1
|
Resende KA, Zhao R, Liu Y, Baráth E, Lercher JA. Impact of Sn Lewis Acid Sites on the Dehydration of Cyclohexanol. ACS Catal 2024; 14:11741-11748. [PMID: 39114088 PMCID: PMC11301620 DOI: 10.1021/acscatal.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
The impact of Sn on the concentration and strength of acid sites in Al containing zeolites with MFI topology and their catalytic activity for the dehydration of cyclohexanol in the aqueous phase has been investigated. The materials maintain constant Al concentrations and consequently Bro̷nsted acid site (BAS) concentrations, while exhibiting an increasing concentration of Sn Lewis acid sites (LAS). The presence of water alters LAS(Sn), leading to weak BAS(Sn) that increases the concentration of water in the zeolite micropore, while leaving the rate of dehydration of cyclohexanol unchanged. The TOF increases with the concentration of BAS(Al) in close contact with framework LAS(Sn), referred to as BAS(Pair). The increase in the Arrhenius pre-exponential factor, without affecting the activation barrier (E a), leads to the hypothesis that the proximity of both sites allows for a later transition state induced by the polarization of the C-O bond, leading in turn to a higher transition entropy.
Collapse
Affiliation(s)
- Karen A Resende
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Ruixue Zhao
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Yue Liu
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Eszter Baráth
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Johannes A Lercher
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching 85748, Germany
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
2
|
Liu Q, van Bokhoven JA. Water structures on acidic zeolites and their roles in catalysis. Chem Soc Rev 2024; 53:3065-3095. [PMID: 38369933 DOI: 10.1039/d3cs00404j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The local reaction environment of catalytic active sites can be manipulated to modify the kinetics and thermodynamic properties of heterogeneous catalysis. Because of the unique physical-chemical nature of water, heterogeneously catalyzed reactions involving specific interactions between water molecules and active sites on catalysts exhibit distinct outcomes that are different from those performed in the absence of water. Zeolitic materials are being applied with the presence of water for heterogeneous catalytic reactions in the chemical industry and our transition to sustainable energy. Mechanistic investigation and in-depth understanding about the behaviors and the roles of water are essentially required for zeolite chemistry and catalysis. In this review, we focus on the discussions of the nature and structures of water adsorbed/stabilized on Brønsted and Lewis acidic zeolites based on experimental observations as well as theoretical calculation results. The unveiled functions of water structures in determining the catalytic efficacy of zeolite-catalyzed reactions have been overviewed and the strategies frequently developed for enhancing the stabilization of zeolite catalysts are highlighted. Recent advancement will contribute to the development of innovative catalytic reactions and the rationalization of catalytic performances in terms of activity, selectivity and stability with the presence of water vapor or in condensed aqueous phase.
Collapse
Affiliation(s)
- Qiang Liu
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland.
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland.
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
3
|
Mathew J, Krishnan CK. Two-Dimensional Zeolites-Potential Catalysts for Biomass Valorization. ACS OMEGA 2024; 9:2048-2059. [PMID: 38250411 PMCID: PMC10795135 DOI: 10.1021/acsomega.3c08645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Valorization of biomass and biomass-derived molecules has become a viable route to get fuels and useful chemicals as fossil feedstocks are dwindling and the demand for renewable feedstocks and sustainable energy sources are rising. Zeolites have been promising catalysts for biomass conversion owing to their structural features and active sites. However, the use of conventional zeolites was limited due to molecular diffusion constraints, which paved the way for the emergence of two-dimensional (2D) zeolites. The high external surface area, bimodal porosity (micropores and mesopores), and 2D structure of these zeolites envisage smooth diffusion of bulky molecules, enhanced accessibility to active sites, and slow deactivation, which are benefits in the valorization of biomass. In this brief review, current advancements in the use of layered 2D zeolites for biomass conversions are discussed. The relationship between the structural features and the catalytic potential of 2D zeolites in some of the major biomass conversion processes like pyrolysis, hydrodeoxygenation, alkylation, acetalization, condensation, and dehydration is discussed and multistep reactions that proceed via a cascade mechanism are highlighted.
Collapse
Affiliation(s)
- Jino Mathew
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
| | | |
Collapse
|
4
|
Boonyoung P, Thongratkaew S, Rungtaweevoranit B, Pengsawang A, Praserthdam P, Sanpitakseree C, Faungnawakij K. Formic acid as a sacrificial agent for byproduct suppression in glucose dehydration to 5-hydroxymethylfurfural using NaY zeolite catalyst. BIORESOURCE TECHNOLOGY 2024; 392:130010. [PMID: 37952589 DOI: 10.1016/j.biortech.2023.130010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Biomass-derived 5-hydroxymethylfurfural (HMF) holds potential for applications in green materials, but its conventional synthesis is hindered by undesired side reactions. This study presents a catalytic system that effectively suppresses the formation of byproducts, thus enhancing HMF yield. The system demonstrated synergistic effects between Lewis acid NaY zeolite and formic acid sacrificial agent for the production of HMF from glucose. The results indicate that formic acid reacts with reactive intermediates from glucose decomposition, preventing their interactions with other sugar-derived species in the dehydration path to HMF. Such effect originates from the neutral formic acid species rather than the dissociated acidic proton normally observed in Brønsted acid-catalyzed reactions. The NaY/formic acid catalysts in isopropanol/water achieved a 57% HMF yield, a significant improvement over 31% and 27% yields with NaY or formic acid alone, respectively. Moreover, performance of the spent catalysts was easily restored to the original state via a simple NaCl wash.
