1
|
Mashweu AR, Azov VA. Nanotechnology in Drug Delivery: Anatomy and Molecular Insight into the Self-Assembly of Peptide-Based Hydrogels. Molecules 2024; 29:5654. [PMID: 39683812 PMCID: PMC11643151 DOI: 10.3390/molecules29235654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
The bioavailability, release, and stability of pharmaceuticals under physicochemical conditions is the major cause of drug candidates failing during their clinical trials. Therefore, extensive efforts have been invested in the development of novel drug delivery systems that are able to transport drugs to a desired site and improve bioavailability. Hydrogels, and peptide hydrogels in particular, have been extensively investigated due to their excellent biocompatibility and biodegradability properties. However, peptide hydrogels often have weak mechanical strength, which limits their therapeutic efficacy. Therefore, a number of methods for improving their rheological properties have been established. This review will cover the broad area of drug delivery, focusing on the recent developments in this research field. We will discuss the variety of different types of nanocarrier drug delivery systems and then, more specifically, the significance and perspectives of peptide-based hydrogels. In particular, the interplay of intermolecular forces that govern the self-assembly of peptide hydrogels, progress made in understanding the distinct morphologies of hydrogels, and applications of non-canonical amino acids in hydrogel design will be discussed in more detail.
Collapse
Affiliation(s)
- Adelaide R. Mashweu
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Vladimir A. Azov
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
2
|
Pande S, Pati F, Chakraborty P. Harnessing Peptide-Based Hydrogels for Enhanced Cartilage Tissue Engineering. ACS APPLIED BIO MATERIALS 2024; 7:5885-5905. [PMID: 39159490 DOI: 10.1021/acsabm.4c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Cartilage tissue engineering remains a formidable challenge due to its complex, avascular structure and limited regenerative capacity. Traditional approaches, such as microfracture, autografts, and stem cell delivery, often fail to restore functional tissue adequately. Recently, there has been a surge in the exploration of new materials that mimic the extracellular microenvironment necessary to guide tissue regeneration. This review investigates the potential of peptide-based hydrogels as an innovative solution for cartilage regeneration. These hydrogels, formed via supramolecular self-assembly, exhibit excellent properties, including biocompatibility, ECM mimicry, and controlled biodegradation, making them highly suitable for cartilage tissue engineering. This review explains the structure of cartilage and the principles of supramolecular and peptide hydrogels. It also delves into their specific properties relevant to cartilage regeneration. Additionally, this review presents recent examples and a comparative analysis of various peptide-based hydrogels used for cartilage regeneration. The review also addresses the translational challenges of these materials, highlighting regulatory hurdles and the complexities of clinical application. This comprehensive investigation provides valuable insights for biomedical researchers, tissue engineers, and clinical professionals aiming to enhance cartilage repair methodologies.
Collapse
Affiliation(s)
- Shreya Pande
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
3
|
Michalicha A, Belcarz A, Giannakoudakis DA, Staniszewska M, Barczak M. Designing Composite Stimuli-Responsive Hydrogels for Wound Healing Applications: The State-of-the-Art and Recent Discoveries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:278. [PMID: 38255446 PMCID: PMC10817689 DOI: 10.3390/ma17020278] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Effective wound treatment has become one of the most important challenges for healthcare as it continues to be one of the leading causes of death worldwide. Therefore, wound care technologies significantly evolved in order to provide a holistic approach based on various designs of functional wound dressings. Among them, hydrogels have been widely used for wound treatment due to their biocompatibility and similarity to the extracellular matrix. The hydrogel formula offers the control of an optimal wound moisture level due to its ability to absorb excess fluid from the wound or release moisture as needed. Additionally, hydrogels can be successfully integrated with a plethora of biologically active components (e.g., nanoparticles, pharmaceuticals, natural extracts, peptides), thus enhancing the performance of resulting composite hydrogels in wound healing applications. In this review, the-state-of-the-art discoveries related to stimuli-responsive hydrogel-based dressings have been summarized, taking into account their antimicrobial, anti-inflammatory, antioxidant, and hemostatic properties, as well as other effects (e.g., re-epithelialization, vascularization, and restoration of the tissue) resulting from their use.
Collapse
Affiliation(s)
- Anna Michalicha
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | | | - Magdalena Staniszewska
- Institute of Health Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| | - Mariusz Barczak
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20031 Lublin, Poland
| |
Collapse
|
4
|
Wu KY, Akbar D, Giunta M, Kalevar A, Tran SD. Hydrogels in Ophthalmology: Novel Strategies for Overcoming Therapeutic Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 17:86. [PMID: 38203940 PMCID: PMC10780040 DOI: 10.3390/ma17010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The human eye's intricate anatomical and physiological design necessitates tailored approaches for managing ocular diseases. Recent advancements in ophthalmology underscore the potential of hydrogels as a versatile therapeutic tool, owing to their biocompatibility, adaptability, and customizability. This review offers an exploration of hydrogel applications in ophthalmology over the past five years. Emphasis is placed on their role in optimized drug delivery for the posterior segment and advancements in intraocular lens technology. Hydrogels demonstrate the capacity for targeted, controlled, and sustained drug release in the posterior segment of the eye, potentially minimizing invasive interventions and enhancing patient outcomes. Furthermore, in intraocular lens domains, hydrogels showcase potential in post-operative drug delivery, disease sensing, and improved biocompatibility. However, while their promise is immense, most hydrogel-based studies remain preclinical, necessitating rigorous clinical evaluations. Patient-specific factors, potential complications, and the current nascent stage of research should inform their clinical application. In essence, the incorporation of hydrogels into ocular therapeutics represents a seminal convergence of material science and medicine, heralding advancements in patient-centric care within ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Michel Giunta
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
5
|
Malta R, Marques AC, da Costa PC, Amaral MH. Stimuli-Responsive Hydrogels for Protein Delivery. Gels 2023; 9:802. [PMID: 37888375 PMCID: PMC10606693 DOI: 10.3390/gels9100802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Proteins and peptides are potential therapeutic agents, but their physiochemical properties make their use as drug substances challenging. Hydrogels are hydrophilic polymeric networks that can swell and retain high amounts of water or biological fluids without being dissolved. Due to their biocompatibility, their porous structure, which enables the transport of various peptides and proteins, and their protective effect against degradation, hydrogels have gained prominence as ideal carriers for these molecules' delivery. Particularly, stimuli-responsive hydrogels exhibit physicochemical transitions in response to subtle modifications in the surrounding environment, leading to the controlled release of entrapped proteins or peptides. This review is focused on the application of these hydrogels in protein and peptide delivery, including a brief overview of therapeutic proteins and types of stimuli-responsive polymers.
