon in generating an advanced biomaterial system, MusCAMLR, from a regularly used polymeric hydrogel system. This engineered polymer-carbon composite reveals its possible potential to be used as a nondrug therapeutic alternative for rescuing mechanically damaged muscles and probably can be extended for therapy of various other diseases including muscular dystrophy.
Collapse
Affiliation(s)
- Niranjan Chatterjee
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Santosh Kumar Misra
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
- The Mehta family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
42
|
Tavares-Negrete JA, Pedroza-González SC, Frías-Sánchez AI, Salas-Ramírez ML, de Santiago-Miramontes MDLÁ, Luna-Aguirre CM, Alvarez MM, Trujillo-de Santiago G. Supplementation of GelMA with Minimally Processed Tissue Promotes the Formation of Densely Packed Skeletal-Muscle-Like Tissues. ACS Biomater Sci Eng 2023. [PMID: 37126642 DOI: 10.1021/acsbiomaterials.2c01521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present a simple and cost-effective strategy for developing gelatin methacryloyl (GelMA) hydrogels supplemented with minimally processed tissue (MPT) to fabricate densely packed skeletal-muscle-like tissues. MPT powder was prepared from skeletal muscle by freeze-drying, grinding, and sieving. Cell-culture experiments showed that the incorporation of 0.5-2.0% (w/v) MPT into GelMA hydrogels enhances the proliferation of murine myoblasts (C2C12 cells) compared to proliferation in pristine GelMA hydrogels and GelMA supplemented with decellularized skeletal-muscle tissues (DCTs). MPT-supplemented constructs also preserved their three-dimensional (3D) integrity for 28 days. By contrast, analogous pristine GelMA constructs only maintained their structure for 14 days or less. C2C12 cells embedded in MPT-supplemented constructs exhibited a higher degree of cell alignment and reached a significantly higher density than cells loaded in pristine GelMA constructs. Our results suggest that the addition of MPT incorporates a rich source of biochemical and topological cues, such as growth factors, glycosaminoglycans (GAGs), and structurally preserved proteins (e.g., collagen). In addition, GelMA supplemented with MPT showed suitable rheological properties for use as bioinks for extrusion bioprinting. We envision that this simple and cost-effective strategy of hydrogel supplementation will evolve into an exciting spectrum of applications for tissue engineers, primarily in the biofabrication of relevant microtissues for in vitro models and cultured meat and ultimately for the biofabrication of transplant materials using autologous MPT.
Collapse
Affiliation(s)
- Jorge A Tavares-Negrete
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Sara Cristina Pedroza-González
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Ada I Frías-Sánchez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Miriam L Salas-Ramírez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| | | | - Claudia Maribel Luna-Aguirre
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Mario M Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, 64849 Monterrey, México
- Departamento de Ingeniería Mecatrónica y Eléctrica, Tecnológico de Monterrey, 64849 Monterrey, México
| |
Collapse
|
43
|
Santos ACA, Camarena DEM, Roncoli Reigado G, Chambergo FS, Nunes VA, Trindade MA, Stuchi Maria-Engler S. Tissue Engineering Challenges for Cultivated Meat to Meet the Real Demand of a Global Market. Int J Mol Sci 2023; 24:6033. [PMID: 37047028 PMCID: PMC10094385 DOI: 10.3390/ijms24076033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 04/14/2023] Open
Abstract
Cultivated meat (CM) technology has the potential to disrupt the food industry-indeed, it is already an inevitable reality. This new technology is an alternative to solve the environmental, health and ethical issues associated with the demand for meat products. The global market longs for biotechnological improvements for the CM production chain. CM, also known as cultured, cell-based, lab-grown, in vitro or clean meat, is obtained through cellular agriculture, which is based on applying tissue engineering principles. In practice, it is first necessary to choose the best cell source and type, and then to furnish the necessary nutrients, growth factors and signalling molecules via cultivation media. This procedure occurs in a controlled environment that provides the surfaces necessary for anchor-dependent cells and offers microcarriers and scaffolds that favour the three-dimensional (3D) organisation of multiple cell types. In this review, we discuss relevant information to CM production, including the cultivation process, cell sources, medium requirements, the main obstacles to CM production (consumer acceptance, scalability, safety and reproducibility), the technological aspects of 3D models (biomaterials, microcarriers and scaffolds) and assembly methods (cell layering, spinning and 3D bioprinting). We also provide an outlook on the global CM market. Our review brings a broad overview of the CM field, providing an update for everyone interested in the topic, which is especially important because CM is a multidisciplinary technology.
