1
|
Zheng W, Lin X, Chen H, Yang Z, Zhao H, Li S, Song T, Sun Y. Gut microbiota and endometrial cancer: research progress on the pathogenesis and application. Ann Med 2025; 57:2451766. [PMID: 39810645 PMCID: PMC11737052 DOI: 10.1080/07853890.2025.2451766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
As one of the three major malignant tumors in women, the morbidity of endometrial cancer is second only to that of cervical cancer and is increasing yearly. Its etiological mechanism is not clear, and the risk factors are numerous and common and are closely related to obesity, hypertension, diabetes, etc. The gut microbiota has many strains, which play a considerable part in normal digestion and absorption in the human body and the regulation of the immune response. In the last few years, research on the gut microbiota has been unprecedentedly popular, and it has been confirmed that the gut microbiota closely correlates with the occurrence and development of all kinds of benign and malignant diseases. In this article, the effects of the gut microbiota and its metabolites on the occurrence and development of endometrial cancer is reviewed, and its application in the prevention, diagnosis and treatment of endometrial cancer is explored.
Collapse
Affiliation(s)
- Weiqin Zheng
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaowen Lin
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huixin Chen
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziling Yang
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Zhao
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shibo Li
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Song
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuhui Sun
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Shu L, Xiao L, Hu B, Yu Q, Dai D, Chen J, Wang J, Xi Z, Zhang J, Bao M. Carotid baroreceptor stimulation attenuates obesity-related hypertension through sympathetic-driven IL- 22 restoration of intestinal homeostasis. Eur J Med Res 2025; 30:291. [PMID: 40234921 PMCID: PMC12001698 DOI: 10.1186/s40001-025-02528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Gut microbiota and its metabolites, as well as the intestinal barrier, play important roles in the development of obesity-related hypertension. Sympathetic nerves are critical for intestinal homeostasis. Carotid baroreceptor stimulation (CBS) has been shown to exert protective effects against hypertension via sympathetic tone reduction. This study aimed to reveal the effects of CBS treatment on intestinal homeostasis and its underlying mechanisms in obesity-related hypertension. METHODS An animal model of obesity-related hypertension was established with Sprague-Dawley rats by a high-fat diet and 10% fructose solution for 13 weeks. CBS devices were implanted at the 5 th week. The effects of CBS on body weight, blood pressure, gut microbiota, intestinal autonomic nerve, intestinal barrier, and type 3 innate lymphoid cells (ILC3 s) were investigated. RESULTS CBS treatment significantly reduced blood pressure and body weight in rats with obesity-related hypertension. In addition, CBS obviously improved gut microbial dysbiosis and intestinal barrier damage. Interestingly, after an 8-week CBS intervention, the obesity-related hypertensive rats exhibited a dramatic decrease in sympathetic nerve distribution and norepinephrine concentration, as well as an increase in IL- 22 production by ILC3 s in the intestine. CONCLUSIONS CBS increased IL- 22 production in ILC3 s to alleviate gut microbial dysbiosis and intestinal barrier destruction, thus improving obesity-related hypertension in rats.
Collapse
Affiliation(s)
- Ling Shu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Lingling Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Bangwang Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Qiao Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, 441300, China
| | - Dilin Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 404100, China
| | - Jie Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Jing Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Zhaoqing Xi
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Junxia Zhang
- Department of Endocrinology, Taikang Tongji (Wuhan) Hospital, 322 Sixin North Road, Wuhan, 430050, Hubei, China.
| | - Mingwei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, Hubei, China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China.
