1
|
Shen J, Ma Z, Xu J, Xue T, Lv X, Zhu G, Huang B. Exosome Isolation and Detection: From Microfluidic Chips to Nanoplasmonic Biosensor. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38676635 DOI: 10.1021/acsami.3c19396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Exosomes are becoming more widely acknowledged as significant circulating indicators for the prognosis and diagnosis of cancer. Circulating exosomes are essential to the development and spread of cancer, according to a growing body of research. Using existing technology, characterizing exosomes is quite difficult. Therefore, a direct, sensitive, and targeted approach to exosome detection will aid in illness diagnosis and prognosis. The review discusses the new strategies for exosome isolation and detection technologies from microfluidic chips to nanoplasmonic biosensors, analyzing the advantages and limitations of these new technologies. This review serves researchers to better understand exosome isolation and detection methods and to help develop better exosome isolating and detecting devices for clinical applications.
Collapse
Affiliation(s)
- Jianing Shen
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Zhengtai Ma
- Key Laboratory of Optoelectronic Materials and Devices, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Optoelectronic Technology, University of Chinese, Academy of Sciences, Beijing 100049, China
| | - Jiaqi Xu
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Tianhao Xue
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Xiaoqing Lv
- Key Laboratory of Optoelectronic Materials and Devices, Chinese Academy of Sciences, Beijing 100083, China
| | - Guixian Zhu
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Beiju Huang
- Key Laboratory of Optoelectronic Materials and Devices, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Optoelectronic Technology, University of Chinese, Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Costa BMDC, Coelho AG, Beauchamp MJ, Nielsen JB, Nordin GP, Woolley AT, da Silva JAF. 3D-printed microchip electrophoresis device containing spiral electrodes for integrated capacitively coupled contactless conductivity detection. Anal Bioanal Chem 2022; 414:545-550. [PMID: 34263346 PMCID: PMC8748415 DOI: 10.1007/s00216-021-03494-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/03/2023]
Abstract
In this work, we demonstrate for the first time the design and fabrication of microchip electrophoresis devices containing cross-shaped channels and spiral electrodes around the separation channel for microchip electrophoresis and capacitively coupled contactless conductivity detection. The whole device was prepared in a digital light processing-based 3D printer in poly(ethylene glycol) diacrylate resin. Outstanding X-Y resolution of the customized 3D printer ensured the fabrication of 40-μm cross section channels. The spiral channels were filled with melted gallium to form conductive electrodes around the separation channel. We demonstrate the applicability of the device on the separation of sodium, potassium, and lithium cations by microchip electrophoresis. Graphical abstract.
Collapse
Affiliation(s)
| | - Aline G. Coelho
- Chemistry Institute, State University of Campinas, Campinas, SP, 13083-861, Brazil
| | - Michael J. Beauchamp
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Jacob B. Nielsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Gregory P. Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Adam T. Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - José A. F. da Silva
- Chemistry Institute, State University of Campinas, Campinas, SP, 13083-861, Brazil.,Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Campinas, SP, Brazil.,Corresponding author: José Alberto Fracassi da Silva,
| |
Collapse
|
3
|
Sina AAI, Vaidyanathan R, Wuethrich A, Carrascosa LG, Trau M. Label-free detection of exosomes using a surface plasmon resonance biosensor. Anal Bioanal Chem 2019; 411:1311-1318. [PMID: 30719562 DOI: 10.1007/s00216-019-01608-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/19/2018] [Accepted: 01/14/2019] [Indexed: 01/04/2023]
Abstract
The development of a sensitive and specific detection platform for exosomes is highly desirable as they are believed to transmit vital tumour-specific information (mRNAs, microRNAs, and proteins) to remote cells for secondary metastasis. Herein, we report a simple method for the real-time and label-free detection of clinically relevant exosomes using a surface plasmon resonance (SPR) biosensor. Our method shows high specificity in detecting BT474 breast cancer cell-derived exosomes particularly from complex biological samples (e.g. exosome spiked in serum). This approach exhibits high sensitivity by detecting as low as 8280 exosomes/μL which may potentially be suitable for clinical analysis. We believe that this label-free and real-time method along with the high specificity and sensitivity may potentially be useful for clinical settings.