Collapse
Affiliation(s)
- Rafaela Malta
- CeNTI—Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal;
| | - Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo Cardoso da Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Heger R, Zinkovska N, Trudicova M, Kadlec M, Pekar M, Smilek J. Lecithin as an Effective Modifier of the Transport Properties of Variously Crosslinked Hydrogels. Gels 2023; 9:gels9050367. [PMID: 37232959 DOI: 10.3390/gels9050367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Transport properties are one of the most crucial assets of hydrogel samples, influencing their main application potential, i.e., as drug carriers. Depending on the type of drug or the application itself, it is very important to be able to control these transport properties in an appropriate manner. This study seeks to modify these properties by adding amphiphiles, specifically lecithin. Through its self-assembly, lecithin modifies the inner structure of the hydrogel, which affects its properties, especially the transport ones. In the proposed paper, these properties are studied mainly using various probes (organic dyes) to effectively simulate drugs in simple release diffusion experiments controlled by UV-Vis spectrophotometry. Scanning electron microscopy was used to help characterize the diffusion systems. The effects of lecithin and its concentrations, as well as the effects of variously charged model drugs, were discussed. Lecithin decreases the values of the diffusion coefficient independently of the dye used and the type of crosslinking. The ability to influence transport properties is better observed in xerogel samples. The results, complementing previously published conclusions, showed that lecithin can alter a hydrogel's structure and therefore its transport properties.
Collapse
Affiliation(s)
- Richard Heger
- Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Natalia Zinkovska
- Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Monika Trudicova
- Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Martin Kadlec
- Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Miloslav Pekar
- Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Jiri Smilek
- Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| |
Collapse
|
7
|
Saha A, Yi R, Fahrenbach AC, Wang A, Jia TZ. A Physicochemical Consideration of Prebiotic Microenvironments for Self-Assembly and Prebiotic Chemistry. Life (Basel) 2022; 12:1595. [PMID: 36295030 PMCID: PMC9604842 DOI: 10.3390/life12101595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
The origin of life on Earth required myriads of chemical and physical processes. These include the formation of the planet and its geological structures, the formation of the first primitive chemicals, reaction, and assembly of these primitive chemicals to form more complex or functional products and assemblies, and finally the formation of the first cells (or protocells) on early Earth, which eventually evolved into modern cells. Each of these processes presumably occurred within specific prebiotic reaction environments, which could have been diverse in physical and chemical properties. While there are resources that describe prebiotically plausible environments or nutrient availability, here, we attempt to aggregate the literature for the various physicochemical properties of different prebiotic reaction microenvironments on early Earth. We introduce a handful of properties that can be quantified through physical or chemical techniques. The values for these physicochemical properties, if they are known, are then presented for each reaction environment, giving the reader a sense of the environmental variability of such properties. Such a resource may be useful for prebiotic chemists to understand the range of conditions in each reaction environment, or to select the medium most applicable for their targeted reaction of interest for exploratory studies.
Collapse
Affiliation(s)
- Arpita Saha
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA 98104, USA
- Amity Institute of Applied Sciences, Amity University, Kolkata 700135, India
| | - Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Albert C. Fahrenbach
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW 2052, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Anna Wang
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW 2052, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Tony Z. Jia
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA 98104, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
8
|
Acidic and basic self-assembling peptide and peptide-graphene oxide hydrogels: characterisation and effect on encapsulated nucleus pulposus cells. Acta Biomater 2022; 143:145-158. [PMID: 35196554 DOI: 10.1016/j.actbio.2022.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/28/2022]
Abstract
Extracellular pH can have a profound effect on cell metabolism, gene and protein expression. Nucleus pulposus (NP) cells, for example, under acidic conditions accelerate the production of degradative enzymes and pro-inflammatory cytokines, leading ultimately to intervertebral disc degeneration, a major cause of back pain. Self-assembling peptide hydrogels constitute a well-established class of biomaterials that could be exploited as pH-tunable platform to investigate cell behaviour under normal and non-physiological pH. In this paper we formulated acidic (pH = 4) and basic (pH = 9) hydrogels, from the same octapeptide FEFKFEFK (F8) (F = phenyalanine, E = glutamic acid, K = lysine), to test the effect of non-physiological pH on encapsulated NP cells. Similarly, graphene oxide-containing F8 hydrogels (GO-F8) were formulated as stiffer analogues. Acidic and basic hydrogels showed peculiar morphologies and rheological properties, with all systems able to buffer within 30 minutes of exposure to cell culture media. NP cells seeded in acidic F8 hydrogels showed a more catabolic phenotype compared to basic hydrogels, with increased gene expression of degradative enzymes (MMP-3, ADAMTS-4), neurotrophic factors (NGF and BDNF) and NF-κB p65 phosphorylation. Acidic GO-F8 hydrogels also induced a catabolic response, although milder than basic counterparts and with the highest gene expression of characteristic NP-matrix components, aggrecan and collagen II. In all systems, the cellular response had a peak within 3 days of encapsulation, thereafter decreasing over 7 days, suggesting a 'transitory' effect of hydrogel pH on encapsulated cells. This work gives an insight on the effect of pH (and pH buffering) on encapsulated NP cells and offers new designs of low and high pH peptide hydrogels for 3D cell culture studies. STATEMENT OF SIGNIFICANCE: We have recently shown the potential of graphene oxide - self-assembling peptide hybrid hydrogels for NP cell culture and regeneration. Alongside cell carrier, self-assembling peptide hydrogels actually provide a versatile pH-tunable platform for biological studies. In this work we decided to explore the effect of non-physiological pH (and pH buffering) on encapsulated NP cells. Our approach allows the formulation of both acidic and basic hydrogels, starting from the same peptide sequence. We showed that the initial pH of the scaffold does not affect significantly cell response to encapsulation, but the presence of GO results in lower inflammatory levels and higher NP matrix protein production. This platform could be exploited to study the effect of pH on different cell types whose behaviour can be pH-dependent.
Collapse
|
9
|
Wu B, Hanay SB, Kimmins SD, Cryan SA, Hermida Merino D, Heise A. Ion-Triggered Hydrogels Self-Assembled from Statistical Copolypeptides. ACS Macro Lett 2022; 11:323-328. [PMID: 35575374 PMCID: PMC8928472 DOI: 10.1021/acsmacrolett.1c00774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Statistical copolypeptides comprising lysine and tyrosine with unprecedented ion-induced gelation behavior are reported. Copolypeptides are obtained by one-step N-carboxyanhydride (NCA) ring-opening polymerization. The gelation mechanism is studied by in situ SAXS analyses, in addition to optical spectroscopy and transmission electron microscopy (TEM). It is found that the gelation of these statistically polymerized polypeptides is due to the formation of stable intermolecular β-sheet secondary structures induced by the presence of salt ions as well as the aggregation of an α-helix between the copolypeptides. This behavior is unique to the statistical lysine/tyrosine copolypeptides and was not observed in any other amino acid combination or arrangement. Furthermore, the diffusion and mechanical properties of these hydrogels can be tuned through tailoring the polypeptide chain length and ion strength.