Collapse
Affiliation(s)
- Pawan Boonyoung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand
| | - Sutarat Thongratkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand
| | - Bunyarat Rungtaweevoranit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand
| | - Aniwat Pengsawang
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand
| | - Piyasan Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering. Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chotitath Sanpitakseree
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand.
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
5
|
Bai Y, Taarning E, Luthra M, Lundegaard LF, Katerinopoulou A, Falsig H, Nova A, Martinez-Espin JS. Tracking Lattice Distortion Induced by Defects and Framework Tin in Beta Zeotypes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:19278-19289. [PMID: 39092204 PMCID: PMC11290454 DOI: 10.1021/acs.jpcc.3c04751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/08/2023] [Indexed: 08/04/2024]
Abstract
The use of powder X-ray diffraction (PXRD) coupled with lattice parameter refinement is used to investigate the crystal structure of Sn-Beta materials. A newly developed semiempirical PXRD model with a reduced tetragonal unit cell is applied to obtain the characteristic crystallographic features. There is a robust correlation between lattice parameters and the concentration of tin and defects for materials prepared via hydrothermal (HT) and postsynthetic (PT) methods. With tin incorporation, PT Sn-Beta samples, which possess a more defective structure, exhibit an extended interlayer distance in the stacking sequence and expansion of the translation symmetry within the layers, leading to larger unit cell dimensions. In contrast, HT Sn-Beta samples, having fewer defects, show a minimal effect of tin site density on the unit cell volume, whereas lattice distortion is directly correlated to the framework tin density. Furthermore, density functional theory (DFT) studies support an identical trend of lattice distortion following the monoisomorphous substitution of T sites from silicon to tin. These findings highlight that PXRD can serve as a rapid and straightforward characterization method to evaluate both framework defects and heteroatom density, offering a novel approach to monitor structural changes and the possibility to evaluate the catalytic properties of heteroatom-incorporated zeotypes.
Collapse
Affiliation(s)
- Yunfei Bai
- Topsoe
A/S, Haldor Topso̷es Allé 1, 2800 Kongens Lyngby, Denmark
- Aarhus
University, Nordre Ringgade
1, 8000 Aarhus C, Denmark
| | - Esben Taarning
- Topsoe
A/S, Haldor Topso̷es Allé 1, 2800 Kongens Lyngby, Denmark
| | - Mahika Luthra
- Hylleraas
Centre for Quantum Molecular Sciences, Centre for Materials Science
and Nanotechnology, Department of Chemistry, University of Oslo, Blindern, 0315 Oslo, Norway
| | | | | | - Hanne Falsig
- Topsoe
A/S, Haldor Topso̷es Allé 1, 2800 Kongens Lyngby, Denmark
| | - Ainara Nova
- Hylleraas
Centre for Quantum Molecular Sciences, Centre for Materials Science
and Nanotechnology, Department of Chemistry, University of Oslo, Blindern, 0315 Oslo, Norway
| | | |
Collapse
|
6
|
Mahala S, Arumugam SM, Kumar S, Devi B, Elumalai S. Tuning of MgO's base characteristics by blending it with amphoteric ZnO facilitating the selective glucose isomerization to fructose for bioenergy development. NANOSCALE ADVANCES 2023; 5:2470-2486. [PMID: 37143812 PMCID: PMC10153107 DOI: 10.1039/d3na00097d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/23/2023] [Indexed: 05/06/2023]
Abstract
Fructose serves as an important intermediate in the preparation of liquid fuel compounds. Herein, we report its selective production via a chemical catalysis method over ZnO/MgO nanocomposite. The blending of an amphoteric ZnO with MgO reduced the latter's unfavorable moderate/strong basic sites that can influence the side reactions in the sugar interconversion, reducing fructose productivity. Of all the ZnO/MgO combinations, a 1 : 1 ratio of ZnO and MgO showed a 20% reduction in moderate/strong basic sites in MgO with ∼2-2.5 times increase in weak basic sites (overall), which is favorable for the reaction. The analytical characterizations affirmed that MgO settles on the surface of ZnO by blocking the pores. The amphoteric ZnO undertakes the neutralization of the strong basic sites and improves the weak basic sites (cumulative) by the Zn-MgO alloy formation. Therefore, the composite afforded as high as 36% fructose yield and 90% selectivity at 90 °C; especially, the improved selectivity can be accounted for by the effect of both basic and acidic sites. The favorable action of acidic sites in controlling the unwanted side reactions was maximum when an aqueous medium contained 1/5th methanol. However, ZnO's presence regulated the glucose's degradation rate by up to 40% compared to the kinetics of pristine MgO. From the isotopic labelling experiments, the proton transfer pathway (or LdB-AvE mechanism by the formation of 1,2-enediolate) is dominant in the glucose-to-fructose transformation. The composite exhibited a long-lasting ability based on the good recycling efficiency of up to 5 cycles. The insights into the fine-tuning of the physicochemical characteristics of widely available metal oxides would help develop a robust catalyst for sustainable fructose production for biofuel production (via a cascade approach).