Collapse
Affiliation(s)
- Andressa Cristina Antunes Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.C.A.S.)
| | - Denisse Esther Mallaupoma Camarena
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.C.A.S.)
| | - Gustavo Roncoli Reigado
- Department of Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
| | - Felipe S. Chambergo
- Department of Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
| | - Viviane Abreu Nunes
- Department of Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
| | - Marco Antonio Trindade
- Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, Pirassununga 13635-900, Brazil
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.C.A.S.)
| |
Collapse
|
44
|
Sedigh A, Ghelich P, Quint J, Mollocana-Lara EC, Samandari M, Tamayol A, Tomlinson RE. Approximating scaffold printability utilizing computational methods. Biofabrication 2023; 15:10.1088/1758-5090/acbbf0. [PMID: 36787632 PMCID: PMC10123880 DOI: 10.1088/1758-5090/acbbf0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
Bioprinting facilitates the generation of complex, three-dimensional (3D), cell-based constructs for various applications. Although multiple bioprinting technologies have been developed, extrusion-based systems have become the dominant technology due to the diversity of materials (bioinks) that can be utilized, either individually or in combination. However, each bioink has unique material properties and extrusion characteristics that affect bioprinting utility, accuracy, and precision. Here, we have extended our previous work to achieve high precision (i.e. repeatability) and printability across samples by optimizing bioink-specific printing parameters. Specifically, we hypothesized that a fuzzy inference system (FIS) could be used as a computational method to address the imprecision in 3D bioprinting test data and uncover the optimal printing parameters for a specific bioink that result in high accuracy and precision. To test this hypothesis, we have implemented a FIS model consisting of four inputs (bioink concentration, printing flow rate, speed, and temperature) and two outputs to quantify the precision (scaffold bioprinted linewidth variance) and printability. We validate our use of the bioprinting precision index with both standard and normalized printability factors. Finally, we utilize optimized printing parameters to bioprint scaffolds containing up to 30 × 106cells ml-1with high printability and precision. In total, our results indicate that computational methods are a cost-efficient measure to improve the precision and robustness of extrusion 3D bioprinting.
Collapse
Affiliation(s)
- Ashkan Sedigh
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Pejman Ghelich
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, United States of America
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, United States of America
| | - Evelyn C Mollocana-Lara
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, United States of America
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, United States of America
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, United States of America
| | - Ryan E Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America
| |
Collapse
|
45
|
Varela VA, da Silva Heinen LB, Marti LC, Caraciolo VB, Datoguia TS, Amano MT, Pereira WO. In vitro differentiation of myeloid suppressor cells (MDSC-like) from an immature myelomonocytic precursor THP-1. J Immunol Methods 2023; 515:113441. [PMID: 36848984 DOI: 10.1016/j.jim.2023.113441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with a potent suppressor profile that regulates immune responses. These cells are one of the main components of the microenvironment of several diseases, including solid and hematologic tumors, autoimmunities, and chronic inflammation. However, their wide use in studies is limited due to they comprehend a rare population, which is difficult to isolate, expand, differentiate, and maintain in culture. Additionally, this population has a complex phenotypic and functional characterization. OBJECTIVE To develop a protocol for the in vitro production of MDSC-like population from the differentiation of the immature myeloid cell line THP-1. METHODS We stimulated THP-1 with G-CSF (100 ng/mL) and IL-4 (20 ng/mL) for seven days to differentiate into the MDSC-like profile. At the end of the protocol, we characterized these cells phenotypically and functionally by immunophenotyping, gene expression analysis, cytokine release dosage, lymphocyte proliferation, and NK-mediated killing essays. RESULTS We differentiate THP-1 cells in an MDSC-like population, named THP1-MDSC-like, which presented immunophenotyping and gene expression profiles compatible with that described in the literature. Furthermore, we verified that this phenotypic and functional differentiation did not deviate to a macrophage profile of M1 or M2. These THP1-MDSC-like cells secreted several immunoregulatory cytokines into the microenvironment, consistent with the suppressor profile related to MDSC. In addition, the supernatant of these cells decreased the proliferation of activated lymphocytes and impaired the apoptosis of leukemic cells induced by NK cells. CONCLUSIONS We developed an effective protocol for MDSC in vitro production from the differentiation of the immature myeloid cell line THP-1 induced by G-CSF and IL-4. Furthermore, we demonstrated that THP1-MDSC-like suppressor cells contribute to the immune escape of AML cells. Potentially, these THP1-MDSC-like cells can be applied on a large-scale platform, thus being able to impact the course of several studies and models such as cancer, immunodeficiencies, autoimmunity, and chronic inflammation.
