1
|
Curto A, Nunes J, Coloma F, Sieber S, Cossa H, Matsena T, Hunguana A, Sacoor C, Jamisse E, Sitoe A, Bassat Q, Saute F, Tonne C. Fuel-based lighting and under-five morbidity in semi-rural Mozambique: A cohort study. ENVIRONMENTAL RESEARCH 2025; 272:121199. [PMID: 39986417 DOI: 10.1016/j.envres.2025.121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/25/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Mozambique has one of the lowest electrification rates in the world, leaving its population dependent on polluting fuels for lighting. Limited epidemiological evidence links fuel-based lighting to child health. We examined associations between polluting lighting sources, particularly kerosene, and under-five morbidity in a semi-rural district in Mozambique. METHODS We constructed a birth cohort from demographic and hospital-based pediatric morbidity surveillance data. We included children born in Manhiça district between January 1, 2016, and December 31, 2020. The most common lighting source (polluting vs clean) used during follow-up was used as exposure. The outcome was the frequency of all-cause and respiratory-linked hospital visits in any of the seven surveilled health facilities within the district. We used zero-inflated negative binomial regression models to calculate Rate Ratios (RR) adjusted for potential confounders at the child, mother, and household level. RESULTS We included 17,815 under-five children (49% female) living in 13,574 households. Nearly a quarter of children (24.7%) lived in households using polluting lighting fuels. During follow-up, there were a total of 69,677 all-cause hospital visits (53% respiratory-linked). Children in households with polluting lighting had a 2% higher rate of all-cause hospital visits (RR: 1.02, 95% CI: 0.98, 1.06) and a 2% lower rate of respiratory-linked hospital visits (RR: 0.98, 95% CI: 0.94, 1.03) compared to those with clean lighting. Results were robust to sensitivity analyses testing alternative inclusion criteria based on the definition of health facility catchment area and duration of follow-up time covered by the surveillance system. CONCLUSION Polluting compared to cleaner lighting sources were not associated with hospital visits among children under five. Intervention-based research is needed to better understand the health impacts of air pollution from fuel-based lighting among children living in areas with limited access to electricity.
Collapse
Affiliation(s)
- Ariadna Curto
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Jovito Nunes
- ISGlobal, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Fabián Coloma
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Stefan Sieber
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Herminio Cossa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Teodimiro Matsena
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Aura Hunguana
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Charfudin Sacoor
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Edgar Jamisse
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - António Sitoe
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Francisco Saute
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Cathryn Tonne
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
2
|
Ke L, Liu J, Feng G, Li X, Zhang Y, Zhang S, Ma X, Di Q. Effects of acute PM 2.5 purification on cognitive function and underlying mechanisms: Evidence from integrating alternative splicing into multi-omics. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137214. [PMID: 39823879 DOI: 10.1016/j.jhazmat.2025.137214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
The relationship between fine particulate matter (PM2.5) and cognition has been extensively investigated. However, the causal impact of acute PM2.5 purification on cognition improvement and the underlying biological mechanisms remain relatively opaque. Our double-blinded randomized controlled trial assessed the impact of acute PM2.5 purification on executive function, underpinned by multi-omics approaches including alternative splicing (AS) analysis. A total of 93 participants experienced a two-hour exposure to either reduced and normal PM2.5 levels. We measured the cognition of healthy young adults, collected peripheral blood before and after intervention, and performed multi-omics analysis including transcriptomics, metabolomics, and proteomics. Results indicated that reducing PM2.5 by 1 μg/m3 was associated with a 0.10 % (95 % CI: [0.18 %, 0.01 %]; p = 0.031) improvement in executive function. Notably, we identified 96 AS events without concurrent transcriptional amount alterations. Multi-layered omics analyses revealed disrupted pathways in hypoxia, mitochondrial function and energy metabolism, and immune responses, validated by ELISA and biochemical assay. These findings demonstrated short-term improvements of cognition following PM2.5 purification and provide mechanistic understandings of PM2.5-induced cognition alterations. This study underscores the significance of incorporating AS in the molecular framework of multi-omics research by exploring variable exon splicing, which could enrich multi-omics analysis methodologies and expose to broader audience.
Collapse
Affiliation(s)
- Limei Ke
- School of Medicine, Tsinghua University, Beijing 100084, China; School of Biomedical Engineering, Tsinghua University, Beijing 100084, China.
| | - Jianxiu Liu
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Guoqing Feng
- School of Medicine, Tsinghua University, Beijing 100084, China; School of Biomedical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xingtian Li
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Yao Zhang
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China; Soochow College, Soochow University, Suzhou 215006, China.
| | - Shiqi Zhang
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Xindong Ma
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute for Healthy China, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Kalenik S, Zaczek A, Rodacka A. Air Pollution-Induced Neurotoxicity: The Relationship Between Air Pollution, Epigenetic Changes, and Neurological Disorders. Int J Mol Sci 2025; 26:3402. [PMID: 40244238 PMCID: PMC11989335 DOI: 10.3390/ijms26073402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Air pollution is a major global health threat, responsible for over 8 million deaths in 2021, including 700,000 fatalities among children under the age of five. It is currently the second leading risk factor for mortality worldwide. Key pollutants, such as particulate matter (PM2.5, PM10), ozone, sulfur dioxide, nitrogen oxides, and carbon monoxide, have significant adverse effects on human health, contributing to respiratory and cardiovascular diseases, as well as neurodevelopmental and neurodegenerative disorders. Among these, particulate matter poses the most significant threat due to its highly complex mixture of organic and inorganic compounds with diverse sizes, compositions, and origins. Additionally, it can penetrate deeply into tissues and cross the blood-brain barrier, causing neurotoxicity which contributes to the development of neurodegenerative diseases. Although the link between air pollution and neurological disorders is well documented, the precise mechanisms and their sequence remain unclear. Beyond causing oxidative stress, inflammation, and excitotoxicity, studies suggest that air pollution induces epigenetic changes. These epigenetic alterations may affect the expression of genes involved in stress responses, neuroprotection, and synaptic plasticity. Understanding the relationship between neurological disorders and epigenetic changes induced by specific air pollutants could aid in the early detection and monitoring of central nervous system diseases.
Collapse
Affiliation(s)
- Sebastian Kalenik
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (S.K.); (A.Z.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Street, 90-237 Lodz, Poland
| | - Agnieszka Zaczek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (S.K.); (A.Z.)
| | - Aleksandra Rodacka
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (S.K.); (A.Z.)
| |
Collapse
|
4
|
Li D, Liu W, Peng T, Liu Y, Zhong L, Wang X. Janus Textile: Advancing Wearable Technology for Autonomous Sweat Management and Beyond. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409730. [PMID: 40042440 DOI: 10.1002/smll.202409730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/09/2025] [Indexed: 04/03/2025]
Abstract
To alleviate the discomfort caused by excessive sweating, there is a growing emphasis on developing wearable textiles that can evacuate sweat autonomously. These advanced fabrics, unlike their absorbent and retention-prone predecessors, harness the Janus structure-distinguished by its asymmetric wettability-to facilitate one-way transport of liquid. This unique characteristic has significant potential in addressing issues related to excessive bodily moisture and propelling the realm of smart wearables. This review offers a comprehensive overview of the advancements in Janus-structured textiles within the wearable field, delving into the mechanisms behind their unidirectional liquid transport, which rely on chemical gradient and curvature gradient strategies, alongside the methodologies for achieving asymmetric wettability. It further spotlights the multifaceted applications of Janus-based textiles in wearables, including moisture and thermal management, wound care, and sweat analysis. In addition to examining existing hurdles, the review also explores avenues for future innovation, envisioning a new era of Janus textiles tailored for personalized comfort and health monitoring capabilities.
Collapse
Affiliation(s)
- Dan Li
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Weiyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Tianhan Peng
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Yunya Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Lieshuang Zhong
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| |
Collapse
|
5
|
Faherty T, Raymond JE, McFiggans G, Pope FD. Acute particulate matter exposure diminishes executive cognitive functioning after four hours regardless of inhalation pathway. Nat Commun 2025; 16:1339. [PMID: 39915448 PMCID: PMC11803098 DOI: 10.1038/s41467-025-56508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
Recent evidence suggests short-term exposure to particulate matter (PM) air pollution can impact brain function after a delay period. It is unknown whether effects are predominantly due to the olfactory or lung-brain pathways. In this study 26 adults (Mage = 27.7, SDage = 10.6) participated in four conditions. They were exposed to either high PM concentrations or clean air for one hour, using normal inhalation or restricted nasal inhalation and olfaction with a nose clip. Participants completed four cognitive tests before and four hours after exposure, assessing working memory, selective attention, emotion expression discrimination, and psychomotor vigilance. Results showed significant reductions in selective attention and emotion expression discrimination after enhanced PM versus clean air exposure. Air quality did not significantly impact psychomotor vigilance or working memory performance. Inhalation method did not significantly mediate effects, suggesting that short-term PM pollution affects cognitive function through lung-brain mechanisms, either directly or indirectly.
Collapse
Affiliation(s)
- Thomas Faherty
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham, B15 2TT, UK
| | - Jane E Raymond
- University of Birmingham, School of Psychology, Birmingham, B15 2TT, UK
| | - Gordon McFiggans
- University of Manchester, Centre for Atmospheric Science, Department of Earth and Environmental Sciences, Manchester, M13 9PL, UK
| | - Francis D Pope
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham, B15 2TT, UK.
| |
Collapse
|
6
|
Rathbone CJ, Bousiotis D, Rose OG, Pope FD. Using low-cost sensors to assess common air pollution sources across multiple residences. Sci Rep 2025; 15:1803. [PMID: 39806034 PMCID: PMC11729851 DOI: 10.1038/s41598-025-85985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
The rapid development of low-cost sensors provides the opportunity to greatly advance the scope and extent of monitoring of indoor air pollution. In this study, calibrated particle matter (PM) sensors and a non-negative matrix factorisation (NMF) source apportionment technique are used to investigate PM concentrations and source contributions across three households in an urban residential area. The NMF is applied to combined data from all houses to generate source profiles that can be used to understand how PM source characteristics are similar or differ between different households in the same urban area. PM2.5 and PM10 concentrations in all three houses were greater, more variable, and significantly different to ambient concentrations recorded at a nearby ambient monitoring site. Concentrations were also significantly different between houses, with the World Health Organisation 24-h guideline limits for PM2.5 breached in one household. The applied methodology was highly successful at modelling concentrations for all the houses (R2 ≥ 0.983), finding that across the houses the I/O (indoor to outdoor sources ratio) was the lowest for PM1 (down to 0.08), and greatest for PM10 (up to 4.93). Whilst the sources could not be clearly distinguished further than being outdoors or indoors, the methodology provides clear insights to source variability within and between the monitored houses. These results highlight the importance of monitoring indoor air pollution to improve pollution exposure estimates, as whilst people may live in areas with acceptable ambient air quality, they can be exposed to unhealthy concentrations in their own homes. This method may be applied in future studies for extended periods to investigate the influence of source seasonality on PM concentrations or scaled up to investigate source variability across larger geographical areas.
Collapse
Affiliation(s)
- Catrin J Rathbone
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Dimitrios Bousiotis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Owain G Rose
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Francis D Pope
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
7
|
Curran J, Hirsch Allen AJ, Rider CF, Shutt R, Carlsten C. Effects of diesel exhaust inhalation on cognitive performance in human volunteers: A randomized controlled crossover study. ENVIRONMENT INTERNATIONAL 2025; 195:109213. [PMID: 39693777 DOI: 10.1016/j.envint.2024.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/30/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Mounting evidence links exposure to traffic-related air pollution (TRAP) to impairment in cognitive functioning. OBJECTIVES To determine if short-term, controlled exposure to diesel exhaust (DE) adversely affects one or more cognitive function domains. METHODS We carried out a double-blinded crossover design with 28 healthy, adult volunteers. Volunteers were exposed to two conditions for 120 min each, on separate order-randomized occasions: filtered air (FA) and DE (300 µg/m3 PM2.5) at the Air Pollution Exposure Laboratory (APEL) at Vancouver General Hospital (VGH). Volunteers were blinded to the two exposure conditions. Volunteers completed five computerised neuropsychological tests of the Cambridge Neuropsychological Test Automated Battery (CANTAB) prior to (2-hr before) and at three timepoints following each exposure condition (0-hr, 3-h post-, and 24-h post-exposure). The selected CANTAB tests were related to five cognitive domains - attention, spatial working memory, strategy use, executive function, and processing speed. We hypothesized that short-term diesel exposure would adversely affect one or more cognitive function domains. RESULTS Following screening, 15 volunteers were randomized to receive FA followed by DE and 14 volunteers were randomized to receive the exposures in the reverse sequence. A total of 28 volunteers contributed to the final analysis. Short-term exposure to DE was associated with slower reaction times in the Reaction Time Index task. DE was associated with a decrease of 18.2 ms (p = 0.05) in simple reaction time and 23.5 ms (p = 0.04) in five-choice reaction time. CONCLUSIONS This first study to investigate the effects of TRAP on the cognitive performance of humans in a controlled environment shows slowed reaction times similar to those previously demonstrated with blood alcohol levels of 0.05%. Important implications exist for workers in occupations where attention and reaction time are connected to safety and performance.