Collapse
Affiliation(s)
- Sangeeta Mahala
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India +91-172-5221-444
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Punjab 140306 India
| | - Senthil M Arumugam
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India +91-172-5221-444
| | - Sandeep Kumar
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India +91-172-5221-444
| | - Bhawana Devi
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India +91-172-5221-444
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Punjab 140306 India
| | - Sasikumar Elumalai
- Chemical Engineering Division, DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India +91-172-5221-444
| |
Collapse
|
7
|
Zhao J, Wang Z, Jin Q, Feng D, Lee J. Isomerization of Galactose to Tagatose: Recent Advances in Non-enzymatic Isomerization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4228-4234. [PMID: 36867179 DOI: 10.1021/acs.jafc.3c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The valorization of galactose derived from acid whey to low-calorie tagatose has gained increasing attention. Enzymatic isomerization is of great interest but faces several challenges, such as poor thermal stability of enzymes and a long processing time. In this work, non-enzymatic (supercritical fluids, triethylamine, arginine, boronate affinity, hydrotalcite, Sn-β zeolite, and calcium hydroxide) pathways for galactose to tagatose isomerization were critically discussed. Unfortunately, most of these chemicals showed poor tagatose yields (<30%), except for calcium hydroxide (>70%). The latter is able to form a tagatose-calcium hydroxide-water complex, which stimulates the equilibrium toward tagatose and prevents sugar degradation. Nevertheless, the excessive use of calcium hydroxide may pose challenges in terms of economic and environmental feasibility. Moreover, the proposed mechanisms for the base (enediol intermediate) and Lewis acid (hydride shift between C-2 and C-1) catalysis of galactose were elucidated. Overall, it is crucial to explore novel and effective catalysts as well as integrated systems for isomerizing of galactose to tagatose.
Collapse
Affiliation(s)
- Jikai Zhao
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Zhuo Wang
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Qing Jin
- School of Food and Agriculture, University of Maine, Orono, Maine 04469, United States
| | - Danyi Feng
- Department of Civil and Environmental Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Juhee Lee
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| |
Collapse
|
8
|
Active Zn Species Nest in Dealumination Zeolite Composite for Propane Dehydrogenation. Catal Letters 2022. [DOI: 10.1007/s10562-022-04244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Wang W, Xu J, Deng F. Recent advances in solid-state NMR of zeolite catalysts. Natl Sci Rev 2022; 9:nwac155. [PMID: 36131885 PMCID: PMC9486922 DOI: 10.1093/nsr/nwac155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 11/23/2022] Open
Abstract
Zeolites are important inorganic crystalline microporous materials with a broad range of applications in the areas of catalysis, ion exchange, and adsorption/separations. Solid-state nuclear magnetic resonance (NMR) spectroscopy has proven to be a powerful tool in the study of zeolites and relevant catalytic reactions because of its advantage in providing atomic-level insights into molecular structure and dynamic behavior. In this review, we provide a brief discussion on the recent progress in exploring framework structures, catalytically active sites and intermolecular interactions in zeolites and metal-containing ones by using various solid-state NMR methods. Advances in the mechanistic understanding of zeolite-catalysed reactions including methanol and ethanol conversions are presented as selected examples. Finally, we discuss the prospect of the solid-state NMR technique for its application in zeolites.
Collapse
Affiliation(s)
- Weiyu Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Liu X, Yu D, Luo H, Li C. Catalytic Upgrading of Lignocellulosic Biomass Sugars Toward Biofuel 5-Ethoxymethylfurfural. Front Chem 2022; 9:831102. [PMID: 35174143 PMCID: PMC8841350 DOI: 10.3389/fchem.2021.831102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/27/2021] [Indexed: 12/04/2022] Open
Abstract
The conversion of biomass into high-value chemicals through biorefineries is a requirement for sustainable development. Lignocellulosic biomass (LCB) contains polysaccharides and aromatic polymers and is one of the important raw materials for biorefineries. Hexose and pentose sugars can be obtained from LCB by effective pretreatment methods, and further converted into high-value chemicals and biofuels, such as 5-hydroxymethylfurfural (HMF), levulinic acid (LA), γ-valerolactone (GVL), ethyl levulinate (EL), and 5-ethoxymethylfurfural (EMF). Among these biofuels, EMF has a high cetane number and superior oxidation stability. This mini-review summarizes the mechanism of several important processes of EMF production from LCB-derived sugars and the research progress of acid catalysts used in this reaction in recent years. The influence of the properties and structures of mono- and bi-functional acid catalysts on the selectivity of EMF from glucose were discussed, and the effect of reaction conditions on the yield of EMF was also introduced.
Collapse
|
11
|
Hansen ARE, Jensen PR, Meier S. Pathways and their usage in the conversion of carbohydrates by aqueous barium hydroxide: insights from hyperpolarized and quantitative NMR. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01519f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elusive intermediates and products were visualized in the conversion of glucose in aqueous barium hydroxide. Competing pathways resembling different biochemical glycolysis pathways were observed in this manner.
Collapse
Affiliation(s)
- Allan R. E. Hansen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kgs Lyngby, Denmark
| | - Pernille R. Jensen
- Department of Health Technology, Technical University of Denmark, Elektrovej 349, 2800 Kgs Lyngby, Denmark
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
12
|
Zhang H, Samsudin IB, Jaenicke S, Chuah GK. Zeolites in catalysis: sustainable synthesis and its impact on properties and applications. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01325h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zeolites are versatile catalysts not only for large scale petrochemical processes but also in applications related to fine chemicals synthesis, biomass conversion and CO2 utilization. Introduction of mesopores and heteroatoms...
Collapse
|
13
|
Le T, Wang B. First-Principles Study of Interaction between Molecules and Lewis Acid Zeolites Manipulated by Injection of Energized Charge Carriers. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tien Le
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Bin Wang
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
14
|
Liu J, Zhang X, Yang L, Danhassan UA, Zhang S, Yang M, Sheng K, Zhang X. Glucose isomerization catalyzed by swollen cellulose derived aluminum-hydrochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146037. [PMID: 33677301 DOI: 10.1016/j.scitotenv.2021.146037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Since efficient isomerization of glucose to fructose is vital for valorizing cellulose fraction of biomass to value-added chemicals, an approach of engineering aluminum-hydrochar catalyst by impregnating aluminum on swollen cellulose derived hydrochar has been studied. The results showed that Al-hydrochar calcinated at 300°C achieved fructose yield of 26.3% in acetone/H2O reaction medium. It was found that the amorphous Al structures with nano-size on the surface of the carbon microspheres were the major contributor of the catalytic activity on glucose to fructose isomerization, while the formation of Al crystal had an inhibition effect on glucose isomerization. The deactivation study of Al-hydrochar catalysts showed the exfoliation of colloidal carbon containing aluminum active catalytic sites. This finding provides a novel strategy for efficient isomerization of glucose by Al-hydrochar prepared through hydrothermal carbonization and mild calcination activation process.