Collapse
Affiliation(s)
- Vanessa Araújo Varela
- Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Luciana Cavalheiro Marti
- Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Victória Bulcão Caraciolo
- Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Tarcila Santos Datoguia
- Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Mariane Tami Amano
- Hospital Sírio Libanês, São Paulo, SP, Brazil; Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Welbert Oliveira Pereira
- Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
46
|
Fornetti E, De Paolis F, Fuoco C, Bernardini S, Giannitelli SM, Rainer A, Seliktar D, Magdinier F, Baldi J, Biagini R, Cannata S, Testa S, Gargioli C. A novel extrusion-based 3D bioprinting system for skeletal muscle tissue engineering. Biofabrication 2023; 15. [PMID: 36689776 DOI: 10.1088/1758-5090/acb573] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
Three-dimensional (3D) bioprinting is an emerging technology, which turned out to be an optimal tool for tissue engineering approaches. To date, different printing systems have been developed. Among them, the extrusion-based approach demonstrated to be the most suitable for skeletal muscle tissue engineering, due to its ability to produce and deposit printing fibers in a parallel pattern that well mimic the native skeletal muscle tissue architecture. In tissue bioengineering, a key role is played by biomaterials, which must possess the key requisite of 'printability'. Nevertheless, this feature is not often well correlated with cell requirements, such as motives for cellular adhesion and/or absorbability. To overcome this hurdle, several efforts have been made to obtain an effective bioink by combining two different biomaterials in order to reach a good printability besides a suitable biological activity. However, despite being efficient, this strategy reveals several outcomes limitations. We report here the development and characterization of a novel extrusion-based 3D bioprinting system, and its application for correction of volumetric muscle loss (VML) injury in a mouse model. The developed bioprinting system is based on the use of PEG-Fibrinogen, a unique biomaterial with excellent biocompatibility, well-suited for skeletal muscle tissue engineering. With this approach, we obtained highly organized 3D constructs, in which murine muscle progenitors were able to differentiate into muscle fibers arranged in aligned bundles and capable of spontaneously contracting when culturedin vitro. Furthermore, to evaluate the potential of the developed system in future regenerative medicine applications, bioprinted constructs laden with either murine or human muscle progenitors were transplanted to regenerate theTibialis Anteriormuscle of a VML murine model, one month after grafting.
Collapse
Affiliation(s)
- E Fornetti
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - F De Paolis
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.,PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - C Fuoco
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - S Bernardini
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - S M Giannitelli
- Department of Engineering, Università Campus Bio-Medico, Rome, Italy
| | - A Rainer
- Department of Engineering, Università Campus Bio-Medico, Rome, Italy.,Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy
| | - D Seliktar
- Department of Biomedical Engineering, Techion Institute, Haifa, Israel
| | - F Magdinier
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, Marseille, France
| | - J Baldi
- IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - R Biagini
- IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - S Cannata
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - S Testa
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, Marseille, France
| | - C Gargioli
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
47
|
Takahashi H, Wakayama H, Nagase K, Shimizu T. Engineered Human Muscle Tissue from Multilayered Aligned Myofiber Sheets for Studies of Muscle Physiology and Predicting Drug Response. SMALL METHODS 2023; 7:e2200849. [PMID: 36562139 DOI: 10.1002/smtd.202200849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/22/2022] [Indexed: 06/17/2023]
Abstract
In preclinical drug testing, human muscle tissue models are critical to understanding the complex physiology, including drug effects in the human body. This study reports that a multilayering approach to cell sheet-based engineering produces an engineered human muscle tissue with sufficient contractile force suitable for measurement. A thermoresponsive micropatterned substrate regulates the biomimetic alignment of myofiber structures enabling the harvest of the aligned myofibers as a single cell sheet. The functional muscle tissue is produced by layering multiple myofiber sheets on a fibrin-based gel. This gel environment promotes myofiber maturation, provides the tissue an elastic platform for contraction, and allows the attachment of a measurement device. Since this multilayering approach is effective in enhancing the contractile ability of the muscle tissue, this muscle tissue generates a significantly high contractile force that can be measured quantitatively. The multilayered muscle tissue shows unidirectional contraction from electrical and chemical stimulation. In addition, their physiological responses to representative drugs can be determined quantitatively in real time by changes in contractile force and fatigue resistance. These physiological properties indicate that the engineered muscle tissue can become a promising tissue model for preclinical in vitro studies in muscle physiology and drug discovery.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Haruno Wakayama
- Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Kenichi Nagase
- Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| |