| |
Collapse
|
3
|
Quinn-Bohmann N, Wilmanski T, Sarmiento KR, Levy L, Lampe JW, Gurry T, Rappaport N, Ostrem EM, Venturelli OS, Diener C, Gibbons SM. Microbial community-scale metabolic modelling predicts personalized short-chain fatty acid production profiles in the human gut. Nat Microbiol 2024; 9:1700-1712. [PMID: 38914826 PMCID: PMC11841136 DOI: 10.1038/s41564-024-01728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/09/2024] [Indexed: 06/26/2024]
Abstract
Microbially derived short-chain fatty acids (SCFAs) in the human gut are tightly coupled to host metabolism, immune regulation and integrity of the intestinal epithelium. However, the production of SCFAs can vary widely between individuals consuming the same diet, with lower levels often associated with disease. A systems-scale mechanistic understanding of this heterogeneity is lacking. Here we use a microbial community-scale metabolic modelling (MCMM) approach to predict individual-specific SCFA production profiles to assess the impact of different dietary, prebiotic and probiotic inputs. We evaluate the quantitative accuracy of our MCMMs using in vitro and ex vivo data, plus published human cohort data. We find that MCMM SCFA predictions are significantly associated with blood-derived clinical chemistries, including cardiometabolic and immunological health markers, across a large human cohort. Finally, we demonstrate how MCMMs can be leveraged to design personalized dietary, prebiotic and probiotic interventions aimed at optimizing SCFA production in the gut. Our model represents an approach to direct gut microbiome engineering for precision health and nutrition.
Collapse
Affiliation(s)
- Nick Quinn-Bohmann
- Institute for Systems Biology, Seattle, WA, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, USA
| | | | | | - Lisa Levy
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Thomas Gurry
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Myota GmbH, Berlin, Germany
| | - Noa Rappaport
- Center for Phenomic Health, Buck Institute for Research on Aging, Novato, CA, USA
| | - Erin M Ostrem
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian Diener
- Institute for Systems Biology, Seattle, WA, USA.
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria.
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, USA.
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- eScience Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Yin X, Duan C, Zhang L, Zhu Y, Qiu Y, Shi K, Wang S, Zhang X, Zhang H, Hao Y, Yuan F, Tian Y. Microbiota-derived acetate attenuates neuroinflammation in rostral ventrolateral medulla of spontaneously hypertensive rats. J Neuroinflammation 2024; 21:101. [PMID: 38632579 PMCID: PMC11025215 DOI: 10.1186/s12974-024-03061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Increased neuroinflammation in brain regions regulating sympathetic nerves is associated with hypertension. Emerging evidence from both human and animal studies suggests a link between hypertension and gut microbiota, as well as microbiota-derived metabolites short-chain fatty acids (SCFAs). However, the precise mechanisms underlying this gut-brain axis remain unclear. METHODS The levels of microbiota-derived SCFAs in spontaneously hypertensive rats (SHRs) were determined by gas chromatography-mass spectrometry. To observe the effect of acetate on arterial blood pressure (ABP) in rats, sodium acetate was supplemented via drinking water for continuous 7 days. ABP was recorded by radio telemetry. The inflammatory factors, morphology of microglia and astrocytes in rostral ventrolateral medulla (RVLM) were detected. In addition, blood-brain barrier (BBB) permeability, composition and metabolomics of the gut microbiome, and intestinal pathological manifestations were also measured. RESULTS The serum acetate levels in SHRs are lower than in normotensive control rats. Supplementation with acetate reduces ABP, inhibits sympathetic nerve activity in SHRs. Furthermore, acetate suppresses RVLM neuroinflammation in SHRs, increases microglia and astrocyte morphologic complexity, decreases BBB permeability, modulates intestinal flora, increases fecal flora metabolites, and inhibits intestinal fibrosis. CONCLUSIONS Microbiota-derived acetate exerts antihypertensive effects by modulating microglia and astrocytes and inhibiting neuroinflammation and sympathetic output.