Collapse
Affiliation(s)
- Jason Curran
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Department of Medicine, Division of Respiratory Medicine, Air Pollution Exposure Lab, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, University of British Columbia, Vancouver, Canada
| | - A J Hirsch Allen
- Department of Medicine, Division of Respiratory Medicine, Air Pollution Exposure Lab, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, University of British Columbia, Vancouver, Canada
| | - Christopher F Rider
- Department of Medicine, Division of Respiratory Medicine, Air Pollution Exposure Lab, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, University of British Columbia, Vancouver, Canada
| | - Robin Shutt
- Environmental Health Science and Research Bureau, Health Canada, Canada
| | - Chris Carlsten
- Department of Medicine, Division of Respiratory Medicine, Air Pollution Exposure Lab, Chan-Yeung Centre for Occupational and Environmental Respiratory Disease, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
8
|
Fleury ES, Bittker GS, Just AC, Braun JM. Running on Fumes: An Analysis of Fine Particulate Matter's Impact on Finish Times in Nine Major US Marathons, 2003-2019. Sports Med 2024:10.1007/s40279-024-02160-8. [PMID: 39690352 DOI: 10.1007/s40279-024-02160-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Under controlled conditions and in some observational studies of runners, airborne fine particulate matter smaller than 2.5 microns in diameter (PM2.5) is associated with exercise performance decrements. OBJECTIVE To assess the association between event-day fine particulate matter air pollution (PM2.5) and marathon finish times. METHODS Using a spatiotemporal machine-learning model, we estimated event-day racecourse-averaged PM2.5 concentrations for nine major US marathons (2003-2019). We obtained 1,506,137 male and 1,058,674 female finish times from 140 event-years of public marathon data. We used linear and quantile mixed models to estimate the mean and percentile-specific year and heat index-adjusted effect of 1 µg/m3 higher event-day racecourse-averaged PM2.5 on marathon finish times in sex-stratified samples. RESULTS Analyzing all finish times, 1 µg/m3 higher race-day PM2.5 was associated with 32-s slower average finish times among men (95% confidence limits (CL) 30, 33 s) and 25-s slower average finish times among women (95% CL 23, 27 s). Quantile-specific associations of event-day PM2.5 with finish times were larger for faster-than-median finishers. While PM2.5 was generally associated with slower finish times in single-event models, there was effect heterogeneity, and most 95% confidence intervals included the null. CONCLUSION Greater race-day PM2.5 was associated with slower average marathon finish times, with more pronounced effects in faster-than-median runners. While more research is needed to characterize effect heterogeneity across the performance spectrum, these findings show the impact of PM2.5 on marathon performance and the importance of considering data from multiple competitions when estimating PM2.5 effects from event-level data.
Collapse
Affiliation(s)
- Elvira S Fleury
- Department of Epidemiology, Brown University School of Public Health, Box G-S121-3, Providence, RI, 02903, USA.
| | | | - Allan C Just
- Department of Epidemiology, Brown University School of Public Health, Box G-S121-3, Providence, RI, 02903, USA
- Institute at Brown for Environment and Society, Providence, RI, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Box G-S121-3, Providence, RI, 02903, USA
| |
Collapse
|
9
|
Zhou J, Huebner G, Liu KY, Ucci M. Heart rate variability, electrodermal activity and cognition in adults: Association with short-term indoor PM2.5 exposure in a real-world intervention study. ENVIRONMENTAL RESEARCH 2024; 263:120245. [PMID: 39490569 DOI: 10.1016/j.envres.2024.120245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/03/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Long-term effects of ambient fine particulate matter (PM2.5) exposure on mortality and morbidity are well established. The study aims to evaluate how short-term indoor PM2.5 exposure affects physiological responses and understand potential mechanisms mediating the cognitive outcomes in working-age adults. METHODS This real-world randomized single-blind crossover intervention study was conducted in an urban office setting, with desk-based air purifiers used as the intervention. Participants (N = 40) were exposed to average PM2.5 levels of 18.0 μg/m3 in control and 3.7 μg/m3 in intervention conditions. Cognitive tests, heart rate variability (HRV), and electrodermal activity (EDA) measures were conducted after 5 h of exposure. Self-reported mental effort, exhaustion, and task difficulty were collected after the cognitive tests. RESULTS Participants in the intervention condition had significantly higher HRV during cognitive testing, particularly in the standard deviation of normal-to-normal intervals (SDNN), root mean square of successive differences (RMSSD), and high-frequency power (HF) indices. Mediation analysis revealed that elevated PM2.5 exposure reduced HRV indices, which mediated the effect on two executive function-related cognitive skills out of 16 assessed skills. No significant differences were found in EDA, self-reported task difficulty, or exhaustion, but self-reported mental effort was higher in the control condition. CONCLUSIONS Lower indoor PM2.5 level was associated with reduced mental effort and higher HRV during cognitive testing. Furthermore, the association between indoor PM2.5 exposure and executive function might be mediated through cardiovagal responses. These findings provide insights on the mechanisms through which fine particle exposure adversely affects the autonomic nervous system and how this in turn affects cognition. The potential cardiovascular and cognitive health benefits of PM2.5 reduction warrants further research.
Collapse
Affiliation(s)
- Jiaxu Zhou
- UCL Institute for Environmental Design and Engineering (IEDE), The Bartlett, University College London (UCL), Central House, 14 Upper Woburn Place, London, WC1H 0NN, UK.
| | - Gesche Huebner
- UCL Institute for Environmental Design and Engineering (IEDE), The Bartlett, University College London (UCL), Central House, 14 Upper Woburn Place, London, WC1H 0NN, UK
| | - Kathy Y Liu
- Division of Psychiatry, University College London (UCL), 149 Tottenham Court Road, London, W1T 7NF, UK
| | - Marcella Ucci
- UCL Institute for Environmental Design and Engineering (IEDE), The Bartlett, University College London (UCL), Central House, 14 Upper Woburn Place, London, WC1H 0NN, UK
| |
Collapse
|
10
|
Yang D, Zhang W, Li L, Liu S, Wang W, Zhao Y, Ji X, Liu Q, Wu S, Guo X, Deng F. Cognitive Benefits of Reducing Indoor Particulate Matter Exposure During Sleep: New Evidence from a Randomized, Double-blind Crossover Trial. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20873-20882. [PMID: 39546323 DOI: 10.1021/acs.est.4c07326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
There is increasing evidence that particulate matter (PM) pollution may adversely impact cognition. Considering that sleep is critical for cognitive health and occupies about one-third of human life, understanding the cognitive effects of indoor PM exposure during sleep and the potential cognitive benefits of reducing such exposure is crucial, yet currently unknown. This randomized, double-blind crossover intervention trial was conducted among 80 college students with real and sham PM filtration in their dormitories. Real-time indoor PM levels and nocturnal sleep parameters were monitored, followed by quantification of serum neurotransmitter metabolites and cognitive assessments in the mornings. We found that PM exposure during sleep, particularly PM1 and PM2.5, affected immediate and delayed memory, executive function, and global cognition. Reducing PM exposure during sleep resulted in improvements in multiple cognitive domains, with a 0.21 (95% CI: 0.05, 0.36) increase in global cognitive z-score, in which increased sleep oxygen saturation (SpO2) and alterations in dopamine metabolism and histidine metabolism played important roles. Notably, even when indoor PM2.5 levels were below the WHO air quality guidelines, further reducing PM exposure could still improve sleep SpO2 and neurotransmitter metabolism. This study provides a promising strategy to mitigate indoor PM-induced cognitive impairment.
Collapse
Affiliation(s)
- Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yetong Zhao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xuezhao Ji
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
- Center for Environment and Health, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Yuan A, Halabicky O, Liu J. Association between air pollution exposure and brain cortical thickness throughout the lifespan: A systematic review. Neuroscience 2024; 559:209-219. [PMID: 39236801 DOI: 10.1016/j.neuroscience.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Increasing research has focused on the impact of air pollution on brain health. As the prevalence of air pollution is increasing alongside other environmental harms, the importance of studying the effects of these changes on human health has become more significant. Additionally, gaining insight into how air pollution exposure, measured at different points in the lifespan, can affect brain structure is critical, as this could be a precursor to cognitive decline later in life. The purpose of this review was to synthesize the literature on the association between air pollutant exposure and cortical thickness, a structural change with known associations with later cognition and neurodegenerative disease. After screening, twelve studies were included in this systematic review. Across a majority of studies, results suggest significant associations between increasing air pollution exposure and decreases in cortical thickness, primarily in areas such as prefrontal cortex, precuneus, and temporal regions of the brain. These results did differ somewhat between age groups and different air pollutants, with the most prominent results being found with exposure to PM2.5, the smallest particulate matter size included in the review. In the future, it is important to continue studying cortical thickness as it is essential to brain functioning and can be influential in disease progression. Furthermore, conducting more longitudinal studies in which air pollution is measured as a cumulation throughout the lifespan would help elucidate when exposure is most impactful and when brain structural changes become observable.
Collapse
Affiliation(s)
- Aurora Yuan
- University of Pennsylvania, College of Arts & Sciences, 249 S 36th St, Philadelphia, PA 19104, United States
| | - Olivia Halabicky
- University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Jianghong Liu
- University of Pennsylvania, School of Nursing, 418 Curie Blvd, Philadelphia, PA 19104, United States.
| |
Collapse
|
12
|
Merenda B, Drzeniecka-Osiadacz A, Sówka I, Sawiński T, Samek L. Influence of meteorological conditions on the variability of indoor and outdoor particulate matter concentrations in a selected Polish health resort. Sci Rep 2024; 14:19461. [PMID: 39169074 PMCID: PMC11339401 DOI: 10.1038/s41598-024-70081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The article evaluates air pollution by particulate matter (PM) in indoor and outdoor air in one of the Polish health resorts, where children and adults with respiratory diseases are treated. The highest indoor PM concentrations were recorded during the winter season. Therefore, the maximum average daily concentration values in indoor air for the PM10, PM2.5, and PM1 fractions were 50, 42 and 23 µg/m3, respectively. In the case of outdoor air, the highest average daily concentrations of PM2.5 reached a value of 40 µg/m3. The analyses and backward trajectories of episodes of high PM concentrations showed the impact of supra-regional sources and the influx of pollutants from North Africa on the variability of PM concentrations. The correlation between selected meteorological parameters and PM concentrations shows the relationship between PM concentrations and wind speed. For example, the correlation coefficients between PM1(I) and PM1(O) concentrations and wind speed were - 0.8 and - 0.7 respectively. These factors determined episodes of high PM concentrations during winter periods in the outdoor air, which were then transferred to the indoor air. Elevated concentrations in indoor air during summer were also influenced by chimney/gravity ventilation and the appearance of reverse chimney effect.
Collapse
Affiliation(s)
- Beata Merenda
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370, Wrocław, Poland.
- "Poltegor-Institute" Institute of Opencast Mining, Parkowa 25, 51-616, Wroclaw, Poland.
| | - Anetta Drzeniecka-Osiadacz
- Department of Climatology and Atmosphere Protection, University of Wroclaw, Kosiby 8 Str., 51-621, Wrocław, Poland
| | - Izabela Sówka
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Tymoteusz Sawiński
- Department of Climatology and Atmosphere Protection, University of Wroclaw, Kosiby 8 Str., 51-621, Wrocław, Poland
| | - Lucyna Samek
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059, Krakow, Poland
| |
Collapse
|
13
|
Faherty T, Badri H, Hu D, Voliotis A, Pope FD, Mudway I, Smith J, McFiggans G. HIPTox-Hazard Identification Platform to Assess the Health Impacts from Indoor and Outdoor Air Pollutant Exposures, through Mechanistic Toxicology: A Single-Centre Double-Blind Human Exposure Trial Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:284. [PMID: 38541284 PMCID: PMC11154498 DOI: 10.3390/ijerph21030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 02/24/2024] [Indexed: 06/09/2024]
Abstract
Over the past decade, our understanding of the impact of air pollution on short- and long-term population health has advanced considerably, focusing on adverse effects on cardiovascular and respiratory systems. There is, however, increasing evidence that air pollution exposures affect cognitive function, particularly in susceptible groups. Our study seeks to assess and hazard rank the cognitive effects of prevalent indoor and outdoor pollutants through a single-centre investigation on the cognitive functioning of healthy human volunteers aged 50 and above with a familial predisposition to dementia. Participants will all undertake five sequential controlled exposures. The sources of the air pollution exposures are wood smoke, diesel exhaust, cleaning products, and cooking emissions, with clean air serving as the control. Pre- and post-exposure spirometry, nasal lavage, blood sampling, and cognitive assessments will be performed. Repeated testing pre and post exposure to controlled levels of pollutants will allow for the identification of acute changes in functioning as well as the detection of peripheral markers of neuroinflammation and neuronal toxicity. This comprehensive approach enables the identification of the most hazardous components in indoor and outdoor air pollutants and further understanding of the pathways contributing to neurodegenerative diseases. The results of this project have the potential to facilitate greater refinement in policy, emphasizing health-relevant pollutants and providing details to aid mitigation against pollutant-associated health risks.
Collapse
Affiliation(s)
- Thomas Faherty
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Huda Badri
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, 2nd Floor Education and Research Centre, Wythenshawe Hospital, Southmoor Rd., Manchester M23 9LT, UK; (H.B.); (J.S.)
- Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Dawei Hu
- Centre for Atmospheric Sciences, Department of Earth and Environmental Science, School of Natural Sciences, University of Manchester, Manchester M13 9PL, UK; (D.H.); (A.V.); (G.M.)
| | - Aristeidis Voliotis
- Centre for Atmospheric Sciences, Department of Earth and Environmental Science, School of Natural Sciences, University of Manchester, Manchester M13 9PL, UK; (D.H.); (A.V.); (G.M.)
- National Centre for Atmospheric Science, Department of Earth and Environmental Science, University of Manchester, Manchester M13 9PL, UK
| | - Francis D. Pope
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Ian Mudway
- MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK;
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London W12 0BZ, UK
- NIHR Health Protection Research Unit in Chemical and Radiation Threats and Hazards, Imperial College London, London W12 0BZ, UK
| | - Jacky Smith
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, 2nd Floor Education and Research Centre, Wythenshawe Hospital, Southmoor Rd., Manchester M23 9LT, UK; (H.B.); (J.S.)
- Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Gordon McFiggans
- Centre for Atmospheric Sciences, Department of Earth and Environmental Science, School of Natural Sciences, University of Manchester, Manchester M13 9PL, UK; (D.H.); (A.V.); (G.M.)
| |
Collapse
|
14
|
Ahn Y, Yim YH, Yoo HM. Particulate Matter Induces Oxidative Stress and Ferroptosis in Human Lung Epithelial Cells. TOXICS 2024; 12:161. [PMID: 38393256 PMCID: PMC10893167 DOI: 10.3390/toxics12020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Numerous toxicological studies have highlighted the association between urban particulate matter (PM) and increased respiratory infections and lung diseases. The adverse impact on the lungs is directly linked to the complex composition of particulate matter, initiating reactive oxygen species (ROS) production and consequent lipid peroxidation. Excessive ROS, particularly within mitochondria, can destroy subcellular organelles through various pathways. In this study, we confirmed the induction of ferroptosis, an iron-dependent cell death, upon exposure to an urban PM using RT-qPCR and signaling pathway analysis. We used KRISS CRM 109-02-004, the certified reference material for the analysis of particulate matter, produced by the Korea Research Institute of Standards and Science (KRISS). To validate that ferroptosis causes lung endothelial toxicity, we assessed intracellular mitochondrial potential, ROS overproduction, lipid peroxidation, and specific ferroptosis biomarkers. Following exposure to the urban PM, a significant increase in ROS generation and a decrease in mitochondrial potential were observed. Furthermore, it induced hallmarks of ferroptosis, including the accumulation of lipid peroxidation, the loss of antioxidant defenses, and cellular iron accumulation. In addition, the occurrence of oxidative stress as a key feature of ferroptosis was confirmed by increased expression levels of specific oxidative stress markers such as NQO1, CYP1B1, FTH1, SOD2, and NRF. Finally, a significant increase in key ferroptosis markers was observed, including xCT/SLC7A11, NQO1, TRIM16, HMOX-1, FTL, FTH1, CYP1B1, CHAC1, and GPX4. This provides evidence that elevated ROS levels induce oxidative stress, which ultimately triggers ferroptosis. In conclusion, our results show that the urban PM, KRISS CRM, induces cellular and mitochondrial ROS production, leading to oxidative stress and subsequent ferroptosis. These results suggest that it may induce ferroptosis through ROS generation and may offer potential strategies for the treatment of lung diseases.
Collapse
Affiliation(s)
- Yujin Ahn
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Yong-Hyeon Yim
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Inorganic Metrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
15
|
Baryshnikova NV, Wesselbaum D. Air pollution and motor vehicle collisions in New York city. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122595. [PMID: 37734635 DOI: 10.1016/j.envpol.2023.122595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
Road traffic accidents are a pervasive feature of everyday life, killing 36,500 people, injuring 4.5 million and, overall, generating costs to the American society of $340 billion in 2019. Understanding the underlying factors can improve the design of prevention strategies. We use all road traffic collisions in New York City between 2013 and 2021 (N = 1,269,600) and match each individual collision to the nearest weather and air pollution station. Our study uses highly disaggregated data using an hourly frequency of collisions at a fine spatial level incorporating various air pollutants and weather factors. We employ an instrumental variable approach using temperature inversions to provide exogenous variation in air pollution addressing endogeneity and measurement error concerns. We find that higher concentrations of carbon monoxide (CO) and sulfur dioxide (SO2) increase the number of collisions but leave the severity (persons injured or killed) unaffected. Part of this can be explained by the effect of air pollutants on aggressive behavior: CO (p < .05) and SO2 (p < .01) increase the number of collisions caused by aggressive driving. Interestingly, this channel is only present in male drivers. Our results provide additional evidence that air pollution not only adversely affects health, but also has "non-health" related effects which are costly for the society.
Collapse
Affiliation(s)
- Nadezhda V Baryshnikova
- School of Economics, University of Adelaide, 10 Pulteney Street, Adelaide, South Australia, 5005, Australia
| | - Dennis Wesselbaum
- Department of Economics, University of Otago, 60 Clyde Steet, Dunedin, 9054, New Zealand.
| |
Collapse
|
16
|
Lee J, Weerasinghe-Mudiyanselage PDE, Kim B, Kang S, Kim JS, Moon C. Particulate matter exposure and neurodegenerative diseases: A comprehensive update on toxicity and mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115565. [PMID: 37832485 DOI: 10.1016/j.ecoenv.2023.115565] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a range of health impacts, including neurological abnormalities that affect neurodevelopment, neuroplasticity, and behavior. Recently, there has been growing interest in investigating the possible relationship between PM exposure and the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. However, the precise mechanism by which PM affects neurodegeneration is still unclear, even though several epidemiological and animal model studies have provided mechanistic insights. This article presents a review of the current research on the neurotoxicity of PM and its impact on neurodegenerative diseases. This review summarizes findings from epidemiological and animal model studies collected through searches in Google Scholar, PubMed, Web of Science, and Scopus. This review paper also discusses the reported effects of PM exposure on the central nervous system and highlights research gaps and future directions. The information presented in this review may inform public health policies aimed at reducing PM exposure and may contribute to the development of new treatments for neurodegenerative diseases. Further mechanistic and therapeutic research will be needed to fully understand the relationship between PM exposure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Poornima D E Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
17
|
Renard JB, Poincelet E, Annesi-Maesano I, Surcin J. Spatial Distribution of PM 2.5 Mass and Number Concentrations in Paris (France) from the Pollutrack Network of Mobile Sensors during 2018-2022. SENSORS (BASEL, SWITZERLAND) 2023; 23:8560. [PMID: 37896652 PMCID: PMC10610599 DOI: 10.3390/s23208560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
The presence of particulate matter smaller than 2.5 µm in diameter (PM2.5) in ambient air has a direct pejorative effect on human health. It is thus necessary to monitor the urban PM2.5 values with high spatial resolution to better evaluate the different exposure levels that the population encounters daily. The Pollutrack network of optical mobile particle counters on the roofs of hundreds of vehicles in Paris was used to produce maps with a 1 km2 resolution (108 squares to cover the Paris surface). The study was conducted during the 2018-2022 period, showing temporal variability due to different weather conditions. When averaging all the data, the highest air pollution was found along the Paris motorway ring. Also, the mean mass concentrations of PM2.5 pollution increased from southwest to northeast, due to the typology of the city, with the presence of canyon streets, and perhaps due to the production of secondary aerosols during the transport of airborne pollutants by the dominant winds. The number of days above the new daily threshold of 15 µg.m-3 recommended by the WHO in September 2021 varies from 3.5 to 7 months per year depending on the location in Paris. Pollutrack sensors also provide the number concentrations for particles greater than 0.5 µm. Using number concentrations of very fine particles instead of mass concentrations corresponding to the dry residue of PM2.5 is more representative of the pollutants citizens actually inhale. Some recommendations for the calibration of the sensors used to provide such number concentrations are given. Finally, the consequences of such pollution on human health are discussed.
Collapse
Affiliation(s)
- Jean-Baptiste Renard
- LPC2E-CNRS, 3A Avenue de la Recherche Scientifique, CEDEX 2, F-45071 Orléans, France
| | - Eric Poincelet
- Pollutrack, 5 rue Lespagnol, F-75020 Paris, France; (E.P.); (J.S.)
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, Allergic and Respiratory Diseases Department, Montpellier University Hospital and INSERM, Montpellier, IDESP IURC, 641 Avenue du Doyen Gaston Giraud, F-34093 Montpellier, France;
| | - Jérémy Surcin
- Pollutrack, 5 rue Lespagnol, F-75020 Paris, France; (E.P.); (J.S.)
| |
Collapse
|
18
|
Liu J, You Y, Liu R, Shen L, Wang D, Li X, Min L, Yin J, Zhang D, Ma X, Di Q. The joint effect and hemodynamic mechanism of PA and PM 2.5 exposure on cognitive function: A randomized controlled trial study. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132415. [PMID: 37657321 DOI: 10.1016/j.jhazmat.2023.132415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND While PM2.5 has been shown to impair cognitive function, physical activity (PA) is known to enhance it. Nonetheless, considering the increased inhalation of PM2.5 during exercise, the potential of PA to counteract the detrimental effects of PM2.5, along with the underlying hemodynamic mechanisms, remains uncertain. METHODS We conducted a double-blinded, randomized controlled trial among healthy young adults in Beijing, China. Ninety-three participants were randomly allocated to groups experiencing different intensities of PA interventions, and either subjected to purified or unpurified air conditions. Cognitive function was measured by the Color-Word Matching Stroop task, and the hemodynamic response was measured using functional near-infrared spectroscopy during participants performed the Stroop task both before and after the intervention. Linear mixed-effect models were used to estimate the impact of PA and PM2.5 on cognitive function and hemodynamic response. RESULTS The reaction time for congruent and incongruent Stroop tasks improved by - 80.714 (95% CI: -136.733, -24.695) and - 105.843 (95% CI: -188.6, -23.085) milliseconds after high-intensity interval training (HIIT) intervention. PM2.5 and HIIT had interaction effects on cognition, such that every 1 μg/m3 increase in PM2.5 attenuated the benefits of HIIT on reaction time by 2.231 (95% CI: 0.523, 3.938) and 3.305 (95% CI: 0.791, 5.819) milliseconds for congruent and incongruent Stroop tasks. Moreover, we divided participants into high and low PM2.5 exposure groups based on average PM2.5 concentration (32.980 μg/m3), and found that HIIT intervention in high PM2.5 concentration led to 69.897 (95% CI: 9.317, 130.476) and 99.269 (95% CI: 10.054, 188.485) milliseconds increased in the reaction time of congruent and incongruent Stroop, compared with the control group among low PM2.5. Furthermore, we found a significant interaction effects of PM2.5 and moderate-intensity continuous training (MICT) on the middle frontal gyrus (MFG) and dorsolateral superior frontal gyrus (DLPFC). PM2.5 and HIIT had a significant interaction effect on the DLPFC. CONCLUSIONS HIIT improved cognitive function, but the cognitive benefits of HIIT were attenuated or even reversed under high PM2.5 exposure. The activation of the DLPFC and MFG could serve as hemodynamic mechanisms to explain the joint effect of PA and PM2.5.
Collapse
Affiliation(s)
- Jianxiu Liu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China
| | - Yanwei You
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China
| | - Ruidong Liu
- Sports Coaching College, Beijing Sport University, Beijing 100084, China
| | - Lijun Shen
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dizhi Wang
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China
| | - Xingtian Li
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China
| | - Leizi Min
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China
| | - Jie Yin
- College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China
| | - Dan Zhang
- Department of Psychology, Tsinghua University, Beijing 100084, China
| | - Xindong Ma
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute for Healthy China, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Marcantonio R, Fuentes A. Environmental violence: a tool for planetary health research. Lancet Planet Health 2023; 7:e859-e867. [PMID: 37821164 DOI: 10.1016/s2542-5196(23)00190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 10/13/2023]
Abstract
From climate change to toxic pollution and the interactive effects of multiple pollution streams, human health is under siege. Human-produced environmental risks to health and wellbeing are high and contributing to patterns of global morbidity, mortality, economic inequality, displacement, and insecurity. The implications of human-produced environmental harms to global health are complex just as are their causes. The concept of environmental violence offers a potentially robust frame for engaging this issue. We argue that a more specified and structured framework and definition of environmental violence-focusing on human-produced harms by way of pollution emissions-is both timely and beneficial for engaging the complexities of global public health. To clarify why and how this is the case, we review the literature for publications that use the term environmental violence and we subsequently propose a specific definition focused on human-produced pollution along with a framework for tracking and analysing environmental violence and its constituent components. Finally, we discuss the potential value of our framework for research and policy making regarding human health.