Collapse
Affiliation(s)
- Abu Ali Ibn Sina
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ramanathan Vaidyanathan
- Biomedical Institute for Global Health Research & Technology, National University of Singapore, Singapore, 119228, Singapore
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Laura G Carrascosa
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
4
|
Paul P, Sänger-van de Griend C, Adams E, Van Schepdael A. Recent advances in the capillary electrophoresis analysis of antibiotics with capacitively coupled contactless conductivity detection. J Pharm Biomed Anal 2018; 158:405-415. [PMID: 29940496 DOI: 10.1016/j.jpba.2018.06.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 01/04/2023]
Abstract
This review describes briefly the high rate of counterfeiting of antimicrobial drugs with focus upon its immediate health consequences. The major part of this review encompasses accounts of the improvements achieved in the domain of miniaturization of capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D). The application of this principle into the development of portable devices as well as its application to counter the health-system-crippling phenomenon of counterfeit antibiotic formulations, are discussed in the context of developing countries.
Collapse
Affiliation(s)
- Prasanta Paul
- KU Leuven - University of Leuven, Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, O&N2, PB 923, Herestraat 49, Leuven, 3000, Belgium
| | - Cari Sänger-van de Griend
- Department of Medicinal chemistry, Uppsala University, Husargatan 3, Uppsala, 751 23, Sweden; Kantisto BV, Callenburglaan 22, Baarn, 3742 MV, The Netherlands
| | - Erwin Adams
- KU Leuven - University of Leuven, Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, O&N2, PB 923, Herestraat 49, Leuven, 3000, Belgium
| | - Ann Van Schepdael
- KU Leuven - University of Leuven, Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, O&N2, PB 923, Herestraat 49, Leuven, 3000, Belgium.
| |
Collapse
|
5
|
YANG MP, HUANG Z, XIE Y, YOU H. Development of Microchip Electrophoresis and Its Applications in Ion Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61085-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Gabardo CM, Soleymani L. Deposition, patterning, and utility of conductive materials for the rapid prototyping of chemical and bioanalytical devices. Analyst 2016; 141:3511-25. [PMID: 27001624 DOI: 10.1039/c6an00210b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Rapid prototyping is a critical step in the product development cycle of miniaturized chemical and bioanalytical devices, often categorized as lab-on-a-chip devices, biosensors, and micro-total analysis systems. While high throughput manufacturing methods are often preferred for large-volume production, rapid prototyping is necessary for demonstrating and predicting the performance of a device and performing field testing and validation before translating a product from research and development to large volume production. Choosing a specific rapid prototyping method involves considering device design requirements in terms of minimum feature sizes, mechanical stability, thermal and chemical resistance, and optical and electrical properties. A rapid prototyping method is then selected by making engineering trade-off decisions between the suitability of the method in meeting the design specifications and manufacturing metrics such as speed, cost, precision, and potential for scale up. In this review article, we review four categories of rapid prototyping methods that are applicable to developing miniaturized bioanalytical devices, single step, mask and deposit, mask and etch, and mask-free assembly, and we will focus on the trade-offs that need to be made when selecting a particular rapid prototyping method. The focus of the review article will be on the development of systems having a specific arrangement of conductive or semiconductive materials.