Collapse
Affiliation(s)
- Bing Wu
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
- Dutch-Belgian Beamline (DUBBLE), ESRF - The European Synchrotron Radiation Facility, CS 40220, Grenoble 38043 Cedex 9, France
| | - Saltuk B Hanay
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Scott D Kimmins
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Avda. Universidad 330, Curauma, Placilla 2950, Valparaíso, Chile
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 2, Ireland
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, RCSI, Dublin 2, Ireland
| | - Daniel Hermida Merino
- Dutch-Belgian Beamline (DUBBLE), ESRF - The European Synchrotron Radiation Facility, CS 40220, Grenoble 38043 Cedex 9, France
| | - Andreas Heise
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 2, Ireland
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, RCSI, Dublin 2, Ireland
| |
Collapse
|
10
|
Huerta-López C, Alegre-Cebollada J. Protein Hydrogels: The Swiss Army Knife for Enhanced Mechanical and Bioactive Properties of Biomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1656. [PMID: 34202469 PMCID: PMC8307158 DOI: 10.3390/nano11071656] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/31/2022]
Abstract
Biomaterials are dynamic tools with many applications: from the primitive use of bone and wood in the replacement of lost limbs and body parts, to the refined involvement of smart and responsive biomaterials in modern medicine and biomedical sciences. Hydrogels constitute a subtype of biomaterials built from water-swollen polymer networks. Their large water content and soft mechanical properties are highly similar to most biological tissues, making them ideal for tissue engineering and biomedical applications. The mechanical properties of hydrogels and their modulation have attracted a lot of attention from the field of mechanobiology. Protein-based hydrogels are becoming increasingly attractive due to their endless design options and array of functionalities, as well as their responsiveness to stimuli. Furthermore, just like the extracellular matrix, they are inherently viscoelastic in part due to mechanical unfolding/refolding transitions of folded protein domains. This review summarizes different natural and engineered protein hydrogels focusing on different strategies followed to modulate their mechanical properties. Applications of mechanically tunable protein-based hydrogels in drug delivery, tissue engineering and mechanobiology are discussed.
Collapse
Affiliation(s)
- Carla Huerta-López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | |
Collapse
|
11
|
Deciphering the Molecular Mechanism of Water Interaction with Gelatin Methacryloyl Hydrogels: Role of Ionic Strength, pH, Drug Loading and Hydrogel Network Characteristics. Biomedicines 2021; 9:biomedicines9050574. [PMID: 34069533 PMCID: PMC8161260 DOI: 10.3390/biomedicines9050574] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022] Open
Abstract
Water plays a primary role in the functionality of biomedical polymers such as hydrogels. The state of water, defined as bound, intermediate, or free, and its molecular organization within hydrogels is an important factor governing biocompatibility and hemocompatibility. Here, we present a systematic study of water states in gelatin methacryloyl (GelMA) hydrogels designed for drug delivery and tissue engineering applications. We demonstrate that increasing ionic strength of the swelling media correlated with the proportion of non-freezable bound water. We attribute this to the capability of ions to create ion–dipole bonds with both the polymer and water, thereby reinforcing the first layer of polymer hydration. Both pH and ionic strength impacted the mesh size, having potential implications for drug delivery applications. The mechanical properties of GelMA hydrogels were largely unaffected by variations in ionic strength or pH. Loading of cefazolin, a small polar antibiotic molecule, led to a dose-dependent increase of non-freezable bound water, attributed to the drug’s capacity to form hydrogen bonds with water, which helped recruit water molecules in the hydrogels’ first hydration layer. This work enables a deeper understanding of water states and molecular arrangement at the hydrogel–polymer interface and how environmental cues influence them.
Collapse
|
12
|
Flynn J, Durack E, Collins MN, Hudson SP. Tuning the strength and swelling of an injectable polysaccharide hydrogel and the subsequent release of a broad spectrum bacteriocin, nisin A. J Mater Chem B 2021; 8:4029-4038. [PMID: 32195520 DOI: 10.1039/d0tb00169d] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacteriocins, which are antimicrobial peptides, are a potential alternative to current ineffective antimicrobial therapies. They can inhibit the growth of clinically relevant pathogens but their proteinaceous nature renders them susceptible to degradation and deactivation in vivo. We have designed injectable polysaccharide hydrogels for the controlled release of an incorporated bacteriocin, nisin. Nisin was encapsulated into these hydrogels which were composed of varying percentages of oxidised dextran, alginate functionalised with hydrazine groups and glycol chitosan. The nisin gels exhibited antimicrobial activity against Staphylococcus aureus up to 10 days. The incorporation of a deacetylated chitosan and the reduction of alginate-hydrazine could be used to tune the gel's swelling behaviour, strength and the subsequent release profile of nisin. Glycol chitosan also shows synergistic inhibition of S. aureus with nisin.
Collapse
Affiliation(s)
- James Flynn
- Department of Chemical Sciences, SSPC, SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Co., Limerick, Ireland.
| | - Edel Durack
- Department of Chemical Sciences, SSPC, SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Co., Limerick, Ireland.
| | - Maurice N Collins
- Bernal Institute, School of Engineering, University of Limerick, Co., Limerick, Ireland
| | - Sarah P Hudson
- Department of Chemical Sciences, SSPC, SFI Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Co., Limerick, Ireland.
| |
Collapse
|
13
|
Han C, Zhang Z, Sun J, Li K, Li Y, Ren C, Meng Q, Yang J. Self-Assembling Peptide-Based Hydrogels in Angiogenesis. Int J Nanomedicine 2020; 15:10257-10269. [PMID: 33364757 PMCID: PMC7751603 DOI: 10.2147/ijn.s277046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
Ischemic diseases, especially in the heart and the brain, have become a serious threat to human health. Growth factor and cell therapy are emerging as promising therapeutic strategies; however, their retention and sustainable functions in the injured tissue are limited. Self-assembling peptide (SAP)-based hydrogels, mimicking the extracellular matrix, are therefore introduced to encapsulate and controllably release cells, cell-derived exosomes or growth factors, thus promoting angiogenesis and tissue recovery after ischemia. We will summarize the classification, composition and structure of SAPs, and the influencing factors for SAP gelation. Moreover, we will describe the functionalized SAPs, and the combinatorial therapy of cells, exosomes or growth factors with functionalized SAPs for angiogenic process as well as its advantage in immunogenicity and injectability. Finally, an outlook on future directions and challenges is provided.