Collapse
Affiliation(s)
- Xiaopeng Yin
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Changhao Duan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Lin Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yufang Zhu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yueyao Qiu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Kaiyi Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Sen Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaoguang Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, 050017, China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yinchao Hao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Fang Yuan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Province Key Laboratory of Neurophysiology, Shijiazhuang, 050017, China.
| | - Yanming Tian
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Province Key Laboratory of Neurophysiology, Shijiazhuang, 050017, China.
| |
Collapse
|
5
|
Gao K, Wang PX, Mei X, Yang T, Yu K. Untapped potential of gut microbiome for hypertension management. Gut Microbes 2024; 16:2356278. [PMID: 38825779 PMCID: PMC11152106 DOI: 10.1080/19490976.2024.2356278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
The gut microbiota has been shown to be associated with a range of illnesses and disorders, including hypertension, which is recognized as the primary factor contributing to the development of serious cardiovascular diseases. In this review, we conducted a comprehensive analysis of the progression of the research domain pertaining to gut microbiota and hypertension. Our primary emphasis was on the interplay between gut microbiota and blood pressure that are mediated by host and gut microbiota-derived metabolites. Additionally, we elaborate the reciprocal communication between gut microbiota and antihypertensive drugs, and its influence on the blood pressure of the host. The field of computer science has seen rapid progress with its great potential in the application in biomedical sciences, we prompt an exploration of the use of microbiome databases and artificial intelligence in the realm of high blood pressure prediction and prevention. We propose the use of gut microbiota as potential biomarkers in the context of hypertension prevention and therapy.
Collapse
Affiliation(s)
- Kan Gao
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pu Xiu Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xue Mei
- School of Pharmacy, Institute of Materia Medica, North Sichuan Medical College, Nanchang, Sichuan, China
| | - Tao Yang
- Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - Kai Yu
- Department of General Practice, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Tan J, Ribeiro RV, Barker C, Daien C, De Abreu Silveira E, Holmes A, Nanan R, Simpson SJ, Macia L. Functional profiling of gut microbial and immune responses toward different types of dietary fiber: a step toward personalized dietary interventions. Gut Microbes 2023; 15:2274127. [PMID: 37942526 PMCID: PMC10730188 DOI: 10.1080/19490976.2023.2274127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Dietary fiber plays a crucial role in maintaining gut and overall health. The objective of this study was to investigate whether different types of dietary fiber elicited specific changes in gut microbiota composition and the production of short-chain fatty acids. To test this, a longitudinal crossover study design was employed, in which healthy adult women consumed three distinct dietary fiber supplements: Inulin (fructo-oligosaccharide), Vitafiber (isomalto-oligosaccharide), and Fibremax (mixture of different fiber) during a one-week intervention period, followed by a 2-week washout period. A total of 15 g of soluble fiber was consumed daily for each supplement. Samples were collected before and after each intervention to analyze the composition of the gut microbiota by 16S rRNA sequencing and fecal levels of short-chain fatty acids measured using nuclear magnetic resonance. Phenotypic changes in peripheral blood mononuclear cells were studied in subsets of participants with higher SCFA levels post-intervention using spectral flow cytometry. The results revealed substantial stability and resilience of the overall gut bacterial community toward fiber-induced changes. However, each supplement had specific effects on gut bacterial alpha and beta diversity, SCFA production, and immune changes. Inulin consistently exerted the most pronounced effect across individuals and certain taxa were identified as potential indicators of SCFA production in response to inulin supplementation. This distinguishing feature was not observed for the other fiber supplements. Further large-scale studies are required to confirm these findings. Overall, our study implies that personalized dietary fiber intervention could be tailored to promote the growth of beneficial bacteria to maximize SCFA production and associated health benefits.
Collapse
Affiliation(s)
- Jian Tan
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Rosilene V. Ribeiro
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Centre for Education and Research on Ageing and Alzheimer’s Institute, Concord Hospital, University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Christopher Barker
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Claire Daien
- Rheumatology, teaching hospital of Montpellier and University of Montpellier, Montpellier, France
- Inserm U1046, CNRS UMR 9214, Physiologie et Médecine Expérimentale du Cœur et des Muscles, (PhyMedExp), Montpellier, France
| | - Erick De Abreu Silveira
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Andrew Holmes
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Medical School and Charles Perkins Centre Nepean, The University of Sydney, Sydney, Australia
| | - Stephen J. Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Sydney Cytometry, The University of Sydney and The Centenary Institute, Sydney, Australia
| |
Collapse
|