Collapse
|
48
|
de Souza TV, Pastena Giorno L, Malmonge SM, Santos AR. Bioprinting: From Technique to Application in Tissue Engineering and Regenerative Medicine. Curr Mol Med 2023; 23:934-951. [PMID: 36017861 DOI: 10.2174/1566524023666220822152448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022]
Abstract
Among the different approaches present in regenerative medicine and tissue engineering, the one that has attracted the most interest in recent years is the possibility of printing functional biological tissues. Bioprinting is a technique that has been applied to create cellularized three-dimensional structures that mimic biological tissues and thus allow their replacement. Hydrogels are interesting materials for this type of technique. Hydrogels based on natural polymers are known due to their biocompatible properties, in addition to being attractive biomaterials for cell encapsulation. They provide a threedimensional aqueous environment with biologically relevant chemical and physical signals, mimicking the natural environment of the extracellular matrix (ECM). Bioinks are ink formulations that allow the printing of living cells. The controlled deposition of biomaterials by bioinks needs to maintain cell viability and offer specific biochemical and physical stimuli capable of guiding cell migration, proliferation, and differentiation. In this work, we analyze the theoretical and practical issues of bioprinting, citing currently used methods, their advantages, and limitations. We present some important molecules that have been used to compose bioinks, as well as the cellular responses that have been observed in different tissues. Finally, we indicate future perspectives of the method.
Collapse
Affiliation(s)
- Thaís Vieira de Souza
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Luciana Pastena Giorno
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Sonia Maria Malmonge
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Arnaldo R Santos
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| |
Collapse
|
49
|
Machour M, Hen N, Goldfracht I, Safina D, Davidovich‐Pinhas M, Bianco‐Peled H, Levenberg S. Print-and-Grow within a Novel Support Material for 3D Bioprinting and Post-Printing Tissue Growth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200882. [PMID: 36261395 PMCID: PMC9731703 DOI: 10.1002/advs.202200882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/20/2022] [Indexed: 06/16/2023]
Abstract
3D bioprinting holds great promise for tissue engineering, with extrusion bioprinting in suspended hydrogels becoming the leading bioprinting technique in recent years. In this method, living cells are incorporated within bioinks, extruded layer by layer into a granular support material followed by gelation of the bioink through diverse cross-linking mechanisms. This approach offers high fidelity and precise fabrication of complex structures mimicking living tissue properties. However, the transition of cell mass mixed with the bioink into functional native-like tissue requires post-printing cultivation in vitro. An often-overlooked drawback of 3D bioprinting is the nonuniform shrinkage and deformation of printed constructs during the post-printing tissue maturation period, leading to highly variable engineered constructs with unpredictable size and shape. This limitation poses a challenge for the technology to meet applicative requirements. A novel technology of "print-and-grow," involving 3D bioprinting and subsequent cultivation in κ-Carrageenan-based microgels (CarGrow) for days is presented. CarGrow enhances the long-term structural stability of the printed objects by providing mechanical support. Moreover, this technology provides a possibility for live imaging to monitor tissue maturation. The "print-and-grow" method demonstrates accurate bioprinting with high tissue viability and functionality while preserving the construct's shape and size.
Collapse
Affiliation(s)
- Majd Machour
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Noy Hen
- Department of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and NanotechnologyTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Idit Goldfracht
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Dina Safina
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Maya Davidovich‐Pinhas
- Department of Biotechnology and Food EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Havazelet Bianco‐Peled
- Department of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| | - Shulamit Levenberg
- Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifa32000Israel
| |
Collapse
|
50
|
Recent trends in bioartificial muscle engineering and their applications in cultured meat, biorobotic systems and biohybrid implants. Commun Biol 2022; 5:737. [PMID: 35869250 PMCID: PMC9307618 DOI: 10.1038/s42003-022-03593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRecent advances in tissue engineering and biofabrication technology have yielded a plethora of biological tissues. Among these, engineering of bioartificial muscle stands out for its exceptional versatility and its wide range of applications. From the food industry to the technology sector and medicine, the development of this tissue has the potential to affect many different industries at once. However, to date, the biofabrication of cultured meat, biorobotic systems, and bioartificial muscle implants are still considered in isolation by individual peer groups. To establish common ground and share advances, this review outlines application-specific requirements for muscle tissue generation and provides a comprehensive overview of commonly used biofabrication strategies and current application trends. By solving the individual challenges and merging various expertise, synergetic leaps of innovation that inspire each other can be expected in all three industries in the future.
Collapse
|