Collapse
Affiliation(s)
- Chaoshan Han
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zhiwei Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Jiacheng Sun
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ke Li
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Yangxin Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215006, People's Republic of China
| | - Chuanlu Ren
- Department of Clinical Laboratory, The 904th Hospital of the People's Liberation Army, Wuxi 214044, People's Republic of China
| | - Qingyou Meng
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215006, People's Republic of China
| | - Junjie Yang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
14
|
Xie X, Zheng T, Li W. Recent Progress in Ionic Coassembly of Cationic Peptides and Anionic Species. Macromol Rapid Commun 2020; 41:e2000534. [PMID: 33225490 DOI: 10.1002/marc.202000534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/10/2020] [Indexed: 12/25/2022]
Abstract
Peptide assembly has been extensively exploited as a promising platform for the creation of hierarchical nanostructures and tailor-made bioactive materials. Ionic coassembly of cationic peptides and anionic species is paving the way to provide particularly important contribution to this topic. In this review, the recent progress of ionic coassembly soft materials derived from the electrostatic coupling between cationic peptides and anionic species in aqueous solution is systematically summarized. The presentation of this review starts from a brief background on the general importance and advantages of peptide-based ionic coassembly. After that, diverse combinations of cationic peptides with small anions, macro- and/or oligo-anions, anionic polymers, and inorganic polyoxometalates are described. Emphasis is placed on the hierarchical structures, value-added properties, and applications. The molecular design of cationic peptides and the general principles behind the ionic coassembled structures are discussed. It is summarized that the combination of interesting and unique characteristics that arise both from the chemical diversity of peptides and the wide range of anionic species may contribute in a variety of output, including drug delivery, tissue engineering, gene transfection, and antibacterial activity. The emergent new phenomena and findings are illustrated. Finally, the outlook for the peptide-based ionic coassembly systems is also presented.
Collapse
Affiliation(s)
- Xiaoming Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China.,Department of Chemistry, Xinzhou Teachers' University, Xinzhou, Shanxi, 034000, China
| | - Tingting Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China
| |
Collapse
|
15
|
Perera TH, Lu X, Howell SM, Kurosu YE, Smith Callahan LA. Combination of IKVAV, LRE, and GPQGIWGQ Bioactive Signaling Peptides Increases Human Induced Pluripotent Stem Cell Derived Neural Stem Cells Extracellular Matrix Remodeling and Neurite Extension. ACTA ACUST UNITED AC 2020; 4:e2000084. [PMID: 32597036 DOI: 10.1002/adbi.202000084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Extracellular matrix (ECM) remodeling is emerging as a modulator of neural maturation and axon extension. Most studies have used rodent cells to develop matrices capable of manipulating extracellular matrix remodeling for regenerative applications. However, clinically relevant human induced pluripotent stem cell derived neural stem cells (hNSC) do not always behave in a similar manner as rodent cells. In this study, hNSC response to a hyaluronic acid matrix with laminin derived IKVAV and LRE peptide signaling that has previously shown to promote ECM remodeling and neurite extension by mouse embryonic stem cells is examined. The addition of enzymatically degradable cross linker GPQGIWGQ to the IKVAV and LRE containing hyaluronic acid matrix is necessary to promote neurite extension, hyaluronic acid degradation, and gelatinase expression over hyaluronic acid matrices containing GPQGIWGQ, IKVAV and LRE, or no peptides. Changes in peptide content alters a number of matrix properties that can contribute to the cellular response, but increases in mesh size are not observed with cross linker cleavage in this study. Overall, these data imply a complex interaction between IKVAV, LRE, and GPQGIWGQ to modulate hNSC behavior.
Collapse
Affiliation(s)
- T Hiran Perera
- Vivian L. Smith Department of Neurosurgery & Center for Stem Cells and Regenerative Medicine, McGovern Medical School, 1825 Pressler Suite 630F, Houston, TX, 77030, USA
| | - Xi Lu
- Vivian L. Smith Department of Neurosurgery & Center for Stem Cells and Regenerative Medicine, McGovern Medical School, 1825 Pressler Suite 630F, Houston, TX, 77030, USA
| | - Skyler M Howell
- Vivian L. Smith Department of Neurosurgery & Center for Stem Cells and Regenerative Medicine, McGovern Medical School, 1825 Pressler Suite 630F, Houston, TX, 77030, USA
| | - Yuki E Kurosu
- Vivian L. Smith Department of Neurosurgery & Center for Stem Cells and Regenerative Medicine, McGovern Medical School, 1825 Pressler Suite 630F, Houston, TX, 77030, USA
| | - Laura A Smith Callahan
- Vivian L. Smith Department of Neurosurgery & Center for Stem Cells and Regenerative Medicine, McGovern Medical School, 1825 Pressler Suite 630F, Houston, TX, 77030, USA
| |
Collapse
|
16
|
Seyedkarimi MS, Mirzadeh H, Mohammadi A, Bagheri-Khoulenjani S. Mechanical Characteristics of SPG-178 Hydrogels: Optimizing Viscoelastic Properties through Microrheology and Response Surface Methodology. IRANIAN BIOMEDICAL JOURNAL 2020; 24:110-8. [PMID: 31677611 PMCID: PMC6984709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 04/15/2019] [Indexed: 03/29/2024]
Abstract
Background Self-assembling peptides (SApeptides) have growing applications in tissue engineering and regenerative medicine. The application of SApeptide-based hydrogels depends strongly on their viscoelastic properties. Optimizing the properties is of importance in tuning the characteristics of the hydrogels for a variety of applications. Methods In this study, we employed statistical modeling, conducted with the response surface methodology (RSM) and particle tracking microrheology, to investigate the effects of self-assembling SPG-178 peptide and added NaCl salt concentrations and milieu type (deionized water or blood serum) on the viscoelastic properties of SPG-178 hydrogels. A central composite RSM model was employed for finding the optimum value of the parameters to achieve the highest storage modulus and the lowest tan δ. Results Viscoelastic properties of each sample, including storage modulus, loss modulus, and tan δ, were determined. Storage modulus and tan δ were modeled, accounting for the impact of the SPG-178 peptide and NaCl concentrations and milieu type on the viscoelastic properties. It was found that the SPG-178 hydrogel storage modulus was positively influenced by the SPG-178 peptide concentration and the serum. Conclusion A combination of microrheology and RSM is a useful test method for statistical modeling and analysis of rheological behavior of solid-like gels, which could be applied in various biomedical applications such as hemostasis.
