1
|
Jansen EB, Orvold SN, Swan CL, Yourkowski A, Thivierge BM, Francis ME, Ge A, Rioux M, Darbellay J, Howland JG, Kelvin AA. After the virus has cleared-Can preclinical models be employed for Long COVID research? PLoS Pathog 2022; 18:e1010741. [PMID: 36070309 PMCID: PMC9451097 DOI: 10.1371/journal.ppat.1010741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) can cause the life-threatening acute respiratory disease called COVID-19 (Coronavirus Disease 2019) as well as debilitating multiorgan dysfunction that persists after the initial viral phase has resolved. Long COVID or Post-Acute Sequelae of COVID-19 (PASC) is manifested by a variety of symptoms, including fatigue, dyspnea, arthralgia, myalgia, heart palpitations, and memory issues sometimes affecting between 30% and 75% of recovering COVID-19 patients. However, little is known about the mechanisms causing Long COVID and there are no widely accepted treatments or therapeutics. After introducing the clinical aspects of acute COVID-19 and Long COVID in humans, we summarize the work in animals (mice, Syrian hamsters, ferrets, and nonhuman primates (NHPs)) to model human COVID-19. The virology, pathology, immune responses, and multiorgan involvement are explored. Additionally, any studies investigating time points longer than 14 days post infection (pi) are highlighted for insight into possible long-term disease characteristics. Finally, we discuss how the models can be leveraged for treatment evaluation, including pharmacological agents that are currently in human clinical trials for treating Long COVID. The establishment of a recognized Long COVID preclinical model representing the human condition would allow the identification of mechanisms causing disease as well as serve as a vehicle for evaluating potential therapeutics.
Collapse
Affiliation(s)
- Ethan B. Jansen
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Spencer N. Orvold
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cynthia L. Swan
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anthony Yourkowski
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brittany M. Thivierge
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Magen E. Francis
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anni Ge
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Melissa Rioux
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joseph Darbellay
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John G. Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alyson A. Kelvin
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
89Zr Immuno-PET Imaging of Tumor PD-1 Reveals That PMA Upregulates Lymphoma PD-1 through NFκB and JNK Signaling. Mol Imaging 2022; 2022:5916692. [PMID: 35250391 PMCID: PMC8865856 DOI: 10.1155/2022/5916692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Immune therapy of T-cell lymphoma requires assessment of tumor-expressed programmed cell death protein-1 (PD-1). Herein, we developed an immuno-PET technique that quantitatively images and monitors regulation of PD-1 expression on T-cell lymphomas. Methods. Anti-PD-1 IgG underwent sulfhydryl moiety-specific conjugation with maleimide-deferoxamine and 89Zr labeling. Binding assays and Western blotting were performed in EL4 murine T-cell lymphoma cells. In vivo pharmacokinetics, biodistribution, and PET were performed in mice. Results. 89Zr-PD-1 IgG binding to EL4 cells was completely blocked by cold antibodies, confirming excellent target specificity. Following intravenous injection into mice, 89Zr-PD-1 IgG showed biexponential blood clearance and relatively low normal organ uptake after five days. PET/CT and biodistribution demonstrated high EL4 tumor uptake that was suppressed by cold antibodies. In EL4 cells, phorbol 12-myristate 13-acetate (PMA) increased 89Zr-PD-1 IgG binding (
%) and dose-dependent augmentation of PD-1 expression (
of controls by 200 ng/ml). FACS showed strong PD-1 expression on all EL4 cells and positive but weaker expression on
% of the mouse spleen lymphocytes. PMA stimulation led to
-fold increase in the proportion of the strongest PD-1 expressing EL4 cells but failed to influence that of PD-1+ mouse lymphocytes. In mice, PMA treatment increased 89Zr-PD-1 IgG uptake in EL4 lymphomas from
to
%ID/g (
), and tumor uptake closely correlated with PD-1 level (
,
). On immunohistochemistry of tumor sections, infiltrating CD8α+ T lymphocytes constituted a small fraction of tumor cells. The entire tumor section showed strong PD-1 staining that was even stronger for PMA-treated mice. Investigation of involved signaling revealed that PMA increased EL4 cell and tumor HIF-1α accumulation and NFκB and JNK activation. Conclusion. 89Zr-PD-1 IgG offered high-contrast PET imaging of tumor PD-1 in mice. This was found to mostly represent binding to EL4 tumor cells, although infiltrating T lymphocytes may also have contributed. PD-1 expression on T-cell lymphomas was upregulated by PMA stimulation, and this was reliably monitored by 89Zr-PD-1 IgG PET. This technique may thus be useful for understanding the mechanisms of PD-1 regulation in lymphomas of living subjects.
Collapse
|
3
|
Animal Models Utilized for the Development of Influenza Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9070787. [PMID: 34358203 PMCID: PMC8310120 DOI: 10.3390/vaccines9070787] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/25/2022] Open
Abstract
Animal models have been an important tool for the development of influenza virus vaccines since the 1940s. Over the past 80 years, influenza virus vaccines have evolved into more complex formulations, including trivalent and quadrivalent inactivated vaccines, live-attenuated vaccines, and subunit vaccines. However, annual effectiveness data shows that current vaccines have varying levels of protection that range between 40–60% and must be reformulated every few years to combat antigenic drift. To address these issues, novel influenza virus vaccines are currently in development. These vaccines rely heavily on animal models to determine efficacy and immunogenicity. In this review, we describe seasonal and novel influenza virus vaccines and highlight important animal models used to develop them.
Collapse
|
4
|
Rioux M, Francis ME, Swan CL, Ge A, Kroeker A, Kelvin AA. The Intersection of Age and Influenza Severity: Utility of Ferrets for Dissecting the Age-Dependent Immune Responses and Relevance to Age-Specific Vaccine Development. Viruses 2021; 13:678. [PMID: 33920917 PMCID: PMC8071347 DOI: 10.3390/v13040678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Many factors impact the host response to influenza virus infection and vaccination. Ferrets have been an indispensable reagent for influenza virus research for almost one hundred years. One of the most significant and well-known factors affecting human disease after infection is host age. Another significant factor is the virus, as strain-specific disease severity is well known. Studying age-related impacts on viral infection and vaccination outcomes requires an animal model that reflects both the physiological and immunological changes that occur with human aging, and sensitivity to differentially virulent influenza viruses. The ferret is uniquely susceptible to a plethora of influenza viruses impacting humans and has proven extremely useful in studying the clinical and immunological pictures of influenza virus infection. Moreover, ferrets developmentally have several of the age-related physiological changes that occur in humans throughout infancy, adulthood, old age, and pregnancy. In this review, we discuss ferret susceptibility to influenza viruses, summarize previous influenza studies using ferrets as models of age, and finally, highlight the application of ferret age models in the pursuit of prophylactic and therapeutic agents to address age-related influenza disease severity.
Collapse
Affiliation(s)
- Melissa Rioux
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H4R2, Canada; (M.R.); (A.G.)
| | - Magen E. Francis
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
| | - Cynthia L. Swan
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
| | - Anni Ge
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H4R2, Canada; (M.R.); (A.G.)
| | - Andrea Kroeker
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
| | - Alyson A. Kelvin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H4R2, Canada; (M.R.); (A.G.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
- Department of Pediatrics, Division of Infectious Disease, Faculty of Medicine, Dalhousie University, Halifax, NS B3K6R8, Canada
- The Canadian Center for Vaccinology (IWK Health Centre, Dalhousie University and the Nova Scotia Health Authority), Halifax, NS B3K6R8, Canada
- Department of Biochemistry, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N5E5, Canada
| |
Collapse
|