Collapse
Affiliation(s)
- Richard Marcantonio
- Department of Management and Organization, Environmental Change Initiative, and Kroc Institute for International Peace Studies, University of Notre Dame, Notre Dame, IN, USA.
| | - Agustín Fuentes
- Department of Anthropology and High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
20
|
Liu H, Hu T. Correlation between air pollution and cognitive impairment among older individuals: empirical evidence from China. BMC Geriatr 2023; 23:366. [PMID: 37710153 PMCID: PMC10503026 DOI: 10.1186/s12877-023-03932-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 03/25/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Little information is available regarding the impact of air pollution on cognitive impairment in older individuals in developing countries. This study empirically tested the impacts of the air quality index (AQI), air pollution intensity (quantified by the number of days of extreme air pollution in a year), and different pollutants on the cognitive abilities of older Chinese individuals. METHODS A panel of 28,395 participants spanning 122 cities in 2015 and 2018 was used, based on 3-year follow-up survey data from the China Health and Retirement Longitudinal Study (CHARLS) database. Data from the two phases of the CHARLS microsurvey were combined with relevant statistical data on air pollution in each region in the current year. These two surveys were used to investigate changes in basic health and macro-environmental indicators in older individuals in China, and a mean difference test was conducted. We then reduced the sample selection error by controlling for environmental migration and used two-way fixed and instrumental variable methods for endogenous treatment to avoid the estimation error caused by missing variables. RESULTS Air pollution had a significantly negative effect on the cognitive abilities of older individuals (odds ratio [OR]: 1.4633; 95% confidence interval [95% CI]: 1.20899-1.77116). Different pollution intensities(only AQI value is greater than 200 or more) had apparent effects on cognitive impairment, with an OR of approximately 1.0. Sulfur dioxide had significantly negative effects on cognitive ability, with OR of 1.3802 (95% CI: 1.25779-1.51451). Furthermore, air pollution impact analysis showed heterogeneous results in terms of age, sex, education, and regional economic development level. In addition, social adaptability (calculated using social participation, learning, adaptability, and social support) not only had a significant positive effect on the cognitive abilities of older individuals, but also regulated the cognitive decline caused by air pollution. CONCLUSIONS Air pollution affects cognitive impairment in older individuals, especially in those with lower education levels, and living in economically underdeveloped areas. This effect is synchronous and has a peak at an AQI of > 200.
Collapse
Affiliation(s)
- Huan Liu
- School of Society, Soochow University, No. 199, Ren’ai Road, Suzhou Industrial Park, Su Zhou, Jiangsu 215123 China
| | - Tiantian Hu
- Shenzhen Futian District Economic Development Promotion Association, Shenzhen, China
- Qiaocheng Consulting (Shenzhen) Co., Ltd, Shenzhen, China
| |
Collapse
|
21
|
Laursen KR, Christensen NV, Mulder FA, Schullehner J, Hoffmann HJ, Jensen A, Møller P, Loft S, Olin AC, Rasmussen BB, Rosati B, Strandberg B, Glasius M, Bilde M, Sigsgaard T. Airway and systemic biomarkers of health effects after short-term exposure to indoor ultrafine particles from cooking and candles - A randomized controlled double-blind crossover study among mild asthmatic subjects. Part Fibre Toxicol 2023; 20:26. [PMID: 37430267 DOI: 10.1186/s12989-023-00537-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND There is insufficient knowledge about the systemic health effects of exposure to fine (PM2.5) and ultrafine particles emitted from typical indoor sources, including cooking and candlelight burning. We examined whether short-term exposure to emissions from cooking and burning candles cause inflammatory changes in young individuals with mild asthma. Thirty-six non-smoking asthmatics participated in a randomized controlled double-blind crossover study attending three exposure sessions (mean PM2.5 µg/m3; polycyclic aromatic hydrocarbons ng/m3): (a) air mixed with emissions from cooking (96.1; 1.1), (b) air mixed with emissions from candles (89.8; 10), and (c) clean filtered air (5.8; 1.0). Emissions were generated in an adjacent chamber and let into a full-scale exposure chamber where participants were exposed for five hours. Several biomarkers were assessed in relation to airway and systemic inflammatory changes; the primary outcomes of interest were surfactant Protein-A (SP-A) and albumin in droplets in exhaled air - novel biomarkers for changes in the surfactant composition of small airways. Secondary outcomes included cytokines in nasal lavage, cytokines, C-reactive protein (CRP), epithelial progenitor cells (EPCs), genotoxicity, gene expression related to DNA-repair, oxidative stress, and inflammation, as well as metabolites in blood. Samples were collected before exposure start, right after exposure and the next morning. RESULTS SP-A in droplets in exhaled air showed stable concentrations following candle exposure, while concentrations decreased following cooking and clean air exposure. Albumin in droplets in exhaled air increased following exposure to cooking and candles compared to clean air exposure, although not significant. Oxidatively damaged DNA and concentrations of some lipids and lipoproteins in the blood increased significantly following exposure to cooking. We found no or weak associations between cooking and candle exposure and systemic inflammation biomarkers including cytokines, CRP, and EPCs. CONCLUSIONS Cooking and candle emissions induced effects on some of the examined health-related biomarkers, while no effect was observed in others; Oxidatively damaged DNA and concentrations of lipids and lipoproteins were increased in blood after exposure to cooking, while both cooking and candle emissions slightly affected the small airways including the primary outcomes SP-A and albumin. We found only weak associations between the exposures and systemic inflammatory biomarkers. Together, the results show the existence of mild inflammation following cooking and candle exposure.
Collapse
Affiliation(s)
- Karin Rosenkilde Laursen
- Environment, Occupation and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Nichlas Vous Christensen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Frans Aa Mulder
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Jörg Schullehner
- Environment, Occupation and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
- Geological Survey of Denmark and Greenland, Aarhus, Denmark
| | - Hans Jürgen Hoffmann
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Annie Jensen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Aarhus, Denmark
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Aarhus, Denmark
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Aarhus, Denmark
| | - Anna-Carin Olin
- Department of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Bernadette Rosati
- Department of Chemistry, Aarhus University, Aarhus, Denmark
- Faculty of Physics, University of Vienna, Vienna, Austria
| | - Bo Strandberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | - Merete Bilde
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Torben Sigsgaard
- Environment, Occupation and Health, Department of Public Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
22
|
Bush T, Bartington S, Pope FD, Singh A, Thomas GN, Stacey B, Economides G, Anderson R, Cole S, Abreu P, Leach FCP. The impact of COVID-19 public health restrictions on particulate matter pollution measured by a validated low-cost sensor network in Oxford, UK. BUILDING AND ENVIRONMENT 2023; 237:110330. [PMID: 37124118 PMCID: PMC10121078 DOI: 10.1016/j.buildenv.2023.110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Emergency responses to the COVID-19 pandemic led to major changes in travel behaviours and economic activities with arising impacts upon urban air quality. To date, these air quality changes associated with lockdown measures have typically been assessed using limited city-level regulatory monitoring data, however, low-cost air quality sensors provide capabilities to assess changes across multiple locations at higher spatial-temporal resolution, thereby generating insights relevant for future air quality interventions. The aim of this study was to utilise high-spatial resolution air quality information utilising data arising from a validated (using a random forest field calibration) network of 15 low-cost air quality sensors within Oxford, UK to monitor the impacts of multiple COVID-19 public heath restrictions upon particulate matter concentrations (PM10, PM2.5) from January 2020 to September 2021. Measurements of PM10 and PM2.5 particle size fractions both within and between site locations are compared to a pre-pandemic related public health restrictions baseline. While average peak concentrations of PM10 and PM2.5 were reduced by 9-10 μg/m3 below typical peak levels experienced in recent years, mean daily PM10 and PM2.5 concentrations were only ∼1 μg/m3 lower and there was marked temporal (as restrictions were added and removed) and spatial variability (across the 15-sensor network) in these observations. Across the 15-sensor network we observed a small local impact from traffic related emission sources upon particle concentrations near traffic-oriented sensors with higher average and peak concentrations as well as greater dynamic range, compared to more intermediate and background orientated sensor locations. The greater dynamic range in concentrations is indicative of exposure to more variable emission sources, such as road transport emissions. Our findings highlight the great potential for low-cost sensor technology to identify highly localised changes in pollutant concentrations as a consequence of changes in behaviour (in this case influenced by COVID-19 restrictions), generating insights into non-traffic contributions to PM emissions in this setting. It is evident that additional non-traffic related measures would be required in Oxford to reduce the PM10 and PM2.5 levels to within WHO health-based guidelines and to achieve compliance with PM2.5 targets developed under the Environment Act 2021.
Collapse
Affiliation(s)
- Tony Bush
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
- Apertum Consulting, Harwell, Oxfordshire, UK
| | - Suzanne Bartington
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Francis D Pope
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ajit Singh
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - G Neil Thomas
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Brian Stacey
- Ricardo Energy and Environment, The Gemini Building, Fermi Avenue, Harwell, Didcot, OX11 0QR, UK
| | - George Economides
- Oxfordshire County Council, County Hall, New Road, Oxford, OX1 1ND, UK
| | - Ruth Anderson
- Oxfordshire County Council, County Hall, New Road, Oxford, OX1 1ND, UK
| | - Stuart Cole
- Oxfordshire County Council, County Hall, New Road, Oxford, OX1 1ND, UK
| | - Pedro Abreu
- Oxford City Council, Town Hall, St Aldate's, Oxford, OX1 1BX, UK
| | - Felix C P Leach
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|
23
|
Yuan A, Halabicky O, Rao H, Liu J. Lifetime air pollution exposure, cognitive deficits, and brain imaging outcomes: A systematic review. Neurotoxicology 2023; 96:69-80. [PMID: 37001821 PMCID: PMC10963081 DOI: 10.1016/j.neuro.2023.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
As the amount of air pollution and human exposure has increased, the effects on human health have become an important public health issue. A field of growing interest is how air pollution exposure affects brain structure and function underlying cognitive deficits and if structural and connectivity changes mediate the relationship between the two. We conducted a systematic review to examine the literature on air pollution, brain structure and connectivity, and cognition studies. Eleven studies matched our inclusion criteria and were included in the qualitative analysis. Results suggest significant associations between air pollution and decreased volumes of specific brain structures, cortical thickness and surface area such as in the prefrontal cortex and temporal lobe, as well as the weakening of functional connectivity pathways, largely the Default Mode (DMN) and Frontal Parietal (FPN) networks, as detected by fMRI. Associations between air pollution and cognitive outcomes were found in most of the studies (n = 9), though some studies showed stronger associations than others. For children & adolescents, these deficiencies largely involved heavy reasoning, problem solving, and logic. For young and middle-aged adults, the associations were mostly seen for executive function and visuospatial cognitive domains. To our knowledge, this is the first systematic review to consolidate findings on the associations among air pollution, brain structure, and cognitive function. In the future, it will be important to conduct further longitudinal studies that follow children who have been exposed at a young age and examine associations with brain structure and cognition throughout adulthood.
Collapse
Affiliation(s)
- Aurora Yuan
- University of Pennsylvania, College of Arts & Sciences, 249 S 36th St, Philadelphia, PA 19104, United States
| | - Olivia Halabicky
- University of Michigan, School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Hengyi Rao
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Jianghong Liu
- University of Pennsylvania, School of Nursing, 418 Curie Blvd, Philadelphia, PA 19104, United States.
| |
Collapse
|
24
|
Bousiotis D, Alconcel LNS, Beddows DCS, Harrison RM, Pope FD. Monitoring and apportioning sources of indoor air quality using low-cost particulate matter sensors. ENVIRONMENT INTERNATIONAL 2023; 174:107907. [PMID: 37012195 DOI: 10.1016/j.envint.2023.107907] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Air quality is one of the most important factors in public health. While outdoor air quality is widely studied, the indoor environment has been less scrutinised, even though time spent indoors is typically much greater than outdoors. The emergence of low-cost sensors can help assess indoor air quality. This study provides a new methodology, utilizing low-cost sensors and source apportionment techniques, to understand the relative importance of indoor and outdoor air pollution sources upon indoor air quality. The methodology is tested with three sensors placed in different rooms inside an exemplar house (bedroom, kitchen and office) and one outdoors. When the family was present, the bedroom had the highest average concentrations for PM2.5 and PM10 (3.9 ± 6.8 ug/m3 and 9.6 ± 12.7 μg/m3 respectively), due to the activities undertaken there and the presence of softer furniture and carpeting. The kitchen, while presenting the lowest PM concentrations for both size ranges (2.8 ± 5.9 ug/m3 and 4.2 ± 6.9 μg/m3 respectively), presented the highest PM spikes, especially during cooking times. Increased ventilation in the office resulted in the highest PM1 concentration (1.6 ± 1.9 μg/m3), highlighting the strong effect of infiltration of outdoor air for the smallest particles. Source apportionment, via positive matrix factorisation (PMF), showed that up to 95 % of the PM1 was found to be of outdoor sources in all the rooms. This effect was reduced as particle size increased, with outdoor sources contributing >65 % of the PM2.5, and up to 50 % of the PM10, depending on the room studied. The new approach to elucidate the contributions of different sources to total indoor air pollution exposure, described in this paper, is easily scalable and translatable to different indoor locations.