Collapse
Affiliation(s)
- Mansooreh-Sadat Seyedkarimi
- Polymer and Color Engineering Department, Amirkabir University of Technology, Tehran, Iran
- Malek-Ashtar University of Technology, Tehran, Iran
| | - Hamid Mirzadeh
- Polymer and Color Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Aliasghar Mohammadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | | |
Collapse
|
17
|
Raghuwanshi VS, Garnier G. Characterisation of hydrogels: Linking the nano to the microscale. Adv Colloid Interface Sci 2019; 274:102044. [PMID: 31677493 DOI: 10.1016/j.cis.2019.102044] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
Hydrogels are water enriched soft materials widely used for applications as varied as super absorbents, breast implants and contact lenses. Hydrogels have also been designed for smart functional devices including drug delivery, tissue engineering and diagnostics such as blood typing. The hydrogel properties and functionality depend on their crosslinking density, water holding capacity and fibre/polymer composition, strength and internal structure. Determining these parameters and properties are challenging. This review presents the main characterisation methods providing both qualitative and quantitative information of the structures and compositions of hydrogel. The length scale of interest ranges from the nano to the micro scale and the techniques and results are analysed in relationship to the hydrogel macroscopic applications. The characterisation methods examined aim at quantifying swelling, mechanical strength, mesh size, bound and free water content, pore structure, chemical composition, strength of chemical bonds and mechanical strength. These hydrogel parameters enable us to understand the fundamental mechanisms of hydrogel formation, to control their structure and functionality, and to optimize and tailor specific hydrogel properties to engineer particular applications.
Collapse
|
18
|
Araújo D, Alves VD, Lima SAC, Reis S, Freitas F, Reis MAM. Novel hydrogels based on yeast chitin-glucan complex: Characterization and safety assessment. Int J Biol Macromol 2019; 156:1104-1111. [PMID: 31756470 DOI: 10.1016/j.ijbiomac.2019.11.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022]
Abstract
Chitin-glucan complex (CGC) was used for the first time for the preparation of hydrogels. Alkali solvent systems, NaOH and KOH solutions, either at 1 or 5 mol/L, were used for CGC dissolution using a freeze-thaw procedure (freezing at -20 °C and thawing at room temperature; four cycles). The CGC solutions thus obtained were subjected to dialysis that induced the spontaneous gelation of the biopolymer, yielding translucid hydrogels with a yellowish coloration. Although all CGC hydrogels exhibited porous microstructures, high water content (above 97%) and good mechanical properties, their morphology, viscoelastic properties and texture were influenced by the type of solvent system used for CGC dissolution, as well as by their ionic strength. The K-based hydrogels presented a less compact network with larger pores and exhibited lower elastic properties. The Na-based hydrogels, on the other hand, exhibited a denser structure with smaller pores and a stiffer gel structure. These results show that it is possible to prepare CGC hydrogels with differing characteristics that can be suitable for different applications. Furthermore, all hydrogels were non-cytotoxic towards L929 fibroblasts and HaCaT keratinocytes. This study demonstrates CGC can be used to prepare biocompatible hydrogels with properties render them promising biomaterials.
Collapse
Affiliation(s)
- Diana Araújo
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Vítor D Alves
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Sofia A C Lima
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Filomena Freitas
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Maria A M Reis
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
19
|
Son YJ, Tse JW, Zhou Y, Mao W, Yim EKF, Yoo HS. Biomaterials and controlled release strategy for epithelial wound healing. Biomater Sci 2019; 7:4444-4471. [PMID: 31436261 DOI: 10.1039/c9bm00456d] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The skin and cornea are tissues that provide protective functions. Trauma and other environmental threats often cause injuries, infections and damage to these tissues, where the degree of injury is directly correlated to the recovery time. For example, a superficial skin or corneal wound may recover within days; however, more severe injuries can last up to several months and may leave scarring. Thus, therapeutic strategies have been introduced to enhance the wound healing efficiency and quality. Although the skin and cornea share similar anatomic structures and wound healing process, therapeutic agents and formulations for skin and cornea wound healing differ in accordance with the tissue and wound type. In this review, we describe the anatomy and epithelial wound healing processes of the skin and cornea, and summarize the therapeutic molecules that are beneficial to the respective regeneration process. In addition, biomaterial scaffolds that inherently possess bioactive properties or modified with therapeutic molecules for topical controlled release and enhanced wound healing efficiency are also discussed.
Collapse
Affiliation(s)
- Young Ju Son
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - John W Tse
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - Yiran Zhou
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea. and Institute of Bioscience and Biotechnology, Kangwon National University, Republic of Korea
| |
Collapse
|
20
|
Koch F, Wolff A, Mathes S, Pieles U, Saxer SS, Kreikemeyer B, Peters K. Amino acid composition of nanofibrillar self-assembling peptide hydrogels affects responses of periodontal tissue cells in vitro. Int J Nanomedicine 2018; 13:6717-6733. [PMID: 30425485 PMCID: PMC6204879 DOI: 10.2147/ijn.s173702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background The regeneration of tissue defects at the interface between soft and hard tissue, eg, in the periodontium, poses a challenge due to the divergent tissue requirements. A class of biomaterials that may support the regeneration at the soft-to-hard tissue interface are self-assembling peptides (SAPs), as their physicochemical and mechanical properties can be rationally designed to meet tissue requirements. Materials and methods In this work, we investigated the effect of two single-component and two complementary β-sheet forming SAP systems on their hydrogel properties such as nanofibrillar architecture, surface charge, and protein adsorption as well as their influence on cell adhesion, morphology, growth, and differentiation. Results We showed that these four 11-amino acid SAP (P11-SAP) hydrogels possessed physico-chemical characteristics dependent on their amino acid composition that allowed variabilities in nanofibrillar network architecture, surface charge, and protein adsorption (eg, the single-component systems demonstrated an ~30% higher porosity and an almost 2-fold higher protein adsorption compared with the complementary systems). Cytocompatibility studies revealed similar results for cells cultured on the four P11-SAP hydrogels compared with cells on standard cell culture surfaces. The single-component P11-SAP systems showed a 1.7-fold increase in cell adhesion and cellular growth compared with the complementary P11-SAP systems. Moreover, significantly enhanced osteogenic differentiation of human calvarial osteoblasts was detected for the single-component P11-SAP system hydrogels compared with standard cell cultures. Conclusion Thus, single-component system P11-SAP hydrogels can be assessed as suitable scaffolds for periodontal regeneration therapy, as they provide adjustable, extracellular matrix-mimetic nanofibrillar architecture and favorable cellular interaction with periodontal cells.