Collapse
Affiliation(s)
- Jianglong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoliang Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Luhan Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | | | - Shen Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ming Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kuichuan Sheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Al-Nayili A, Albdiry M, Salman N. Dealumination of Zeolite Frameworks and Lewis Acid Catalyst Activation for Transfer Hydrogenation. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05312-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Najmi S, So J, Stavitski E, McDermott WP, Lyu Y, Burt SP, Hermans I, Sholl DS, Sievers C. In‐situ
IR Spectroscopy Study of Reactions of C3 Oxygenates on Heteroatom (Sn, Mo, and W) doped BEA Zeolites and the Effect of Co‐adsorbed Water. ChemCatChem 2021. [DOI: 10.1002/cctc.202001424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sean Najmi
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Jungseob So
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Eli Stavitski
- National Synchrotron Light Source II Brookhaven National Laboratory Upton NY 11973 USA
| | - William P. McDermott
- Department of Chemistry & Department of Chemical and Biological Engineering University of Wisconsin-Madison Madison WI 53706 USA
| | - Yimeng Lyu
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Sam P. Burt
- Department of Chemistry & Department of Chemical and Biological Engineering University of Wisconsin-Madison Madison WI 53706 USA
| | - Ive Hermans
- Department of Chemistry & Department of Chemical and Biological Engineering University of Wisconsin-Madison Madison WI 53706 USA
| | - David S. Sholl
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Carsten Sievers
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
17
|
Liu LJ, Wang ZM, Fu S, Si ZB, Huang Z, Liu TH, Yang HQ, Hu CW. Catalytic mechanism for the isomerization of glucose into fructose over an aluminium-MCM-41 framework. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01984d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Al-Containing MCM-41 catalysts exhibit good catalytic activity toward glucose-to-fructose isomerization.
Collapse
Affiliation(s)
- Li-Juan Liu
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Zhao-Meng Wang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Shuai Fu
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Zhen-Bing Si
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Zhou Huang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Ting-Hao Liu
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Hua-Qing Yang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Chang-Wei Hu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| |
Collapse
|
18
|
Zhang T, Wei H, Xiao H, Li W, Jin Y, Wei W, Wu S. Advance in constructing acid catalyst-solvent combinations for efficient transformation of glucose into 5-Hydroxymethylfurfural. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Kim Y, Mittal A, Robichaud DJ, Pilath HM, Etz BD, St. John PC, Johnson DK, Kim S. Prediction of Hydroxymethylfurfural Yield in Glucose Conversion through Investigation of Lewis Acid and Organic Solvent Effects. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04245] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yeonjoon Kim
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - Ashutosh Mittal
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - David J. Robichaud
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - Heidi M. Pilath
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - Brian D. Etz
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - Peter C. St. John
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - David K. Johnson
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| | - Seonah Kim
- National Renewable Energy Laboratory, 15523 Denver West Parkway, Golden, Colorado 80401-3393, United States
| |
Collapse
|
20
|
Vega-Vila JC, Gounder R. Quantification of Intraporous Hydrophilic Binding Sites in Lewis Acid Zeolites and Consequences for Sugar Isomerization Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02918] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Juan Carlos Vega-Vila
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
21
|
Mäki‐Arvela P, Aho A, Murzin DY. Heterogeneous Catalytic Synthesis of Methyl Lactate and Lactic Acid from Sugars and Their Derivatives. CHEMSUSCHEM 2020; 13:4833-4855. [PMID: 32667135 PMCID: PMC7586466 DOI: 10.1002/cssc.202001223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Recent developments in sugar transformations to methyl lactate and lactic acid are critically summarized. The highest yield of methyl lactate from glucose obtained over Sn(salen)/octylmethyl imidazolium bromide catalyst was 68 % at 160 °C whereas the highest yield of lactic acid of 58 % was achieved over hierarchical Lewis acidic Sn-Beta catalysts at 200 °C under inert atmosphere. In addition to the desired products also humins are formed in water whereas in methanol alkyl glucosides- and -fructosides as well as acetals were generated, especially in the presence of Brønsted-acidic sites. The main challenges limiting the industrial feasibility of these reactions are incomplete liquid phase mass balance closure, complicated product analysis and a lack of kinetic data. In addition to reporting optimized reaction conditions and catalyst properties also catalyst reuse and regeneration as well as kinetic modelling and continuous operation are summarized.