Collapse
Affiliation(s)
- Dimitrios Bousiotis
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Leah-Nani S Alconcel
- School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - David C S Beddows
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Roy M Harrison
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Francis D Pope
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
25
|
Pykett J, Campbell N, Fenton SJ, Gagen E, Lavis A, Newbigging K, Parkin V, Williams J. Urban precarity and youth mental health: An interpretive scoping review of emerging approaches. Soc Sci Med 2023; 320:115619. [PMID: 36641884 DOI: 10.1016/j.socscimed.2022.115619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Circumstances of living are key to shaping emotional and affective experiences, long term health, wellbeing and opportunities. In an era characterised by rapid urbanisation across the majority of the world, there is increasing interest in the interaction between mental health and urban environments, but insufficient attention is paid to how mental health is situated in space and time. Socio-economic inequalities are prevalent in many urban environments globally, making conditions of living highly precarious for some social groups including young people. There remains a large volume of unmet mental health service needs, and young people are impacted by uncertain economic futures. The purpose of this scoping review is to develop an interdisciplinary and globally-informed understanding of the urban conditions which affect youth mental health across a range of scales, and to identify protective factors which can promote better youth mental health. We seek to broaden the scope of urban mental health research beyond the physical features of urban environments to develop an interpretive framework based on perspectives shared by young people. We illustrate how concepts from social theory can be used as an integrative framework to emphasise both young people's lived experiences and the wider cultural and political dynamics of urban mental health.
Collapse
Affiliation(s)
- Jessica Pykett
- School of Geography, Earth and Environmental Sciences, Institute for Mental Health and Centre for Urban Wellbeing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Niyah Campbell
- Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Sarah-Jane Fenton
- School of Social Policy and Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Elizabeth Gagen
- Department of Geography and Earth Sciences, Aberystwyth University, Llandinam Building, Penglais Campus, Aberystwyth, SY23 3DB, Wales, UK.
| | - Anna Lavis
- Institute of Applied Health Research and Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Karen Newbigging
- School of Social Policy and Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Verity Parkin
- Liberal Arts and Natural Sciences Alumni, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Jessy Williams
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
26
|
Mallach G, Shutt R, Thomson EM, Valcin F, Kulka R, Weichenthal S. Randomized Cross-Over Study of In-Vehicle Cabin Air Filtration, Air Pollution Exposure, and Acute Changes to Heart Rate Variability, Saliva Cortisol, and Cognitive Function. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3238-3247. [PMID: 36787278 PMCID: PMC9979657 DOI: 10.1021/acs.est.2c06556] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
To determine how traffic-related air pollution (TRAP) exposures affect commuter health, and whether cabin air filtration (CAF) can mitigate exposures, we conducted a cross-over study of 48 adults exposed to TRAP during two commutes with and without CAF. Measurements included particulate air pollutants (PM2.5, black carbon [BC], ultrafine particles [UFPs]), volatile organic compounds, and nitrogen dioxide. We measured participants' heart rate variability (HRV), saliva cortisol, and cognitive function. On average, CAF reduced concentrations of UFPs by 26,232 (95%CI: 11,734, 40,730) n/cm3, PM2.5 by 6 (95%CI: 5, 8) μg/m3, and BC by 1348 (95%CI: 1042, 1654) ng/m3, or 28, 30, and 32%, respectively. Each IQR increase in PM2.5 was associated with a 28% (95%CI: 2, 60) increase in high-frequency power HRV at the end of the commute and a 22% (95%CI: 7, 39) increase 45 min afterward. IQR increases in UFPs were associated with increased saliva cortisol in women during the commute (18% [95%CI: 0, 40]). IQR increases in UFPs were associated with strong switching costs (19% [95%CI: 2, 39]), indicating a reduced capacity for multitasking, and PM2.5 was associated with increased reaction latency, indicating slower responses (5% [95%CI: 1, 10]). CAF can reduce particulate exposures by almost a third.
Collapse
Affiliation(s)
- Gary Mallach
- Water
and Air Quality Bureau, Health Canada, Ottawa K1A 0K9, Canada
| | - Robin Shutt
- Environmental
Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9, Canada
| | - Errol M. Thomson
- Environmental
Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9, Canada
- Department
of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Frédéric Valcin
- Water
and Air Quality Bureau, Health Canada, Ottawa K1A 0K9, Canada
| | - Ryan Kulka
- Water
and Air Quality Bureau, Health Canada, Ottawa K1A 0K9, Canada
| | - Scott Weichenthal
- Water
and Air Quality Bureau, Health Canada, Ottawa K1A 0K9, Canada
- Department
of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal H3A 1G1, Canada
| |
Collapse
|
27
|
Majumder N, Kodali V, Velayutham M, Goldsmith T, Amedro J, Khramtsov VV, Erdely A, Nurkiewicz TR, Harkema JR, Kelley EE, Hussain S. Aerosol physicochemical determinants of carbon black and ozone inhalation co-exposure induced pulmonary toxicity. Toxicol Sci 2023; 191:61-78. [PMID: 36303316 PMCID: PMC9887725 DOI: 10.1093/toxsci/kfac113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Air pollution accounts for more than 7 million premature deaths worldwide. Using ultrafine carbon black (CB) and ozone (O3) as a model for an environmental co-exposure scenario, the dose response relationships in acute pulmonary injury and inflammation were determined by generating, characterizing, and comparing stable concentrations of CB aerosols (2.5, 5.0, 10.0 mg/m3), O3 (0.5, 1.0, 2.0 ppm) with mixture CB + O3 (2.5 + 0.5, 5.0 + 1.0, 10.0 + 2.0). C57BL6 male mice were exposed for 3 h by whole body inhalation and acute toxicity determined after 24 h. CB itself did not cause any alteration, however, a dose response in pulmonary injury/inflammation was observed with O3 and CB + O3. This increase in response with mixtures was not dependent on the uptake but was due to enhanced reactivity of the particles. Benchmark dose modeling showed several-fold increase in potency with CB + O3 compared with CB or O3 alone. Principal component analysis provided insight into response relationships between various doses and treatments. There was a significant correlation in lung responses with charge-based size distribution, total/alveolar deposition, oxidant generation, and antioxidant depletion potential. Lung tissue gene/protein response demonstrated distinct patterns that are better predicted by either particle dose/aerosol responses (interleukin-1β, keratinocyte chemoattractant, transforming growth factor beta) or particle reactivity (thymic stromal lymphopoietin, interleukin-13, interleukin-6). Hierarchical clustering showed a distinct signature with high dose and a similarity in mRNA expression pattern of low and medium doses of CB + O3. In conclusion, we demonstrate that the biological outcomes from CB + O3 co-exposure are significantly greater than individual exposures over a range of aerosol concentrations and aerosol characteristics can predict biological outcome.
Collapse
Affiliation(s)
- Nairrita Majumder
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Vamsi Kodali
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26508, USA
| | - Murugesan Velayutham
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Travis Goldsmith
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Jessica Amedro
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Valery V Khramtsov
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Aaron Erdely
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26508, USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26508, USA
| | - Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26508, USA
| | - Salik Hussain
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26508, USA
| |
Collapse
|
28
|
Heintz EC, Scott DP, Simms KR, Foreman JJ. Air Quality Is Predictive of Mistakes in Professional Baseball and American Football. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:542. [PMID: 36612864 PMCID: PMC9819793 DOI: 10.3390/ijerph20010542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Air quality is a growing environmental concern that has implications for human physical and mental health. While air pollution has been linked to cognitive disease progression and declines in overall health, the impacts of air quality on athletic performance have not been extensively investigated. Much of the previous research focused on endurance sports indicates that air quality negatively impacts athletic performance; however, the effects of air quality on non-endurance elite team performance remains largely unknown. The purpose of this study was to examine the impact of air quality on errors committed by Major League Baseball (MLB) teams, interceptions thrown by quarterbacks in the National Football League (NFL), and overall quarterback performance in the NFL. Linear regression analysis was used to determine the impact of the median air quality index (AQI) of counties with MLB and NFL teams on errors, interceptions, and overall quarterback performance of players on those MLB and NFL teams. AQI was a significant positive predictor of errors and interceptions, indicating increased errors and interceptions with decreased air quality. Similarly, quarterback performance was significantly reduced for quarterbacks from teams in counties with worse air quality. These findings suggest that air quality has a significant impact on performance in the MLB and NFL, indicating impairments in physical and cognitive performance in professional athletes when competing in areas with poorer air quality. Hence, it is likely that air quality impacts athletic performance in numerous sports that have not yet been investigated.
Collapse
Affiliation(s)
- Elizabeth C. Heintz
- School of Kinesiology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Derek P. Scott
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Kolby R. Simms
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Jeremy J. Foreman
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| |
Collapse
|
29
|
Li Q, Zhou Y, Pizer WA, Wu L. The unbalanced trade-off between pollution exposure and energy consumption induced by averting behaviors. iScience 2022; 26:105597. [PMID: 36654857 PMCID: PMC9840935 DOI: 10.1016/j.isci.2022.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/19/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022] Open
Abstract
Behavioral responses to environmental risks create gains and losses. We use high-frequency datasets to elucidate such behavior responses against air pollution and find a "double-peaked" time pattern in reducing outdoor exposure and in increasing electricity consumption. Despite that one standard deviation increase in the Air Quality Index induces 2% less outdoor population and 6% more household electricity consumption at peak, most responses fail to match with the intra-day pollution peaks, implying ineffective exposure avoidance. We find an unbalanced trade-off between health benefits and energy co-damages. The behavior-induced change in annual residential power consumption (+1.01% to +1.20%) is estimated to be 20 times more than that in the population-based exposure (-0.02% to -0.05%), and generates 0.13-0.15 million more metric tons of citywide carbon emissions. Our results imply that by targeting peak pollution periods, policies can shrink the trade-off imbalance and achieve mutual improvements in exposure reduction and energy conservation.
Collapse
Affiliation(s)
- Qingran Li
- David D. Reh School of Business, Clarkson University, Potsdam, NY, USA,Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, USA
| | - Yang Zhou
- Institute for Big Data, Fudan University, Shanghai, China,Department of ORFE, Princeton University, Princeton, NJ, USA
| | | | - Libo Wu
- Institute for Big Data, Fudan University, Shanghai, China,School of Economics, Fudan University, Shanghai, China,Corresponding author
| |
Collapse
|
30
|
Castellani B, Bartington S, Wistow J, Heckels N, Ellison A, Van Tongeren M, Arnold SR, Barbrook-Johnson P, Bicket M, Pope FD, Russ TC, Clarke CL, Pirani M, Schwannauer M, Vieno M, Turnbull R, Gilbert N, Reis S. Mitigating the impact of air pollution on dementia and brain health: Setting the policy agenda. ENVIRONMENTAL RESEARCH 2022; 215:114362. [PMID: 36130664 DOI: 10.1016/j.envres.2022.114362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Emerging research suggests exposure to high levels of air pollution at critical points in the life-course is detrimental to brain health, including cognitive decline and dementia. Social determinants play a significant role, including socio-economic deprivation, environmental factors and heightened health and social inequalities. Policies have been proposed more generally, but their benefits for brain health have yet to be fully explored. OBJECTIVE AND METHODS Over the course of two years, we worked as a consortium of 20+ academics in a participatory and consensus method to develop the first policy agenda for mitigating air pollution's impact on brain health and dementia, including an umbrella review and engaging 11 stakeholder organisations. RESULTS We identified three policy domains and 14 priority areas. Research and Funding included: (1) embracing a complexities of place approach that (2) highlights vulnerable populations; (3) details the impact of ambient PM2.5 on brain health, including current and historical high-resolution exposure models; (4) emphasises the importance of indoor air pollution; (5) catalogues the multiple pathways to disease for brain health and dementia, including those most at risk; (6) embraces a life course perspective; and (7) radically rethinks funding. Education and Awareness included: (8) making this unrecognised public health issue known; (9) developing educational products; (10) attaching air pollution and brain health to existing strategies and campaigns; and (11) providing publicly available monitoring, assessment and screening tools. Policy Evaluation included: (12) conducting complex systems evaluation; (13) engaging in co-production; and (14) evaluating air quality policies for their brain health benefits. CONCLUSION Given the pressing issues of brain health, dementia and air pollution, setting a policy agenda is crucial. Policy needs to be matched by scientific evidence and appropriate guidelines, including bespoke strategies to optimise impact and mitigate unintended consequences. The agenda provided here is the first step toward such a plan.