Collapse
Affiliation(s)
- Franziska Koch
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.,Department of Cell Biology, University Medicine Rostock, Rostock, Germany, .,Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Anne Wolff
- Department of Cell Biology, University Medicine Rostock, Rostock, Germany,
| | - Stephanie Mathes
- Department for Chemistry and Biotechnology, Tissue Engineering, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Uwe Pieles
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Sina S Saxer
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Kirsten Peters
- Department of Cell Biology, University Medicine Rostock, Rostock, Germany,
| |
Collapse
|
21
|
Lim HJ, Khan Z, Lu X, Perera TH, Wilems TS, Ravivarapu KT, Smith Callahan LA. Mechanical stabilization of proteolytically degradable polyethylene glycol dimethacrylate hydrogels through peptide interaction. Acta Biomater 2018. [PMID: 29526829 DOI: 10.1016/j.actbio.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Balancing enhancement of neurite extension against loss of matrix support in synthetic hydrogels containing proteolytically degradable and bioactive signaling peptides to optimize tissue formation is difficult. Using a systematic approach, polyethylene glycol hydrogels containing concurrent continuous concentration gradients of the laminin derived bioactive signaling peptide, Ile-Lys-Val-Ala-Val (IKVAV), and collagen derived matrix metalloprotease degradable peptide, GPQGIWGQ, were fabricated and characterized. During proteolytic degradation of the concentration gradient hydrogels, the IKVAV and IWGQ cleavage fragment from GPQGIWGQ were found to interact and stabilize the bulk Young's Modulus of the hydrogel. Further testing of discrete samples containing GPQGIWGQ or its cleavage fragments, GPQG and IWGQ, indicates hydrophobic interactions between the peptides are not necessary for mechanical stabilization of the hydrogel, but changes in the concentration ratio between the peptides tethered in the hydrogel and salts and ions in the swelling solution can affect the stabilization. Encapsulation of human induced pluripotent stem cell derived neural stem cells did not reduce the mechanical properties of the hydrogel over a 14 day neural differentiation culture period, and IKVAV was found to maintain concentration dependent effects on neurite extension and mRNA gene expression of neural cytoskeletal markers, similar to previous studies. As a result, this work has significant implications for the analysis of biological studies in matrices, as the material and mechanical properties of the hydrogel may be unexpectedly temporally changing during culture due to interactions between peptide signaling elements, underscoring the need for greater matrix characterization during the degradation and cell culture. STATEMENT OF SIGNIFICANCE Greater emulation of the native extracellular matrix is necessary for tissue formation. To achieve this, matrices are becoming more complex, often including multiple bioactive signaling elements. However, peptide signaling in polyethylene glycol matrices and amino acids interactions between peptides can affect hydrogel material and mechanical properties, but are rarely studied. The current study identifies such an interaction between laminin derived peptide, IKVAV, and collagen derived matrix metalloprotease degradable peptide, GPQGIWGQ. Previous studies using these peptides did not identify their interactions' ability to mechanically stabilize the hydrogel during degradation. This work underscores the need for greater matrix characterization and consideration of bioactive signaling element effects temporally on the matrix's material and mechanical properties, as they can contribute to cellular response.
Collapse
Affiliation(s)
- Hyun Ju Lim
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Zara Khan
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Xi Lu
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - T Hiran Perera
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Thomas S Wilems
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Krishna T Ravivarapu
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States
| | - Laura A Smith Callahan
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; The Department of Nanomedicine and Biomedical Engineering, McGovern Medical School at the University of Texas Health Science Center at Houston, United States; The MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, United States.
| |
Collapse
|
22
|
Orakdogen N, Boyaci T. Dynamics of overall swelling profile of multiresponsive ionic dimethylacrylamide-based hydrogels and cryogels: Diffusion characteristics evaluation of salt-dependent swelling. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1354292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nermin Orakdogen
- Soft Materials Research Laboratory, Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Talin Boyaci
- Soft Materials Research Laboratory, Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
23
|
Sinthuvanich C, Nagy-Smith KJ, Walsh STR, Schneider JP. Triggered Formation of Anionic Hydrogels from Self-Assembling Acidic Peptide Amphiphiles. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chomdao Sinthuvanich
- Chemical Biology Laboratory,
National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Katelyn J. Nagy-Smith
- Chemical Biology Laboratory,
National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Scott T. R. Walsh
- Chemical Biology Laboratory,
National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Joel P. Schneider
- Chemical Biology Laboratory,
National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| |
Collapse
|
24
|
Wallace M, Iggo JA, Adams DJ. Probing the surface chemistry of self-assembled peptide hydrogels using solution-state NMR spectroscopy. SOFT MATTER 2017; 13:1716-1727. [PMID: 28165092 DOI: 10.1039/c6sm02404a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The surface chemistry of self-assembled hydrogel fibres - their charge, hydrophobicity and ion-binding dynamics - is recognised to play an important role in determining how the gels develop as well as their suitability for different applications. However, to date there are no established methodologies for the study of this surface chemistry. Here, we demonstrate how solution-state NMR spectroscopy can be employed to measure the surface chemical properties of the fibres in a range of hydrogels formed from N-functionalised dipeptides, an effective and versatile class of gelator that has attracted much attention. By studying the interactions with the gel fibres of a diverse range of probe molecules and ions, we can simultaneously study a number of surface chemical properties of the NMR invisible fibres in an essentially non-invasive manner. Our results yield fresh insights into the materials. Most notably, gel fibres assembled using different tiggering methods bear differing amounts of negative charge as a result of a partial deprotonation of the carboxylic acid groups of the gelators. We also demonstrate how chemical shift imaging (CSI) techniques can be applied to follow the formation of hydrogels along chemical gradients. We apply CSI to study the binding of Ca2+ and subsequent gelation of peptide assemblies at alkaline pH. Using metal ion-binding molecules as probes, we are able to detect the presence of bound Ca2+ ions on the surface of the gel fibres. We briefly explore how knowledge of the surface chemical properties of hydrogels could be used to inform their practical application in fields such as drug delivery and environmental remediation.
Collapse
Affiliation(s)
- Matthew Wallace
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.
| | - Jonathan A Iggo
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.
| | - Dave J Adams
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.
| |
Collapse
|
25
|
Gashti MP, Stir M, Hulliger J. Growth of strontium hydrogen phosphate/gelatin composites: a biomimetic approach. NEW J CHEM 2016. [DOI: 10.1039/c5nj03575a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our study has focused on the crystal growth of strontium phosphatesviagel growth method due to the bioactivity and biocompatibility of these materials with bone tissue.
Collapse
Affiliation(s)
| | - Manuela Stir
- Department of Chemistry & Biochemistry
- University of Berne
- CH-3012 Berne
- Switzerland
| | - Jürg Hulliger
- Department of Chemistry & Biochemistry
- University of Berne
- CH-3012 Berne
- Switzerland
| |
Collapse
|
26
|
Du X, Zhou J, Shi J, Xu B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem Rev 2015; 115:13165-307. [PMID: 26646318 PMCID: PMC4936198 DOI: 10.1021/acs.chemrev.5b00299] [Citation(s) in RCA: 1366] [Impact Index Per Article: 136.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Indexed: 12/19/2022]
Abstract
In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping address fundamental questions about the mechanisms or the consequences of the self-assembly of molecules, including low molecular weight ones. Finally, we provide a perspective on supramolecular hydrogelators. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring supramolecular hydrogelators as molecular biomaterials for addressing the societal needs at various frontiers.