Collapse
Affiliation(s)
- Päivi Mäki‐Arvela
- Johan Gadolin Process Chemistry CentreLaboratory of Industrial Chemistry and Reaction EngineeringÅbo Akademi UniversityTurku/ÅboFinland
| | - Atte Aho
- Johan Gadolin Process Chemistry CentreLaboratory of Industrial Chemistry and Reaction EngineeringÅbo Akademi UniversityTurku/ÅboFinland
| | - Dmitry Yu. Murzin
- Johan Gadolin Process Chemistry CentreLaboratory of Industrial Chemistry and Reaction EngineeringÅbo Akademi UniversityTurku/ÅboFinland
| |
Collapse
|
22
|
Yu Z, Wu H, Li Y, Xu Y, Li H, Yang S. Advances in Heterogeneously Catalytic Degradation of Biomass Saccharides with Ordered-Nanoporous Materials. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zhaozhuo Yu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yan Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yufei Xu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
23
|
Harris JW, Bates JS, Bukowski BC, Greeley J, Gounder R. Opportunities in Catalysis over Metal-Zeotypes Enabled by Descriptions of Active Centers Beyond Their Binding Site. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02102] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- James W. Harris
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, Alabama 35487, United States
| | - Jason S. Bates
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Brandon C. Bukowski
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Jeffrey Greeley
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
24
|
Zandany A, Kumar VB, Gedanken A. Facile Molecular Catalysis for Isomerization of Glucose to Fructose Using KMnO 4in Water. ChemistrySelect 2020. [DOI: 10.1002/slct.201903425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Anat Zandany
- Department of Chemistry and Institute for Nanotechnology & Advanced MaterialsBar-Ilan University Ramat-Gan 52900 Israel
| | - Vijay B. Kumar
- Department of Chemistry and Institute for Nanotechnology & Advanced MaterialsBar-Ilan University Ramat-Gan 52900 Israel
- Present Address: Los Alamos National LaboratoryMaterials Physics and Applications Division Los Alamos NM 87545 USA
| | - Aharon Gedanken
- Department of Chemistry and Institute for Nanotechnology & Advanced MaterialsBar-Ilan University Ramat-Gan 52900 Israel
| |
Collapse
|
25
|
Hu H, Liu S, Zhang W, An J, Xia H. Efficient Epimerization of Glucose to Mannose over Molybdenum‐Based Catalyst in Aqueous Media. ChemistrySelect 2020. [DOI: 10.1002/slct.201903417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hong Hu
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest BiomassNanjing Forestry University Nanjing 210037 China
| | - Shaoru Liu
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest BiomassNanjing Forestry University Nanjing 210037 China
| | - Weizi Zhang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest BiomassNanjing Forestry University Nanjing 210037 China
| | - Jiahuan An
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest BiomassNanjing Forestry University Nanjing 210037 China
| | - Haian Xia
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest BiomassNanjing Forestry University Nanjing 210037 China
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest ResourcesNanjing Forestry University Nanjing 210037 China
| |
Collapse
|
26
|
Abstract
Zeolite-based catalysts are versatile catalytic systems for a wide range of laboratory studies and industrial scale processes. The chemical composition, ion exchange, and pore size structure attributes of zeolites are responsible for their extensive catalytic applications. Esterification is one of the most important and routinely processes in diverse fields of organic synthesis. It has a long history in both industrial processes and laboratory work due to its versatility. This review intends to give a detailed insight into the significance of zeolite-based catalysts for ester bond formation
Collapse
|
27
|
Yang X, Zhang Y, Zhou L, Gao B, Lu T, Su Y, Xu J. Production of lactic acid derivatives from sugars over post-synthesized Sn-Beta zeolite promoted by WO3. Food Chem 2019; 289:285-291. [DOI: 10.1016/j.foodchem.2019.03.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 11/16/2022]
|
28
|
Martínez-Vargas DX, Sandoval-Rangel L, Campuzano-Calderon O, Romero-Flores M, Lozano FJ, Nigam KDP, Mendoza A, Montesinos-Castellanos A. Recent Advances in Bifunctional Catalysts for the Fischer–Tropsch Process: One-Stage Production of Liquid Hydrocarbons from Syngas. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01141] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniela Xulú Martínez-Vargas
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Ladislao Sandoval-Rangel
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Omar Campuzano-Calderon
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Michel Romero-Flores
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - Francisco J. Lozano
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | - K. D. P. Nigam
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
- Department of Chemical Engineering, Indian Institute of Technology, Delhi 110016, India
| | - Alberto Mendoza
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico
| | | |
Collapse
|
29
|
Bates JS, Bukowski BC, Harris JW, Greeley J, Gounder R. Distinct Catalytic Reactivity of Sn Substituted in Framework Locations and at Defect Grain Boundaries in Sn-Zeolites. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01123] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jason S. Bates
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Brandon C. Bukowski
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - James W. Harris
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Jeffrey Greeley
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
30
|
Shi N, Liu Q, He X, Cen H, Ju R, Zhang Y, Ma L. Production of lactic acid from cellulose catalyzed by easily prepared solid Al2(WO4)3. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Yabushita M, Shibayama N, Nakajima K, Fukuoka A. Selective Glucose-to-Fructose Isomerization in Ethanol Catalyzed by Hydrotalcites. ACS Catal 2019. [DOI: 10.1021/acscatal.8b05145] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mizuho Yabushita
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Natsumi Shibayama
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Division of Chemical Sciences and Engineering, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Kiyotaka Nakajima
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Atsushi Fukuoka
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
32
|
Cordon MJ, Hall JN, Harris JW, Bates JS, Hwang SJ, Gounder R. Deactivation of Sn-Beta zeolites caused by structural transformation of hydrophobic to hydrophilic micropores during aqueous-phase glucose isomerization. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02589d] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spectroscopic, titration and kinetic methods were used to probe the deactivation of Sn-Beta in water.