Collapse
Affiliation(s)
- Brian Castellani
- Durham Research Methods Centre, Durham University, Stockton Road, Durham, DH1 3LE, United Kingdom; Centre for the Evaluation of Complexity Across the Nexus, University of Surrey, Guildford, GU2 7XH, United Kingdom; Wolfson Research Institute for Health and Wellbeing, Durham University, Stockton Road, DH1 3LE, United Kingdom; Department of Sociology, Durham University, Stockton Road, Durham, DH1 3LE, United Kingdom.
| | - Suzanne Bartington
- Institute of Applied Health Research, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Jonathan Wistow
- Wolfson Research Institute for Health and Wellbeing, Durham University, Stockton Road, DH1 3LE, United Kingdom; Department of Sociology, Durham University, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - Neil Heckels
- Research and Innovation Services, Durham University, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - Amanda Ellison
- Wolfson Research Institute for Health and Wellbeing, Durham University, Stockton Road, DH1 3LE, United Kingdom; Department of Psychology, Durham University, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - Martie Van Tongeren
- Centre for Occupational and Environmental Health, School of Health Sciences, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Steve R Arnold
- School of Earth & Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Pete Barbrook-Johnson
- Centre for the Evaluation of Complexity Across the Nexus, University of Surrey, Guildford, GU2 7XH, United Kingdom; Environmental Change Institute, School of Geography and the Environment, University of Oxford, United Kingdom
| | - Martha Bicket
- Centre for the Evaluation of Complexity Across the Nexus, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Francis D Pope
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Tom C Russ
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, United Kingdom; Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | - Charlotte L Clarke
- Department of Sociology, Durham University, Stockton Road, Durham, DH1 3LE, United Kingdom; School of Health in Social Science, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, United Kingdom
| | - Monica Pirani
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, W2 1PG, London, United Kingdom
| | - Matthias Schwannauer
- School of Health in Social Science, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, United Kingdom
| | - Massimo Vieno
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, United Kingdom
| | - Rachel Turnbull
- Academic Health Sciences Network, North East and North Cumbria, Nuns' Moor Road, Newcastle Upon Tyne NE4 5PL, United Kingdom
| | - Nigel Gilbert
- Centre for the Evaluation of Complexity Across the Nexus, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Stefan Reis
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, United Kingdom; University of Exeter Medical School, European Centre for Environment and Health, Knowledge Spa, Truro, TR1 3HD, United Kingdom; The University of Edinburgh, School of Chemistry, Level 3, Murchison House, 10 Max Born Crescent, The King's Buildings, West Mains Road, Edinburgh, EH9 3BF, United Kingdom
| |
Collapse
|
31
|
Ke L, Zhang Y, Fu Y, Shen X, Zhang Y, Ma X, Di Q. Short-term PM 2.5 exposure and cognitive function: Association and neurophysiological mechanisms. ENVIRONMENT INTERNATIONAL 2022; 170:107593. [PMID: 36279737 DOI: 10.1016/j.envint.2022.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Although converging evidence has demonstrated that exposure to fine particulate matter (PM2.5) caused adverse effects on brain structure and cognitive function, the association between the short-term exposure to PM2.5 and cognition dysfunction remained underexplored, especially possible neurophysiological mechanisms. METHODS We conducted a longitudinal observational study with four repeated measurement sessions among 90 young adults from September 2020 to June 2021. During each measurement session, we measured participants' personal-level air pollution exposure for one week with portable monitors, followed by executive function assessment and electrophysiological signal recording at an assessment center. Standard Stroop color-word test was used accompanied with electroencephalogram (EEG) recording to assess performance on executive function. We used linear mixed-effect model with lagged values of PM2.5 levels to analyze the association between PM2.5 exposure and changes in executive function, and mediation analysis to investigate mediation effect by EEG signal. RESULTS Adjusted mixed-effect models demonstrated that elevated PM2.5 exposure three days prior to cognitive assessment (lag-3) was associated with (1) declined performance in both congruent and incongruent tasks in Stroop test, (2) reduced lower and upper alpha event-related desynchronization (ERD) during 500-1000 ms after stimuli, both indicating impaired executive control. Lower and upper alpha ERD also mediated observed associations between short-term PM2.5 exposure and executive function. No significant associations were found between short-term PM2.5 exposure or aperiodic exponents in tonic and phasic states, or periodic alpha oscillations in tonic state. CONCLUSION Our results provided evidence that short-term PM2.5 exposure was associated with executive dysfunction. Reduced alpha ERD was likely to be the underlying pathway through which PM2.5 induced adverse effects on neuron activities during cognitive tasks.
Collapse
Affiliation(s)
- Limei Ke
- School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Yao Zhang
- Soochow College, Soochow University, Suzhou 215006, China; Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Yingyao Fu
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China; Department of senior high school, Beijing Jianhua Experimental Etown School, Beijing 100176, China.
| | - Xinke Shen
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yu Zhang
- Institute of Education, Tsinghua University, Beijing 100084, China.
| | - Xindong Ma
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute for Healthy China, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
32
|
Hu Y, Ji JS, Zhao B. Deaths Attributable to Indoor PM 2.5 in Urban China When Outdoor Air Meets 2021 WHO Air Quality Guidelines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15882-15891. [PMID: 36278921 DOI: 10.1021/acs.est.2c03715] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The World Health Organization reduced the recommended level of annual mean PM2.5 concentrations to 5 μg/m3 in 2021. Previously, the guideline was geared toward ambient air pollution, and now it explicitly applies to indoor air pollution. However, the disease burden attributed to different indoor emission sources has been overlooked, particularly in urban areas. Our objective was to estimate the mortality attributable to indoor PM2.5 in urban areas in China. Our model estimated 711 thousand (584-823) deaths and 2.75 trillion (2.26-3.19) CNY economic losses attributable to PM2.5 in urban China in 2019, in which indoor sources contributed 394 thousand (323-457) deaths and 1.53 trillion (1.25-1.77) CNY losses. There would still be 536 thousand (427-638) PM2.5-attributable deaths and 2.07 trillion (1.65-2.47) CNY losses each year when the outdoor PM2.5 is 5 μg/m3, of which 485 thousand (386-578) deaths and 1.87 trillion (1.49-2.23) CNY are attributable to indoor sources. Despite cleaner outdoor air and no solid fuels being used, considerable health hazards and economic losses are attributable to indoor PM2.5. Measures to reduce PM2.5 exposure in humans from both indoor and outdoor sources are required to achieve a substantial reduction in deaths.
Collapse
Affiliation(s)
- Ying Hu
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Russell HS, Frederickson LB, Kwiatkowski S, Emygdio APM, Kumar P, Schmidt JA, Hertel O, Johnson MS. Enhanced Ambient Sensing Environment-A New Method for Calibrating Low-Cost Gas Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:7238. [PMID: 36236337 PMCID: PMC9571921 DOI: 10.3390/s22197238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Accurate calibration of low-cost gas sensors is, at present, a time consuming and difficult process. Laboratory calibration and field calibration methods are currently used, but laboratory calibration is generally discounted due to poor transferability, and field methods requiring several weeks are standard. The Enhanced Ambient Sensing Environment (EASE) method described in this article, is a hybrid of the two, combining the advantages of a laboratory calibration with the increased accuracy of a field calibration. It involves calibrating sensors inside a duct, drawing in ambient air with similar properties to the site where the sensors will operate, but with the added feature of being able to artificially increases or decrease pollutant levels, thus condensing the calibration period required. Calibration of both metal-oxide (MOx) and electrochemical (EC) gas sensors for the measurement of NO2 and O3 (0-120 ppb) were conducted in EASE, laboratory and field environments, and validated in field environments. The EC sensors performed marginally better than MOx sensors for NO2 measurement and sensor performance was similar for O3 measurement, but the EC sensor nodes had less node inter-node variability and were more robust. For both gasses and sensor types the EASE calibration outperformed the laboratory calibration, and performed similarly to or better than the field calibration, whilst requiring a fraction of the time.
Collapse
Affiliation(s)
- Hugo Savill Russell
- Department of Environmental Science, Aarhus University, DK-4000 Roskilde, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, DK-4000 Roskilde, Denmark
- AirLabs, Nannasgade 28, DK-2200 Copenhagen N, Denmark
| | - Louise Bøge Frederickson
- Department of Environmental Science, Aarhus University, DK-4000 Roskilde, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, DK-4000 Roskilde, Denmark
- AirLabs, Nannasgade 28, DK-2200 Copenhagen N, Denmark
| | | | - Ana Paula Mendes Emygdio
- Global Center for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Surrey GU2 7XH, UK
| | - Prashant Kumar
- Global Center for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Surrey GU2 7XH, UK
| | | | - Ole Hertel
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, DK-4000 Roskilde, Denmark
- Department of Ecoscience, Aarhus University, DK-4000 Roskilde, Denmark
| | - Matthew Stanley Johnson
- AirLabs, Nannasgade 28, DK-2200 Copenhagen N, Denmark
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
34
|
Izzotti A, Spatera P, Khalid Z, Pulliero A. Importance of Punctual Monitoring to Evaluate the Health Effects of Airborne Particulate Matter. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10587. [PMID: 36078301 PMCID: PMC9518414 DOI: 10.3390/ijerph191710587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Particulate matter (PM) pollution is one of the major public health problems worldwide, given the high mortality attributable to exposure to PM pollution and the high pathogenicity that is found above all in the respiratory, cardiovascular, and neurological systems. The main sources of PM pollution are the daily use of fuels (wood, coal, organic residues) in appliances without emissions abatement systems, industrial emissions, and vehicular traffic. This review aims to investigate the causes of PM pollution and classify the different types of dust based on their size. The health effects of exposure to PM will also be discussed. Particular attention is paid to the measurement method, which is unsuitable in the risk assessment process, as the evaluation of the average PM compared to the evaluation of PM with punctual monitoring significantly underestimates the health risk induced by the achievement of high PM values, even for limited periods of time.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Paola Spatera
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Zumama Khalid
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | |
Collapse
|
35
|
Loft S, Andersen ZJ, Jørgensen JT, Kristiansen AD, Dam JK, Cramer J, Westendorp RGJ, Lund R, Lim Y. Use of candles and risk of cardiovascular and respiratory events in a Danish cohort study. INDOOR AIR 2022; 32:e13086. [PMID: 36040281 PMCID: PMC9546142 DOI: 10.1111/ina.13086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Burning candles at home emit small particles and gases that pollute indoor air. Exposure to fine particles in outdoor air has been convincingly linked to cardiovascular and respiratory events, while the associations with fine and ultrafine particles from candle burning remain unexplored. We examined the association between the use of candles and incident cardiovascular and respiratory events. We collected data on 6757 participants of the Copenhagen Aging and Midlife Biobank cohort recruited in 2009 and followed them up for the first hospital contact for incident cardiovascular and respiratory events until 2018. We investigated an association between the self-reported frequency of candle use in wintertime and cardiovascular and respiratory events, using Cox regression models adjusting for potential confounders. During follow-up, 1462 and 834 were admitted for cardiovascular and respiratory events, respectively. We found null associations between candle use and a hospital contact due to cardiovascular and respiratory events, with hazard ratios (HRs) and 95% confidence intervals (CI) of 0.97 (95% CI: 0.84, 1.11) and 0.98 (95% CI: 0.81, 1.18), respectively, among those using candles >4 times/week compared with <1 time/week. For cause-specific cardiovascular diseases, HRs were 1.10 (95% CI: 0.85, 1.43) for ischemic heart disease and 1.18 (95% CI: 0.77, 1.81) for myocardial infarction. For chronic obstructive pulmonary disease, HR was 1.26 (95% CI: 0.81, 1.97). We found no statistically significant associations between candle use and the risk of cardiovascular and respiratory events. Studies with improved exposure assessments are warranted.
Collapse
Affiliation(s)
- Steffen Loft
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Zorana J. Andersen
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jeanette Therming Jørgensen
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Amalie Darling Kristiansen
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Julie Kamstrup Dam
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Johannah Cramer
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Rudi G. J. Westendorp
- Section of Epidemiology, Department of Public Health, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Center for Healthy Aging, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Rikke Lund
- Section of Social Medicine, Department of Public Health, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Youn‐Hee Lim
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
36
|
Talebi S, Lary DJ, Wijeratne LOH, Fernando B, Lary T, Lary M, Sadler J, Sridhar A, Waczak J, Aker A, Zhang Y. Decoding Physical and Cognitive Impacts of Particulate Matter Concentrations at Ultra-Fine Scales. SENSORS (BASEL, SWITZERLAND) 2022; 22:4240. [PMID: 35684862 PMCID: PMC9185251 DOI: 10.3390/s22114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The human body is an incredible and complex sensing system. Environmental factors trigger a wide range of automatic neurophysiological responses. Biometric sensors can capture these responses in real time, providing clues about the underlying biophysical mechanisms. In this prototype study, we demonstrate an experimental paradigm to holistically capture and evaluate the interactions between an environmental context and physiological markers of an individual operating that environment. A cyclist equipped with a biometric sensing suite is followed by an environmental survey vehicle during outdoor bike rides. The interactions between environment and physiology are then evaluated though the development of empirical machine learning models, which estimate particulate matter concentrations from biometric variables alone. Here, we show biometric variables can be used to accurately estimate particulate matter concentrations at ultra-fine spatial scales with high fidelity (r2 = 0.91) and that smaller particles are better estimated than larger ones. Inferring environmental conditions solely from biometric measurements allows us to disentangle key interactions between the environment and the body. This work sets the stage for future investigations of these interactions for a larger number of factors, e.g., black carbon, CO2, NO/NO2/NOx, and ozone. By tapping into our body's 'built-in' sensing abilities, we can gain insights into how our environment influences our physical health and cognitive performance.