Collapse
Affiliation(s)
- Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Junfeng Shi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
27
|
Cao Z, Yang Q, Fan C, Liu L, Liao L. Biocompatible, ionic-strength-sensitive, double-network hydrogel based on chitosan and an oligo(trimethylene carbonate)-poly(ethylene glycol)-oligo(trimethylene carbonate) triblock copolymer. J Appl Polym Sci 2015. [DOI: 10.1002/app.42459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zheng Cao
- Key Laboratory of Biomedical Polymers (Ministry of Education); College of Chemistry and Molecular Science, Wuhan University; Wuhan Hubei 430072 People's Republic of China
| | - Quanzhu Yang
- Key Laboratory of Biomedical Polymers (Ministry of Education); College of Chemistry and Molecular Science, Wuhan University; Wuhan Hubei 430072 People's Republic of China
| | - Changjiang Fan
- Key Laboratory of Biomedical Polymers (Ministry of Education); College of Chemistry and Molecular Science, Wuhan University; Wuhan Hubei 430072 People's Republic of China
| | - Lijian Liu
- Key Laboratory of Biomedical Polymers (Ministry of Education); College of Chemistry and Molecular Science, Wuhan University; Wuhan Hubei 430072 People's Republic of China
| | - Liqiong Liao
- Key Laboratory of Biomedical Polymers (Ministry of Education); College of Chemistry and Molecular Science, Wuhan University; Wuhan Hubei 430072 People's Republic of China
- Suzhou Institute, Wuhan University; Suzhou 215123 People's Republic of China
| |
Collapse
|
28
|
Micklitsch CM, Medina SH, Yucel T, Nagy-Smith KJ, Pochan DJ, Schneider JP. Influence of Hydrophobic Face Amino Acids on the Hydrogelation of β-Hairpin Peptide Amphiphiles. Macromolecules 2015; 48:1281-1288. [PMID: 33223568 DOI: 10.1021/ma5024796] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydrophobic residues provide much of the thermodynamic driving force for the folding, self-assembly, and consequent hydrogelation of amphiphilic β-hairpin peptides. We investigate how the identity of hydrophobic side chains displayed from the hydrophobic face of these amphiphilic peptides influences their behavior to expound on the design criteria important to gel formation. Six peptides were designed that globally incorporate valine, aminobutyric acid, norvaline, norleucine, phenylalanine, or isoleucine on the hydrophobic face of the hairpin to study how systematic changes in hydrophobic content, β-sheet propensity, and aromaticity affect gelation. Circular dichroism (CD) spectroscopy indicates that hydrophobic content, rather than β-sheet propensity, dictates the temperature- and pH-dependent folding and assembly behavior of these peptides. Transmission electron microscopy (TEM) and small-angle neutron scattering (SANS) show that the local morphology of the fibrils formed via self-assembly is little affected by amino acid type. However, residue type does influence the propensity of peptide fibrils to undergo higher order assembly events. Oscillatory rheology shows that the mechanical rigidity of the peptide gels is highly influenced by residue type, but there is no apparent correlation between rigidity and residue hydrophobicity nor β-sheet propensity. Lastly, the large planar aromatic side chain of phenylalanine supports hairpin folding and assembly, affording a gel characterized by a rate of formation and storage modulus similar to the parent valine-containing peptide.
Collapse
Affiliation(s)
- Christopher M Micklitsch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Scott H Medina
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21701, United States
| | - Tuna Yucel
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Katelyn J Nagy-Smith
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.,Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21701, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Joel P Schneider
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21701, United States
| |
Collapse
|
29
|
Li R, Horgan CC, Long B, Rodriguez AL, Mather L, Barrow CJ, Nisbet DR, Williams RJ. Tuning the mechanical and morphological properties of self-assembled peptide hydrogels via control over the gelation mechanism through regulation of ionic strength and the rate of pH change. RSC Adv 2015. [DOI: 10.1039/c4ra13266a] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hydrogels formed by the self-assembly of peptides are promising biomaterials. Here we demonstrate that the final material properties of a bioactive self assembled peptide system can be determined via control over the assembly conditions.
Collapse
Affiliation(s)
- Rui Li
- Centre for Chemistry and Biotechnology
- School of Life and Environmental Sciences
- Deakin University
- VIC 3216
- Australia
| | - Conor C. Horgan
- Research School of Engineering
- The Australian National University
- Canberra
- Australia
| | - Benjamin Long
- Centre for Chemistry and Biotechnology
- School of Life and Environmental Sciences
- Deakin University
- VIC 3216
- Australia
| | | | - Lauren Mather
- Centre for Chemistry and Biotechnology
- School of Life and Environmental Sciences
- Deakin University
- VIC 3216
- Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology
- School of Life and Environmental Sciences
- Deakin University
- VIC 3216
- Australia
| | - David R. Nisbet
- Research School of Engineering
- The Australian National University
- Canberra
- Australia
| | - Richard J. Williams
- Centre for Chemistry and Biotechnology
- School of Life and Environmental Sciences
- Deakin University
- VIC 3216
- Australia
| |
Collapse
|
30
|
Kim SH, Sun Y, Kaplan JA, Grinstaff MW, Parquette JR. Photo-crosslinking of a self-assembled coumarin-dipeptide hydrogel. NEW J CHEM 2015. [DOI: 10.1039/c5nj00038f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photo-crosslinking of a coumarin-functionalized dipeptide hydrogel enhances the stability of the self-assembled nanofibers that comprise the hydrogel.