Collapse
Affiliation(s)
- C M Gabardo
- School of Biomedical Engineering, McMaster University, 1280 Main St. West, Hamilton, Canada
| | | |
Collapse
|
7
|
Chagas CLS, Costa Duarte L, Lobo-Júnior EO, Piccin E, Dossi N, Coltro WKT. Hand drawing of pencil electrodes on paper platforms for contactless conductivity detection of inorganic cations in human tear samples using electrophoresis chips. Electrophoresis 2015; 36:1837-44. [PMID: 25929980 DOI: 10.1002/elps.201500110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/26/2015] [Accepted: 04/10/2015] [Indexed: 01/29/2023]
Abstract
This paper describes for the first time the fabrication of pencil drawn electrodes (PDE) on paper platforms for capacitively coupled contactless conductivity detection (C(4) D) on electrophoresis microchips. PDE-C(4) D devices were attached on PMMA electrophoresis chips and used for detection of K(+) and Na(+) in human tear samples. PDE-C(4) D devices were produced on office paper and chromatographic paper platforms and their performance were thoroughly investigated using a model mixture containing K(+) , Na(+) , and Li(+) . In comparison with chromatographic paper, PDE-C(4) D fabricated on office paper has exhibited better performance due to its higher electrical conductivity. Furthermore, the detector response was similar to that recorded with electrodes prepared with copper adhesive tape. The fabrication of PDE-C(4) D on office paper has offered great advantages including extremely low cost (< $ 0.004 per unit), reduced fabrication time (< 5 min), and minimal instrumentation (pencil and paper). The proposed electrodes demonstrated excellent analytical performance with good reproducibility. For an inter-PDE comparison (n = 7), the RSD values for migration time, peak area, and separation efficiency were lower than 2.5, 10.5, and 14%, respectively. The LOD's achieved for K(+) , Na(+) , and Li(+) were 4.9, 6.8, and 9.0 μM, respectively. The clinical feasibility of the proposed approach was successfully demonstrated with the quantitative analysis of K(+) and Na(+) in tear samples. The concentration levels found for K(+) and Na(+) were, respectively, 20.8 ± 0.1 mM and 101.2 ± 0.1 mM for sample #1, and 20.4 ± 0.1 mM and 111.4 ± 0.1 mM for sample #2.
Collapse
Affiliation(s)
- Cyro L S Chagas
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Lucas Costa Duarte
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Evandro Piccin
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nicolò Dossi
- Department of Food Science, University of Udine, Udine, Italy
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil.,Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Campinas, SP, Brazil
| |
Collapse
|
8
|
Duarte Junior GF, Fracassi da Silva JA, Mendonça Francisco KJ, do Lago CL, Carrilho E, Coltro WKT. Metalless electrodes for capacitively coupled contactless conductivity detection on electrophoresis microchips. Electrophoresis 2015; 36:1935-40. [DOI: 10.1002/elps.201500033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 01/17/2023]
Affiliation(s)
| | - José Alberto Fracassi da Silva
- Instituto de Química; Universidade Estadual de Campinas; Campinas São Paulo Brasil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica; Campinas São Paulo Brasil
| | | | | | - Emanuel Carrilho
- Instituto de Química de São Carlos; Universidade de São Paulo; São Carlos São Paulo Brasil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica; Campinas São Paulo Brasil
| | - Wendell K. T. Coltro
- Instituto de Química; Universidade Federal de Goiás; Goiânia Goiás Brasil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica; Campinas São Paulo Brasil
| |
Collapse
|
9
|
Present state of microchip electrophoresis: state of the art and routine applications. J Chromatogr A 2014; 1382:66-85. [PMID: 25529267 DOI: 10.1016/j.chroma.2014.11.034] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022]
Abstract
Microchip electrophoresis (MCE) was one of the earliest applications of the micro-total analysis system (μ-TAS) concept, whose aim is to reduce analysis time and reagent and sample consumption while increasing throughput and portability by miniaturizing analytical laboratory procedures onto a microfluidic chip. More than two decades on, electrophoresis remains the most common separation technique used in microfluidic applications. MCE-based instruments have had some commercial success and have found application in many disciplines. This review will consider the present state of MCE including recent advances in technology and both novel and routine applications in the laboratory. We will also attempt to assess the impact of MCE in the scientific community and its prospects for the future.