Collapse
Affiliation(s)
- Michael J. Cordon
- Charles D. Davidson School of Chemical Engineering
- Purdue University
- West Lafayette
- USA
| | - Jacklyn N. Hall
- Charles D. Davidson School of Chemical Engineering
- Purdue University
- West Lafayette
- USA
| | - James W. Harris
- Charles D. Davidson School of Chemical Engineering
- Purdue University
- West Lafayette
- USA
| | - Jason S. Bates
- Charles D. Davidson School of Chemical Engineering
- Purdue University
- West Lafayette
- USA
| | - Son-Jong Hwang
- Division of Chemistry and Chemical Engineering
- California Institute of Technology
- Pasadena
- USA
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering
- Purdue University
- West Lafayette
- USA
| |
Collapse
|
33
|
Varghese JJ, Mushrif SH. Origins of complex solvent effects on chemical reactivity and computational tools to investigate them: a review. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00226f] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Origins of solvent-induced enhancement in catalytic reactivity and product selectivity are discussed with computational methods to study them.
Collapse
Affiliation(s)
- Jithin John Varghese
- Cambridge Centre for Advanced Research and Education in Singapore (CARES) Ltd
- Campus for Research Excellence and Technological Enterprise (CREATE)
- Singapore
| | - Samir H. Mushrif
- Department of Chemical and Materials Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
34
|
Elliot SG, Tosi I, Meier S, Martinez-Espin JS, Tolborg S, Taarning E. Stoichiometric active site modification observed by alkali ion titrations of Sn-Beta. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01189g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Titrations and functional assays are combined to gain insight into the stoichiometric correlations for alkali ions and the tin active sites in Sn-Beta, and show that three different states with distinct catalytic properties exist.
Collapse
Affiliation(s)
- Samuel G. Elliot
- Department of Chemistry
- Technical University of Denmark
- 2800-Kgs. Lyngby
- Denmark
| | - Irene Tosi
- Department of Chemistry
- Technical University of Denmark
- 2800-Kgs. Lyngby
- Denmark
| | - Sebastian Meier
- Department of Chemistry
- Technical University of Denmark
- 2800-Kgs. Lyngby
- Denmark
| | | | | | | |
Collapse
|
35
|
Li G, Pidko EA. The Nature and Catalytic Function of Cation Sites in Zeolites: a Computational Perspective. ChemCatChem 2018. [DOI: 10.1002/cctc.201801493] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Guanna Li
- Department Chemical EngineeringDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
| | - Evgeny A. Pidko
- Department Chemical EngineeringDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
- ITMO University Lomonosova str. 9 St. Petersburg 191002 Russia
| |
Collapse
|
36
|
Přech J, Pizarro P, Serrano DP, Čejka J. From 3D to 2D zeolite catalytic materials. Chem Soc Rev 2018; 47:8263-8306. [PMID: 30167621 DOI: 10.1039/c8cs00370j] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Research activities and recent developments in the area of three-dimensional zeolites and their two-dimensional analogues are reviewed. Zeolites are the most important industrial heterogeneous catalysts with numerous applications. However, they suffer from limited pore sizes not allowing penetration of sterically demanding molecules to their channel systems and to active sites. We briefly highlight here the synthesis, properties and catalytic potential of three-dimensional zeolites followed by a discussion of hierarchical zeolites combining micro- and mesoporosity. The final part is devoted to two-dimensional analogues developed recently. Novel bottom-up and top-down synthetic approaches for two-dimensional zeolites, their properties, and catalytic performances are thoroughly discussed in this review.
Collapse
Affiliation(s)
- J Přech
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic
| | | | | | | |
Collapse
|
37
|
Influence of confining environment polarity on ethanol dehydration catalysis by Lewis acid zeolites. J Catal 2018. [DOI: 10.1016/j.jcat.2018.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Ma R, Li Y, Wu G, He Y, Feng J, Zhao Y, Li D. Fabrication of Pd-based metal-acid-alkali multifunctional catalysts for one-pot synthesis of MIBK. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63092-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Li G, Pidko EA, Hensen EJM, Nakajima K. A Density Functional Theory Study of the Mechanism of Direct Glucose Dehydration to 5-Hydroxymethylfurfural on Anatase Titania. ChemCatChem 2018. [DOI: 10.1002/cctc.201800900] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Guanna Li
- Department of Chemical Engineering and Chemistry; Eindhoven University of Technology; P.O. Box 513 Eindhoven 5600 MB The Netherlands
- Department of Chemical Engineering; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Evgeny A. Pidko
- Department of Chemical Engineering and Chemistry; Eindhoven University of Technology; P.O. Box 513 Eindhoven 5600 MB The Netherlands
- Department of Chemical Engineering; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft The Netherlands
- ITMO University; Lomonosova St. 9 Saint Petersburg 192001 Russia
| | - Emiel J. M. Hensen
- Department of Chemical Engineering and Chemistry; Eindhoven University of Technology; P.O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Kiyotaka Nakajima
- Institute for Catalysis; Hokkaido University; Kita 21 Nishi 10 Sapporo 011-0021 Japan
- Advanced Low Carbon Technology Research and Development Program (ALCA); Japan Science and Technology (JST) Agency; 4-1-8 Honcho Kawaguchi 332-0012 Japan
| |
Collapse
|
40
|
Padovan D, Botti L, Hammond C. Active Site Hydration Governs the Stability of Sn-Beta during Continuous Glucose Conversion. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01759] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Daniele Padovan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Luca Botti
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Ceri Hammond
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
41
|
Yang G, Zhou L. Glucose Conversions Catalyzed by Zeolite Sn-BEA: Synergy among Na+ Exchange, Solvent, and Proximal Silanol Nest as Well as Critical Specifics for Catalytic Mechanisms. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01157] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Gang Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
- Schuit Institute of Catalysis, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
| | - Lijun Zhou
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| |
Collapse
|
42
|
Kosinov N, Liu C, Hensen EJM, Pidko EA. Engineering of Transition Metal Catalysts Confined in Zeolites. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2018; 30:3177-3198. [PMID: 29861546 PMCID: PMC5973782 DOI: 10.1021/acs.chemmater.8b01311] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/26/2018] [Indexed: 05/09/2023]
Abstract
Transition metal-zeolite composites are versatile catalytic materials for a wide range of industrial and lab-scale processes. Significant advances in fabrication and characterization of well-defined metal centers confined in zeolite matrixes have greatly expanded the library of available materials and, accordingly, their catalytic utility. In this review, we summarize recent developments in the field from the perspective of materials chemistry, focusing on synthesis, postsynthesis modification, (operando) spectroscopy characterization, and computational modeling of transition metal-zeolite catalysts.