Collapse
Affiliation(s)
- Se Hye Kim
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Yuan Sun
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Jonah A. Kaplan
- Departments of Biomedical Engineering and Chemistry
- Boston University
- Boston
- USA
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering and Chemistry
- Boston University
- Boston
- USA
| | - Jon R. Parquette
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| |
Collapse
|
31
|
Sonmez C, Nagy KJ, Schneider JP. Design of self-assembling peptide hydrogelators amenable to bacterial expression. Biomaterials 2014; 37:62-72. [PMID: 25453938 DOI: 10.1016/j.biomaterials.2014.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/02/2014] [Indexed: 12/26/2022]
Abstract
Hydrogels formed from self-assembling peptides are finding use in tissue engineering and drug delivery applications. Given the notorious difficulties associated with producing self-assembling peptides by recombinant expression, most are typically prepared by chemical synthesis. Herein, we report the design of a family of self-assembling β-hairpin peptides amenable to efficient production using an optimized bacterial expression system. Expressing peptides, EX1, EX2 and EX3 contain identical eight-residue amphiphilic β-strands connected by varying turn sequences that are responsible for ensuring chain reversal and the proper intramolecular folding and consequent self-assembly of the peptide into a hydrogel network under physiological conditions. EX1 was initially used to establish and optimize the bacterial expression system by which all the peptides could be eventually individually expressed. Expression clones were designed to allow exploration of possible fusion partners and investigate both enzymatic and chemical cleavage as means to liberate the target peptide. A systematic analysis of possible expression systems followed by fermentation optimization lead to a system in which all three peptides could be expressed as fusions with BAD-BH3, the BH3 domain of the proapoptotic BAD (Bcl-2 Associated Death) Protein. CNBr cleavage followed by purification afforded 50, 31, and 15 mg/L yields of pure EX1, EX2 and EX3, respectively. CD spectroscopy, TEM, and rheological analysis indicate that these peptides fold and assembled into well-defined fibrils that constitute hydrogels having shear-thin/recovery properties.
Collapse
Affiliation(s)
- Cem Sonmez
- National Cancer Institute, Center for Cancer Research, Frederick, MD 21701, United States; University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19716, United States
| | - Katelyn J Nagy
- National Cancer Institute, Center for Cancer Research, Frederick, MD 21701, United States; University of Delaware, Department of Chemistry and Biochemistry, Newark, DE 19716, United States
| | - Joel P Schneider
- National Cancer Institute, Center for Cancer Research, Frederick, MD 21701, United States.
| |
Collapse
|
32
|
Gashti MP, Burgener M, Stir M, Hulliger J. Barium hydrogen phosphate/gelatin composites versus gelatin-free barium hydrogen phosphate: Synthesis and characterization of properties. J Colloid Interface Sci 2014; 431:149-56. [DOI: 10.1016/j.jcis.2014.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 11/17/2022]
|
33
|
Taraban MB, Hyland LL, Yu YB. Split of chiral degeneracy in mechanical and structural properties of oligopeptide-polysaccharide biomaterials. Biomacromolecules 2013; 14:3192-201. [PMID: 23879188 PMCID: PMC3869456 DOI: 10.1021/bm4008309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enantiomeric biomaterials which are mirror images of each other are characterized by chiral degeneracy--identical structural characteristics and bulk material properties. The addition of another chiral component, D-polysaccharide, has been shown to split such degeneracy and result in two distinct biomaterials. Dynamic oscillatory rheometry and small-angle X-ray scattering demonstrate that the natural biochirality combination of L-peptides and D-polysaccharides assembles faster, has higher elastic moduli (G'), and is structurally more beneficial as opposed to the alternative D-peptide and D-polysaccharide combination. Chemical modifications of the OH-groups in α-D-glucose units in D-polysaccharides weaken such splitting of chiral degeneracy. These findings form a basis to design novel biomaterials and provide additional insight on why proteins and polysaccharides have oppoiste chirality in the biological world.
Collapse
Affiliation(s)
| | | | - Y. Bruce Yu
- To whom correspondence should be addressed. Current address of corresponding author: Department of Pharmaceutical Sciences, 20 Penn Street, Baltimore, MD 21201, USA; ; Phone: 410-706-7514; Fax 410-706-5017
| |
Collapse
|
34
|
Hamley IW, Dehsorkhi A, Castelletto V. Coassembly in binary mixtures of peptide amphiphiles containing oppositely charged residues. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:5050-9. [PMID: 23534557 DOI: 10.1021/la400163q] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The self-assembly in water of designed peptide amphiphile (PA) C16-ETTES containing two anionic residues and its mixtures with C16-KTTKS containing two cationic residues has been investigated. Multiple spectroscopy, microscopy, and scattering techniques are used to examine ordering extending from the β-sheet structures up to the fibrillar aggregate structure. The peptide amphiphiles both comprise a hexadecyl alkyl chain and a charged pentapeptide headgroup containing two charged residues. For C16-ETTES, the critical aggregation concentration was determined by fluorescence experiments. FTIR and CD spectroscopy were used to examine β-sheet formation. TEM revealed highly extended tape nanostructures with some striped regions corresponding to bilayer structures viewed edge-on. Small-angle X-ray scattering showed a main 5.3 nm bilayer spacing along with a 3 nm spacing. These spacings are assigned respectively to predominant hydrated bilayers and a fraction of dehydrated bilayers. Signs of cooperative self-assembly are observed in the mixtures, including reduced bundling of peptide amphiphile aggregates (extended tape structures) and enhanced β-sheet formation.
Collapse
Affiliation(s)
- I W Hamley
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Reading, UK
| | | | | |
Collapse
|
35
|
Joyner K, Taraban MB, Feng Y, Yu YB. An interplay between electrostatic and polar interactions in peptide hydrogels. Biopolymers 2013; 100:174-83. [PMID: 23616100 PMCID: PMC3869455 DOI: 10.1002/bip.22194] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/20/2012] [Accepted: 12/03/2012] [Indexed: 12/26/2022]
Abstract
Inherent chemical programmability available in peptide-based hydrogels has allowed diversity in the development of these materials for use in biomedical applications. Within the 20 natural amino acids, a range of chemical moieties are present. Here we used a mixing-induced self-assembly of two oppositely charged peptide modules to form a peptide-based hydrogel. To investigate electrostatic and polar interactions in the hydrogel, we replace amino acids from the negatively charged acidic glutamic acid (E) to the uncharged polar glutamine (Q) on a negatively charged peptide module, while leaving the positively charged module unchanged. Using dynamic rheology, the mechanical properties of each hydrogel were investigated. It was found that the number, but not the location, of electrostatic interactions (E residues) dictate the elastic modulus (G') of the hydrogel, compared to polar interactions (Q residues). Increased electrostatic interactions also promote faster peptide assembly into the hydrogel matrix, and result in the decrease of T2 relaxation times of H2 O and trifluoroacetic acid. Small-angle X-ray scattering (SAXS) showed that changing from electrostatic to polar interactions affects the ability to form fibrous networks: from the formation of elongated fibers to no fiber assembly. This study reveals the systematic effects that the incorporation of electrostatic and polar interactions have when programmed into peptide-based hydrogel systems. These effects could be used to design peptide-based biomaterials with predetermined properties.
Collapse
Affiliation(s)
- Katherine Joyner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Marc B Taraban
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
- Fischell Department of Bioengineering, University of Maryland College Park, MD 20742
| | - Yue Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Y. Bruce Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
- Fischell Department of Bioengineering, University of Maryland College Park, MD 20742
| |
Collapse
|