Collapse
|
10
|
Kubáň P, Hauser PC. Contactless conductivity detection for analytical techniques-Developments from 2012 to 2014. Electrophoresis 2014; 36:195-211. [DOI: 10.1002/elps.201400336] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Pavel Kubáň
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - Peter C. Hauser
- Department of Chemistry; University of Basel; Basel Switzerland
| |
Collapse
|
11
|
Gaudry AJ, Nai YH, Guijt RM, Breadmore MC. Polymeric Microchip for the Simultaneous Determination of Anions and Cations by Hydrodynamic Injection Using a Dual-Channel Sequential Injection Microchip Electrophoresis System. Anal Chem 2014; 86:3380-8. [DOI: 10.1021/ac403627g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adam J. Gaudry
- Australian Centre
for Research on Separation Science, School of Physical Sciences: Chemistry,
Faculty of Science Engineering and Technology, University of Tasmania, Private
Bag 75, Hobart, Tasmania, 7001, Australia
| | - Yi Heng Nai
- Australian Centre
for Research on Separation Science, School of Physical Sciences: Chemistry,
Faculty of Science Engineering and Technology, University of Tasmania, Private
Bag 75, Hobart, Tasmania, 7001, Australia
| | - Rosanne M. Guijt
- Australian Centre
for Research on Separation Science, Pharmacy School of Medicine, Faculty
of Health Science, University of Tasmania, Private Bag 26, Hobart, Tasmania, 7001, Australia
| | - Michael C. Breadmore
- Australian Centre
for Research on Separation Science, School of Physical Sciences: Chemistry,
Faculty of Science Engineering and Technology, University of Tasmania, Private
Bag 75, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
12
|
Gaudry AJ, Breadmore MC, Guijt RM. In-plane alloy electrodes for capacitively coupled contactless conductivity detection in poly(methylmethacrylate) electrophoretic chips. Electrophoresis 2013; 34:2980-7. [PMID: 23925858 DOI: 10.1002/elps.201300256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/07/2013] [Accepted: 07/12/2013] [Indexed: 11/07/2022]
Abstract
A simple method for producing PMMA electrophoresis microchips with in-plane electrodes for capacitively coupled contactless conductivity detection is presented. One PMMA plate (channel plate) is embossed with the microfluidic and electrode channels and lamination bonded to a blank PMMA cover plate of equal dimensions. To incorporate the electrodes, the bonded chip is heated to 80 °C, above the melting point of the alloy (≈ 70 °C) and below the glass transition temperature of the PMMA (≈ 105 °C), and the molten alloy drawn into the electrode channels with a syringe before being allowed to cool and harden. A 0.5 mm diameter stainless steel pin is then inserted into the alloy filled reservoirs of the electrode channels to provide external connection to the capacitively coupled contactless conductivity detection detector electronics. This advance provides for a quick and simple manufacturing process and negates the need for integrating electrodes using costly and time-consuming thin film deposition methods. No additional detector cell mounting structures were required and connection to the external signal processing electronics was achieved by simply slipping commercially available shielded adaptors over the pins. With a non-optimised electrode arrangement consisting of a 1 mm detector gap and 100 μm insulating distance, rapid separations of ammonium, sodium and lithium (<22 s) yielded LODs of approximately 1.5-3.5 ppm.
Collapse
Affiliation(s)
- Adam J Gaudry
- Australian Centre for Research on Separation Science (ACROSS), School of Chemistry, Faculty of Science Engineering and Technology, University of Tasmania, Hobart, Tasmania, Australia
| | | | | |
Collapse
|
13
|
Thredgold LD, Khodakov DA, Ellis AV, Lenehan CE. On-chip capacitively coupled contactless conductivity detection using “injected” metal electrodes. Analyst 2013; 138:4275-9. [DOI: 10.1039/c3an00870c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|