Collapse
Affiliation(s)
- Nikolay Kosinov
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- E-mail: (N.K.)
| | - Chong Liu
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Emiel J. M. Hensen
- Schuit
Institute of Catalysis, Laboratory of Inorganic Materials Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- E-mail: (E.J.M.H.)
| | - Evgeny A. Pidko
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- TheoMAT
group, ITMO University, Lomonosova str. 9, St. Petersburg 191002, Russia
- E-mail: (E.A.P.)
| |
Collapse
|
43
|
Rohling RY, Hensen EJM, Pidko EA. Multi-site Cooperativity in Alkali-Metal-Exchanged Faujasites for the Production of Biomass-Derived Aromatics. Chemphyschem 2018; 19:446-458. [PMID: 29105288 PMCID: PMC5820756 DOI: 10.1002/cphc.201701058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/03/2017] [Indexed: 12/21/2022]
Abstract
The catalytic Diels-Alder cycloaddition-dehydration (DACD) reaction of furanics with ethylene is a promising route to bio-derived aromatics. The reaction can be catalyzed by alkali-metal-exchanged faujasites. Herein, the results of periodic DFT calculations based on accurate structural models of alkali-metal-exchanged zeolites are presented, revealing the fundamental roles that confinement and the nature of the exchangeable cations in zeolite micropores have in the performance of faujasite-based catalysts in the DACD reaction. Special attention is devoted to analyzing the effect of functional substituents on furanic substrates (furan, 2,5-dimethylfuran, 2,5-furandicarboxylic acid) on the catalyst behavior. It is demonstrated that the conventional reactivity theories of the Diels-Alder chemistry based on simplistic single-site Lewis acidity and substituent effects do not apply if catalytic processes in the multiple-site confined environment of zeolite nanopores are considered. The nature and cooperativity of the interactions between the multiple exchangeable cations and the substrates determine the reaction energetics of the elementary steps involved in the DACD process.
Collapse
Affiliation(s)
- Roderigh Y. Rohling
- Inorganic Materials Chemistry Group, Schuit Institute of CatalysisEindhoven University of Technology, P.O. Box 5135600MBEindhovenThe Netherlands
| | - Emiel J. M. Hensen
- Inorganic Materials Chemistry Group, Schuit Institute of CatalysisEindhoven University of Technology, P.O. Box 5135600MBEindhovenThe Netherlands
| | - Evgeny A. Pidko
- Inorganic Materials Chemistry Group, Schuit Institute of CatalysisEindhoven University of Technology, P.O. Box 5135600MBEindhovenThe Netherlands
- TheoMAT group, Laboratory of Solution Chemistry for Advanced Materials and TechnologiesITMO UniversityLomonosova 9St. Petersburg191002Russia
- Current Address: Inorganic Systems Engineering groupDepartment of Chemical EngineeringFaculty of Applied SciencesDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| |
Collapse
|
44
|
Lanzafame P, Papanikolaou G, Perathoner S, Centi G, Migliori M, Catizzone E, Aloise A, Giordano G. Direct versus acetalization routes in the reaction network of catalytic HMF etherification. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02339a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The etherification of HMF (5-hydroxymethylfurfural) to EMF (5-(ethoxymethyl)furan-2-carbaldehyde) is studied over a series of MFI-type zeolite catalysts containing different heteroatoms (B, Fe, Al), aiming to understand the effect of different isomorph substitutions in the MFI framework on the reaction pathways of HMF conversion.
Collapse
Affiliation(s)
- P. Lanzafame
- Departments of ChiBioFarAm and MIFT- Section of Industrial Chemistry
- University of Messina
- ERIC aisbl and CASPE-INSTM
- 98166 Messina
- Italy
| | - G. Papanikolaou
- Departments of ChiBioFarAm and MIFT- Section of Industrial Chemistry
- University of Messina
- ERIC aisbl and CASPE-INSTM
- 98166 Messina
- Italy
| | - S. Perathoner
- Departments of ChiBioFarAm and MIFT- Section of Industrial Chemistry
- University of Messina
- ERIC aisbl and CASPE-INSTM
- 98166 Messina
- Italy
| | - G. Centi
- Departments of ChiBioFarAm and MIFT- Section of Industrial Chemistry
- University of Messina
- ERIC aisbl and CASPE-INSTM
- 98166 Messina
- Italy
| | - M. Migliori
- Department of Environmental and Chemical Engineering
- University of Calabria
- 87036 Rende
- Italy
| | - E. Catizzone
- Department of Environmental and Chemical Engineering
- University of Calabria
- 87036 Rende
- Italy
| | - A. Aloise
- Department of Environmental and Chemical Engineering
- University of Calabria
- 87036 Rende
- Italy
| | - G. Giordano
- Department of Environmental and Chemical Engineering
- University of Calabria
- 87036 Rende
- Italy
| |
Collapse
|
45
|
Yu IKM, Tsang DCW, Chen SS, Wang L, Hunt AJ, Sherwood J, De Oliveira Vigier K, Jérôme F, Ok YS, Poon CS. Polar aprotic solvent-water mixture as the medium for catalytic production of hydroxymethylfurfural (HMF) from bread waste. BIORESOURCE TECHNOLOGY 2017; 245:456-462. [PMID: 28898844 DOI: 10.1016/j.biortech.2017.08.170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Valorisation of bread waste for hydroxymethylfurfural (HMF) synthesis was examined in dimethyl sulfoxide (DMSO)-, tetrahydrofuran (THF)-, acetonitrile (ACN)-, and acetone-water (1:1v/v), under heating at 140°C with SnCl4 as the catalyst. The overall rate of the process was the fastest in ACN/H2O and acetone/H2O, followed by DMSO/H2O and THF/H2O due to the rate-limiting glucose isomerisation. However, the formation of levulinic acid (via rehydration) and humins (via polymerisation) was more significant in ACN/H2O and acetone/H2O. The constant HMF maxima (26-27mol%) in ACN/H2O, acetone/H2O, and DMSO/H2O indicated that the rates of desirable reactions (starch hydrolysis, glucose isomerisation, and fructose dehydration) relative to undesirable pathways (HMF rehydration and polymerisation) were comparable among these mediums. They also demonstrated higher selectivity towards HMF production over the side reactions than THF/H2O. This study differentiated the effects of polar aprotic solvent-water mediums on simultaneous pathways during biomass conversion.