Collapse
Affiliation(s)
- Shawhin Talebi
- Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, TX 75080, USA; (D.J.L.); (L.O.H.W.); (B.F.); (T.L.); (M.L.); (J.S.); (A.S.); (J.W.); (A.A.); (Y.Z.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cleland SE, Wyatt LH, Wei L, Paul N, Serre ML, West JJ, Henderson SB, Rappold AG. Short-Term Exposure to Wildfire Smoke and PM2.5 and Cognitive Performance in a Brain-Training Game: A Longitudinal Study of U.S. Adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:67005. [PMID: 35700064 PMCID: PMC9196888 DOI: 10.1289/ehp10498] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND There is increasing evidence that long-term exposure to fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] may adversely impact cognitive performance. Wildfire smoke is one of the biggest sources of PM2.5 and concentrations are likely to increase under climate change. However, little is known about how short-term exposure impacts cognitive function. OBJECTIVES We aimed to evaluate the associations between daily and subdaily (hourly) PM2.5 and wildfire smoke exposure and cognitive performance in adults. METHODS Scores from 20 plays of an attention-oriented brain-training game were obtained for 10,228 adults in the United States (U.S.). We estimated daily and hourly PM2.5 exposure through a data fusion of observations from multiple monitoring networks. Daily smoke exposure in the western U.S. was obtained from satellite-derived estimates of smoke plume density. We used a longitudinal repeated measures design with linear mixed effects models to test for associations between short-term exposure and attention score. Results were also stratified by age, gender, user behavior, and region. RESULTS Daily and subdaily PM2.5 were negatively associated with attention score. A 10 μg/m3 increase in PM2.5 in the 3 h prior to gameplay was associated with a 21.0 [95% confidence interval (CI): 3.3, 38.7]-point decrease in score. PM2.5 exposure over 20 plays accounted for an estimated average 3.7% (95% CI: 0.7%, 6.7%) reduction in final score. Associations were more pronounced in the wildfire-impacted western U.S. Medium and heavy smoke density were also negatively associated with score. Heavy smoke density the day prior to gameplay was associated with a 117.0 (95% CI: 1.7, 232.3)-point decrease in score relative to no smoke. Although differences between subgroups were not statistically significant, associations were most pronounced for younger (18-29 y), older (≥70y), habitual, and male users. DISCUSSION Our results indicate that PM2.5 and wildfire smoke were associated with reduced attention in adults within hours and days of exposure, but further research is needed to elucidate these relationships. https://doi.org/10.1289/EHP10498.
Collapse
Affiliation(s)
- Stephanie E. Cleland
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Oak Ridge Institute for Science and Education at the Center for Public Health and Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Lauren H. Wyatt
- Center for Public Health and Environmental Assessment, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Linda Wei
- Center for Public Health and Environmental Assessment, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Naman Paul
- Environmental Health Services, British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Marc L. Serre
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - J. Jason West
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sarah B. Henderson
- Environmental Health Services, British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Ana G. Rappold
- Center for Public Health and Environmental Assessment, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| |
Collapse
|
38
|
Gignac F, Righi V, Toran R, Paz Errandonea L, Ortiz R, Mijling B, Naranjo A, Nieuwenhuijsen M, Creus J, Basagaña X. Short-term NO 2 exposure and cognitive and mental health: A panel study based on a citizen science project in Barcelona, Spain. ENVIRONMENT INTERNATIONAL 2022; 164:107284. [PMID: 35576732 DOI: 10.1016/j.envint.2022.107284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The association between short-term exposure to air pollution and cognitive and mental health has not been thoroughly investigated so far. OBJECTIVES We conducted a panel study co-designed with citizens to assess whether air pollution can affect attention, perceived stress, mood and sleep quality. METHODS From September 2020 to March 2021, we followed 288 adults (mean age = 37.9 years; standard deviation = 12.1 years) for 14 days in Barcelona, Spain. Two tasks were self-administered daily through a mobile application: the Stroop color-word test to assess attention performance and a set of 0-to-10 rating scale questions to evaluate perceived stress, well-being, energy and sleep quality. From the Stroop test, three outcomes related to selective attention were calculated and z-score-transformed: response time, cognitive throughput and inhibitory control. Air pollution was assessed using the mean nitrogen dioxide (NO2) concentrations (mean of all Barcelona monitoring stations or using location data) 12 and 24 h before the tasks were completed. We applied linear regression with random effects by participant to estimate intra-individual associations, controlling for day of the week and time-varying factors such as alcohol consumption and physical activity. RESULTS Based on 2,457 repeated attention test performances, an increase of 30 μg/m3 exposure to NO2 12 h was associated with lower cognitive throughput (beta = -0.08, 95% CI: -0.15, -0.01) and higher response time (beta = 0.07, 95% CI: 0.01, 0.14) (increase inattentiveness). Moreover, an increase of 30 μg/m3 exposure to NO2 12 h was associated with higher self-perceived stress (beta = 0.44, 95% CI: 0.13, 0.77). We did not find statistically significant associations with inhibitory control and subjective well-being. CONCLUSIONS Our findings suggest that short-term exposure to air pollution could have adverse effects on attention performance and perceived stress in adults.
Collapse
Affiliation(s)
- Florence Gignac
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Raül Toran
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Rodney Ortiz
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Bas Mijling
- Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
| | | | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Xavier Basagaña
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
39
|
Morris RH, Chabrier G, Counsell SJ, McGonnell IM, Thornton C. Differential effects of Urban Particulate Matter on BV2 microglial-like and C17.2 neural stem/precursor cells. Dev Neurosci 2022; 44:309-319. [PMID: 35500557 DOI: 10.1159/000524829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/09/2022] [Indexed: 11/19/2022] Open
Abstract
Air pollution affects the majority of the world's population and has been linked to over 7 million premature deaths per year. Exposure to particulate matter (PM) contained within air pollution is associated with cardiovascular, respiratory and neurological ill health. There is increasing evidence that exposure to air pollution in utero and in early childhood is associated with altered brain development. However, the underlying mechanisms for impaired brain development are not clear. While oxidative stress and neuroinflammation are documented consequences of PM exposure, cell-specific mechanisms that may be triggered in response to air pollution exposure are less well defined. Here we assess the effect of urban (U)PM exposure on two different cell types, microglial-like BV2 cells and neural stem / precursor-like C17.2 cells. We found that, contrary to expectations, immature C17.2 cells were more resistant to PM-mediated oxidative stress and cell death than BV2 cells. PM exposure resulted in decreased mitochondrial health and increased mitochondrial ROS in BV2 cells which could be prevented by mitoTEMPO antioxidant treatment. Our data suggest that not only is mitochondrial dysfunction a key trigger in PM-mediated cytotoxicity, but that such deleterious effects may also depend on cell type and maturity.
Collapse
Affiliation(s)
- Rebecca H Morris
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Gwladys Chabrier
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Imelda M McGonnell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
40
|
Ong GX, Ji JS. Is outdoor exercise in air polluted cities a major threat to global health? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113146. [PMID: 34974363 DOI: 10.1016/j.ecoenv.2021.113146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Gui Xian Ong
- Environmental Research Center, Duke Kunshan University, China.
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, China.
| |
Collapse
|
41
|
Laursen KR, Rasmussen BB, Rosati B, Gutzke VH, Østergaard K, Ravn P, Kjaergaard SK, Bilde M, Glasius M, Sigsgaard T. Acute health effects from exposure to indoor ultrafine particles-A randomized controlled crossover study among young mild asthmatics. INDOOR AIR 2021; 31:1993-2007. [PMID: 34235780 DOI: 10.1111/ina.12902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Particulate matter is linked to adverse health effects, however, little is known about health effects of particles emitted from typical indoor sources. We examined acute health effects of short-term exposure to emissions from cooking and candles among asthmatics. In a randomized controlled double-blinded crossover study, 36 young non-smoking asthmatics attended three exposure sessions lasting 5 h: (a) air mixed with emissions from cooking (fine particle mass concentration): (PM2.5 : 96.1 μg/m3 ), (b) air mixed with emissions from candles (PM2.5 : 89.8 μg/m3 ), and c) clean filtered air (PM2.5 : 5.8 μg/m3 ). Health effects (spirometry, fractional exhaled Nitric Oxide [FeNO], nasal volume and self-reported symptoms) were evaluated before exposure start, then 5 and 24 h after. During exposures volatile organic compounds (VOCs), particle size distributions, number concentrations and optical properties were measured. Generally, no statistically significant changes were observed in spirometry, FeNO, or nasal volume comparing cooking and candle exposures to clean air. In males, nasal volume and FeNO decreased after exposure to cooking and candles, respectively. Participants reported additional and more pronounced symptoms during exposure to cooking and candles compared to clean air. The results indicate that emissions from cooking and candles exert mild inflammation in asthmatic males and decrease comfort among asthmatic males and females.
Collapse
Affiliation(s)
| | | | - Bernadette Rosati
- Department of Chemistry, Aarhus University, Aarhus, Denmark
- Faculty of Physics, University of Vienna, Vienna, Austria
| | - Vibeke Heitmann Gutzke
- Environment, Work and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Kirsten Østergaard
- Environment, Work and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Peter Ravn
- Environment, Work and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Merete Bilde
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | - Torben Sigsgaard
- Environment, Work and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
42
|
Andersen C, Omelekhina Y, Rasmussen BB, Nygaard Bennekov M, Skov SN, Køcks M, Wang K, Strandberg B, Mattsson F, Bilde M, Glasius M, Pagels J, Wierzbicka A. Emissions of soot, PAHs, ultrafine particles, NO x, and other health relevant compounds from stressed burning of candles in indoor air. INDOOR AIR 2021; 31:2033-2048. [PMID: 34297865 DOI: 10.1111/ina.12909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Burning candles release a variety of pollutants to indoor air, some of which are of concern for human health. We studied emissions of particles and gases from the stressed burning of five types of pillar candles with different wax and wick compositions. The stressed burning was introduced by controlled fluctuating air velocities in a 21.6 m3 laboratory chamber. The aerosol physicochemical properties were measured both in well-mixed chamber air and directly above the candle flame with online and offline techniques. All candles showed different emission profiles over time with high repeatability among replicates. The particle mass emissions from stressed burning for all candle types were dominated by soot (black carbon; BC). The wax and wick composition strongly influenced emissions of BC, PM2.5 , and particle-phase polycyclic aromatic hydrocarbons (PAHs), and to lower degree ultrafine particles, inorganic and organic carbon fraction of PM, but did not influence NOx , formaldehyde, and gas-phase PAHs. Measurements directly above the flame showed empirical evidence of short-lived strong emission peaks of soot particles. The results show the importance of including the entire burn time of candles in exposure assessments, as their emissions can vary strongly over time. Preventing stressed burning of candles can reduce exposure to pollutants in indoor air.
Collapse
Affiliation(s)
| | | | | | | | - Søren Nielsen Skov
- Danish Technological Institute, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Morten Køcks
- Danish Technological Institute, Aarhus C, Denmark
| | - Kai Wang
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Bo Strandberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Fredrik Mattsson
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Merete Bilde
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | | | - Joakim Pagels
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Aneta Wierzbicka
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| |
Collapse
|
43
|
Aretz B, Janssen F, Vonk JM, Heneka MT, Boezen HM, Doblhammer G. Long-term exposure to fine particulate matter, lung function and cognitive performance: A prospective Dutch cohort study on the underlying routes. ENVIRONMENTAL RESEARCH 2021; 201:111533. [PMID: 34153335 DOI: 10.1016/j.envres.2021.111533] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/12/2021] [Accepted: 06/11/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Exposure to fine particulate matter and black carbon is related to cognitive impairment and poor lung function, but less is known about the routes taken by different types of air pollutants to affect cognition. OBJECTIVES We tested two possible routes of fine particulate matter (PM2.5) and black carbon (BC) in impairing cognition, and evaluated their importance: a direct route over the olfactory nerve or the blood stream, and an indirect route over the lung. METHODS We used longitudinal observational data for 49,705 people aged 18+ from 2006 to 2015 from the Dutch Lifelines cohort study. By linking current home addresses to air pollution exposure data from ELAPSE in 2010, long-term average exposure to PM2.5 and BC was assessed. Lung function was measured by spirometry and Global Initiative (GLI) z-scores of forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC) were calculated. Cognitive performance was measured by cognitive processing time (CPT) assessed by the Cogstate Brief Battery. Linear structural equation modeling was performed to test direct/indirect associations. RESULTS Higher exposure to PM2.5 but not BC was related to higher CPT and slower cognitive processing speed [Total Effect PM2.5: FEV1 model = 8.31 × 10-3 (95% CI: 5.71 × 10-3, 10.91 × 10-3), FVC model = 8.30 × 10-3 (95% CI: 5.69 × 10-3, 10.90 × 10-3)]. The direct association of PM2.5 constituted more than 97% of the total effect. Mediation by lung function was low for PM2.5 with a mediated proportion of 1.32% (FEV1) and 2.05% (FVC), but higher for BC (7.01% and 13.82% respectively). DISCUSSION Our results emphasise the importance of the lung acting as a mediator in the relationship between both exposure to PM2.5 and BC, and cognitive performance. However, higher exposure to PM2.5 was mainly directly associated with worse cognitive performance, which emphasises the health-relevance of fine particles due to their ability to reach vital organs directly.