Collapse
Affiliation(s)
- Iris K M Yu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Season S Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lei Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Andrew J Hunt
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York YO10 5DD, UK
| | - James Sherwood
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York YO10 5DD, UK
| | - Karine De Oliveira Vigier
- Institut de Chimie des Milieux et Matériaux de Poitiers, CNRS/Université de Poitiers, 1 rue Marcel Doré, ENSIP, TSA 41105, 86073 Poitiers Cedex 9, France
| | - François Jérôme
- Institut de Chimie des Milieux et Matériaux de Poitiers, CNRS/Université de Poitiers, 1 rue Marcel Doré, ENSIP, TSA 41105, 86073 Poitiers Cedex 9, France
| | - Yong Sik Ok
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
46
|
Yang G, Zhou L. Active Sites of M(IV)-incorporated Zeolites (M = Sn, Ti, Ge, Zr). Sci Rep 2017; 7:16113. [PMID: 29170532 PMCID: PMC5701051 DOI: 10.1038/s41598-017-16409-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
M(IV)-incorporated zeolites have recently aroused wide interest due to outstanding catalytic effects while their active sites remain largely elusive. Here periodic density functional theory calculations are conducted finding that active sites are determined jointly by identity of M(IV) ions, topology of zeolites, type of framework species and choice of T sites. All M2(IV) active sites in BEA zeolites are penta-coordinated with chemisorption of one water while subsequent water molecules that form only H-bonds promote chemisorption of the first water, especially the second water possessing comparable or even higher adsorption strengths as the first water; Ti(IV) and Ge(IV) active sites at the intersection remain penta-coordinated and Sn(IV) and Zr(IV) active sites prefer to hexa-coordination although potentially expanded to hepta-coordination. Different from other zeolites, Ti(IV) active sites in FER zeolites are hexa-coordinated as Sn(IV) active sites, due to the promoting effect of the first water. Lewis acidic defects expand Ti(IV) active sites to hexa-coordination while inhibit the formation of hepta-coordinated Sn(IV) species. Two forms of Brϕnsted acidic defects exist for Sn(IV) sites instead of only one for Ti(IV) sites, and all M(IV) Brϕnsted acidic defects, regardless of different acidic forms and M(IV) ions, can chemisorb only one water.
Collapse
Affiliation(s)
- Gang Yang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
- Schuit Institute of Catalysis, Eindhoven University of Technology, Eindhoven, 5600MB, The Netherlands.
| | - Lijun Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| |
Collapse
|
47
|
The origin of selectivity in the conversion of glucose to fructose and mannose in Sn-BEA and Na-exchanged Sn-BEA zeolites. J Catal 2017. [DOI: 10.1016/j.jcat.2017.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Yu IKM, Tsang DCW. Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. BIORESOURCE TECHNOLOGY 2017; 238:716-732. [PMID: 28434789 DOI: 10.1016/j.biortech.2017.04.026] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
Conversion of biomass waste to hydroxymethylfurfural (HMF), a value-added platform chemical, has captured great research interests driven by the economic and environmental incentives. This review evaluates the recent development of biomass conversion systems for high HMF yield and selectivity, with a focus on the performance of emerging catalysts and solvents from a mechanistic view. We highlight that the ratio and strength of Brønsted and Lewis acid in bifunctional catalyst are critical for maximizing HMF production by selective improvement in the kinetics of desirable reactions (hydrolysis, isomerization, and dehydration) over undesirable reactions (rehydration, polymerization). The characteristics of solvent mixture such as functional groups and speciation govern the reactivity of substrate towards desirable reactions and stability of HMF and intermediates against side reactions. Research efforts to unravel the interactions among co-catalysts/co-solvents and between catalysts and solvents are encouraged, thereby engineering a synergistic conversion system for biomass valorization.
Collapse
Affiliation(s)
- Iris K M Yu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
49
|
Pidko EA. Toward the Balance between the Reductionist and Systems Approaches in Computational Catalysis: Model versus Method Accuracy for the Description of Catalytic Systems. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00290] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Evgeny A. Pidko
- Theoretical Chemistry Group, ITMO University, Lomonosova str. 9, St. Petersburg 191002, Russia
- Inorganic Materials
Chemistry Group, Schuit Institute of Catalysis, and Institute for Complex Molecular Systems, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
50
|
Density functional theory study of the zeolite-mediated tautomerization of phenol and catechol. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2016.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|