Collapse
Affiliation(s)
- Benjamin Aretz
- Institute of Sociology and Demography, University of Rostock, Rostock, Germany; Population Research Centre, Faculty of Spatial Sciences, University of Groningen, Groningen, the Netherlands.
| | - Fanny Janssen
- Population Research Centre, Faculty of Spatial Sciences, University of Groningen, Groningen, the Netherlands; Netherlands Interdisciplinary Demographic Institute - KNAW/University of Groningen, The Hague, the Netherlands
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany; Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA; German Center for Neurodegenerative Diseases, Bonn, Germany
| | - H Marike Boezen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gabriele Doblhammer
- Institute of Sociology and Demography, University of Rostock, Rostock, Germany; German Center for Neurodegenerative Diseases, Bonn, Germany
| |
Collapse
|
44
|
Laurent JGC, MacNaughton P, Jones E, Young AS, Bliss M, Flanigan S, Vallarino J, Chen LJ, Cao X, Allen JG. Associations between Acute Exposures to PM 2.5 and Carbon Dioxide Indoors and Cognitive Function in Office Workers: A Multicountry Longitudinal Prospective Observational Study. ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2021; 16:094047. [PMID: 35330988 PMCID: PMC8942432 DOI: 10.1088/1748-9326/ac1bd8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite evidence of the air pollution effects on cognitive function, little is known about the acute impact of indoor air pollution on cognitive function among the working-age population. We aimed to understand whether cognitive function was associated with real-time indoor concentrations of particulate matter (PM2.5) and carbon dioxide (CO2). We conducted a prospective observational longitudinal study among 302 office workers in urban commercial buildings located in six countries (China, India, Mexico, Thailand, the United States of America, and the United Kingdom). For 12 months, assessed cognitive function using the Stroop color-word test and Addition-Subtraction test (ADD) via a mobile research app. We found that higher PM2.5 and lower ventilation rates, as assessed by CO2 concentration, were associated with slower response times and reduced accuracy (fewer correct responses per minute) on the Stroop and ADD for 8 out 10 test metrics. Each interquartile (IQR) increase in PM2.5 (IQR=8.8 µg/m3) was associated with a 0.82% (95%CI: 0.42, 1.21) increase in Stroop response time, a 6.18% (95% CI: 2.08, 10.3) increase in Stroop interference time, a 0.7% (95% CI: -1.38, -0.01) decrease in Stroop throughput, and a 1.51% (95% CI: -2.65, -0.37) decrease in ADD throughput. For CO2, an IQR increase (IQR=315ppm) was associated with a 0.85% (95% CI: 0.32, 1.39) increase in Stroop response time, a 7.88% (95% CI: 2.08, 13.86) increase in Stroop interference time, a 1.32% (95% CI: -2.3, -0.38) decrease in Stroop throughput, and a 1.13% (95% CI: 0.18, 2.11) increase in ADD response time. A sensitivity analysis showed significant association between PM2.5 in four out of five cognitive test performance metrics only at levels above 12 µg/m3. Enhanced filtration and higher ventilation rates that exceed current minimum targets are essential public health strategies that may improve employee productivity.
Collapse
Affiliation(s)
| | | | - Emily Jones
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA
| | - Anna S. Young
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Maya Bliss
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Skye Flanigan
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jose Vallarino
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | | |
Collapse
|
45
|
Hodgson JR, Chapman L, Pope FD. The Diamond League athletic series: does the air quality sparkle? INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:1427-1442. [PMID: 33760979 PMCID: PMC7988253 DOI: 10.1007/s00484-021-02114-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Urban air pollution can have negative short- and long-term impacts on health, including cardiovascular, neurological, immune system and developmental damage. The irritant qualities of pollutants such as ozone (O3), nitrogen dioxide (NO2) and particulate matter (PM) can cause respiratory and cardiovascular distress, which can be heightened during physical activity and particularly so for those with respiratory conditions such as asthma. Previously, research has only examined marathon run outcomes or running under laboratory settings. This study focuses on elite 5-km athletes performing in international events at nine locations. Local meteorological and air quality data are used in conjunction with race performance metrics from the Diamond League Athletics series to determine the extent to which elite competitors are influenced during maximal sustained efforts in real-world conditions. The findings from this study suggest that local meteorological variables (temperature, wind speed and relative humidity) and air quality (ozone and particulate matter) have an impact on athletic performance. Variation between finishing times at different race locations can also be explained by the local meteorology and air quality conditions seen during races.
Collapse
Affiliation(s)
- James R Hodgson
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Lee Chapman
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Francis D Pope
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT, Birmingham, UK.
| |
Collapse
|
46
|
Marcantonio R, Javeline D, Field S, Fuentes A. Global distribution and coincidence of pollution, climate impacts, and health risk in the Anthropocene. PLoS One 2021; 16:e0254060. [PMID: 34288922 PMCID: PMC8294505 DOI: 10.1371/journal.pone.0254060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/18/2021] [Indexed: 12/25/2022] Open
Abstract
Previous research demonstrates that low-income countries face higher risks than high-income countries from toxic pollution and climate change. However, the relationship between these two risks is little explored or tested, and efforts to address the risks are often independent and uncoordinated. We argue that the global risks from toxic pollution and climate change are highly correlated and should be jointly analyzed in order to inform and better target efforts to reduce or mitigate both risks. We provide such analysis for 176 countries and found a strong (rs = -0.798;95%CI -0.852, -0.727) and significant (p<0.0001) relationship between the distribution of climate risk and toxic pollution. We also found that inequities in pollution production, economic status, and institutional readiness are interconnected and exacerbate risk for countries already in the highest risk categories for both toxic and non-toxic (greenhouse gas) pollution. The findings have policy implications, including the use of the proposed Target assessment to decide where best to address toxic and non-toxic pollution simultaneously, based on the need to minimize human suffering and maximize return on effort.
Collapse
Affiliation(s)
- Richard Marcantonio
- The Joan B. Kroc Institute for International Peace Studies, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| | - Debra Javeline
- Department of Political Science, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Sean Field
- Department of Anthropology, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Agustin Fuentes
- Department of Anthropology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
47
|
Rasmussen BB, Wang K, Karstoft JG, Skov SN, Køcks M, Andersen C, Wierzbicka A, Pagels J, Pedersen PB, Glasius M, Bilde M. Emissions of ultrafine particles from five types of candles during steady burn conditions. INDOOR AIR 2021; 31:1084-1094. [PMID: 33565212 DOI: 10.1111/ina.12800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Emissions from candles are of concern for indoor air quality. In this work, five different types of pillar candles were burned under steady burn conditions in a new laboratory scale system for repeatable and controlled comparison of candle emissions (temperature ~25°C, relative humidity ~13%, O2 >18%, air exchange rate 1.9 h-1 ). Burn rate, particle number concentrations, mass concentrations, and mode diameters varied between candle types. Based on the results, the burning period was divided in two phases: initial (0-1 h) and stable (1-6 h). Burn rates were in the range 4.4-7.3 and 4.7-7.1 g/h during initial and stable phase, respectively. Relative particle number emissions, mode diameters, and mass concentrations were higher during the initial phase compared to the stable phase for a majority of the candles. We hypothesize that this is due to elevated emissions of wick additives upon ignition of the candle together with a slightly higher burn rate in the initial phase. Experiments at higher relative humidity (~40%) gave similar results with a tendency toward larger particle sizes at the higher relative humidity. Chemical composition with respect to inorganic salts was similar in the emitted particles (dry conditions) compared to the candlewicks, but with variations between different candles.
Collapse
Affiliation(s)
| | - Kai Wang
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | | | - Søren N Skov
- Danish Technological Institute, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Morten Køcks
- Danish Technological Institute, Aarhus C, Denmark
| | | | - Aneta Wierzbicka
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Joakim Pagels
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Peter B Pedersen
- Danish Technological Institute, Aarhus C, Denmark
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus N, Denmark
| | | | - Merete Bilde
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
48
|
Marazziti D, Cianconi P, Mucci F, Foresi L, Chiarantini I, Della Vecchia A. Climate change, environment pollution, COVID-19 pandemic and mental health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145182. [PMID: 33940721 PMCID: PMC7825818 DOI: 10.1016/j.scitotenv.2021.145182] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 05/06/2023]
Abstract
Converging data would indicate the existence of possible relationships between climate change, environmental pollution and epidemics/pandemics, such as the current one due to SARS-CoV-2 virus. Each of these phenomena has been supposed to provoke detrimental effects on mental health. Therefore, the purpose of this paper was to review the available scientific literature on these variables in order to suggest and comment on their eventual synergistic effects on mental health. The available literature report that climate change, air pollution and COVID-19 pandemic might influence mental health, with disturbances ranging from mild negative emotional responses to full-blown psychiatric conditions, specifically, anxiety and depression, stress/trauma-related disorders, and substance abuse. The most vulnerable groups include elderly, children, women, people with pre-existing health problems especially mental illnesses, subjects taking some types of medication including psychotropic drugs, individuals with low socio-economic status, and immigrants. It is evident that COVID-19 pandemic uncovers all the fragility and weakness of our ecosystem, and inability to protect ourselves from pollutants. Again, it underlines our faults and neglect towards disasters deriving from climate change or pollution, or the consequences of human activities irrespective of natural habitats and constantly increasing the probability of spillover of viruses from animals to humans. In conclusion, the psychological/psychiatric consequences of COVID-19 pandemic, that currently seem unavoidable, represent a sharp cue of our misconception and indifference towards the links between our behaviour and their influence on the "health" of our planet and of ourselves. It is time to move towards a deeper understanding of these relationships, not only for our survival, but for the maintenance of that balance among man, animals and environment at the basis of life in earth, otherwise there will be no future.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy; UniCamillus - Saint Camillus University of Health Sciences, Rome, Italy
| | - Paolo Cianconi
- Institute of Psychiatry, Department of Neurosciences, Catholic University, Rome, Italy
| | - Federico Mucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy; Department of Psychiatry, North-Western Tuscany Region, NHS Local Health Unit, Italy
| | - Lara Foresi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Ilaria Chiarantini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Alessandra Della Vecchia
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.
| |
Collapse
|
49
|
Shehab M, Pope FD, Delgado-Saborit JM. The contribution of cooking appliances and residential traffic proximity to aerosol personal exposure. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:307-318. [PMID: 34150237 PMCID: PMC8172705 DOI: 10.1007/s40201-020-00604-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE Indoor and outdoor factors affect personal exposure to air pollutants. Type of cooking appliance (i.e. gas, electricity), and residential location related to traffic are such factors. This research aims to investigate the effect of cooking with gas and electric appliances, as an indoor source of aerosols, and residential traffic as outdoor sources, on personal exposures to particulate matter with an aerodynamic diameter lower than 2.5 μm (PM2.5), black carbon (BC), and ultrafine particles (UFP). METHODS Forty subjects were sampled for four consecutive days measuring personal exposures to three aerosol pollutants, namely PM2.5, BC, and UFP, which were measured using personal sensors. Subjects were equally distributed into four categories according to the use of gas or electric stoves for cooking, and to residential traffic (i.e. houses located near or away from busy roads). RESULTS/CONCLUSION Cooking was identified as an indoor activity affecting exposure to aerosols, with mean concentrations during cooking ranging 24.7-50.0 μg/m3 (PM2.5), 1.8-4.9 μg/m3 (BC), and 1.4 × 104-4.1 × 104 particles/cm3 (UFP). This study also suggest that traffic is a dominant source of exposure to BC, since people living near busy roads are exposed to higher BC concentrations than those living further away from traffic. In contrast, the contribution of indoor sources to personal exposure to PM2.5 and UFP seems to be greater than from outdoor traffic sources. This is probably related to a combination of the type of building construction and a varying range of activities conducted indoors. It is recommended to ensure a good ventilation during cooking to minimize exposure to cooking aerosols. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-020-00604-7.
Collapse
Affiliation(s)
- M. Shehab
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
- Environmental Protection Authority (EPA), Shuwaikh Industrial, Kuwait City, Kuwait
| | - F. D. Pope
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - J. M. Delgado-Saborit
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
- Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Universitat Jaume I, Castellon, Spain
- ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain
| |
Collapse
|
50
|
Gao X, Coull B, Lin X, Vokonas P, Spiro A, Hou L, Schwartz J, Baccarelli AA. Short-term air pollution, cognitive performance, and nonsteroidal anti-inflammatory drug use in the Veterans Affairs Normative Aging Study. NATURE AGING 2021; 1:430-437. [PMID: 34841262 PMCID: PMC8622756 DOI: 10.1038/s43587-021-00060-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/23/2021] [Indexed: 12/26/2022]
Abstract
Air pollution, especially the fine particulate matter (PM2.5), may impair cognitive performance1-3, but its short-term impact remains poorly understood. We investigated the short-term associations of PM2.5 with the cognitive performances of 954 white males measured as the global cognitive function (GCF) and Mini-Mental State Examination (MMSE) scores, and further explored whether taking nonsteroidal anti-inflammatory drugs (NSAIDs) could modify their relationships. Higher short-term exposure to PM2.5 demonstrated non-linear negative associations with cognitive function. Compared with the lowest quartile of the 28-day average PM2.5 concentration, the 2nd, 3rd, and 4th quartiles were associated with 0.378-, 0.376-, and 0.499-unit decreases in GCF score, 0.484-, 0.315-, and 0.414-unit decreases in MMSE score, and 69%, 45%, and 63% greater odds of low MMSE scores (≤25), respectively. Such adverse effects were attenuated among NSAIDs users compared to non-users. This study elucidates the short-term impacts of air pollution on cognition and warrants further investigations on the modifying effects of NSAIDs.
Collapse
Affiliation(s)
- Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.
- Laboratory of Environmental Precision Health, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Brent Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pantel Vokonas
- Veterans Affairs Normative Aging Study, Veterans Affairs Boston Healthcare System, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Avron Spiro
- Veterans Affairs Normative Aging Study, Veterans Affairs Boston Healthcare System, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrea A Baccarelli
- Laboratory of Environmental Precision Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|