1
|
Ali W, Oliver GA, Werz DB, Maiti D. Pd-catalyzed regioselective activation of C(sp 2)-H and C(sp 3)-H bonds. Chem Soc Rev 2024; 53:9904-9953. [PMID: 39212454 DOI: 10.1039/d4cs00408f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Differentiating between two highly similar C-H bonds in a given molecule remains a fundamental challenge in synthetic organic chemistry. Directing group assisted strategies for the functionalisation of proximal C-H bonds has been known for the last few decades. However, distal C-H bond functionalisation is strenuous and requires distinctly specialised techniques. In this review, we summarise the advancement in Pd-catalysed distal C(sp2)-H and C(sp3)-H bond activation through various redox manifolds including Pd(0)/Pd(II), Pd(II)/Pd(IV) and Pd(II)/Pd(0). Distal C-H functionalisation, where a Pd-catalyst is directly involved in the C-H activation step, either through assistance of an external directing group or directed by an inherent functionality or functional group incorporated at the site of the Pd-C bond is covered. The purpose of this review is to portray the current state of art in Pd-catalysed distal C(sp2)-H and C(sp3)-H functionalisation reactions, their mechanism and application in the late-stage functionalisation of medicinal compounds along with highlighting its limitations, thus leaving the field open for further synthetic adjustment.
Collapse
Affiliation(s)
- Wajid Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
| | - Gwyndaf A Oliver
- Albert-Ludwigs-Universität Freiburg, Institut für Organische Chemie, Albertstraße 21, D-79104 Freiburg, Germany.
| | - Daniel B Werz
- Albert-Ludwigs-Universität Freiburg, Institut für Organische Chemie, Albertstraße 21, D-79104 Freiburg, Germany.
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Shen HC, Li JJ, Wang P, Yu JQ. meta-C-H functionalization of phenylethyl and benzylic alcohol derivatives via Pd/NBE relay catalysis. Chem Sci 2024:d4sc03802a. [PMID: 39268204 PMCID: PMC11388095 DOI: 10.1039/d4sc03802a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The transition metal-catalyzed meta-C-H functionalization of alcohols and their hydroxylamine derivatives remains underdeveloped. Herein, we report an efficient meta-C-H arylation of both phenylethyl and benzylic alcohols and their hydroxylamine derivatives using a readily removable oxime ether directing group. Using electronically activated 2-carbomethoxynorbornene as the transient mediator and 3-trifluoromethyl-2-pyridone as the enabling ligand, this reaction features a broad substrate scope and good functional group tolerance. More importantly, with this oxime-directed meta-C-H functionalization, this method provides a dual approach for efficient access to both meta-substituted alcohols and hydroxylamines using two sets of simple deprotection conditions. This protocol leads to the efficient synthesis of bioactive compounds possessing promising reactivities for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Hua-Chen Shen
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Jian-Jun Li
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry, and Material Technology of Ministry of Education, Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Jin-Quan Yu
- The Scripps Research Institute (TSRI) 10550 North Torrey Pines Road, La Jolla CA 92037 USA
| |
Collapse
|
3
|
Sukowski V, van Borselen M, Mathew S, Fernández‐Ibáñez MÁ. S,O-Ligand Promoted meta-C-H Arylation of Anisole Derivatives via Palladium/Norbornene Catalysis. Angew Chem Int Ed Engl 2022; 61:e202201750. [PMID: 35639463 PMCID: PMC9401001 DOI: 10.1002/anie.202201750] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 11/07/2022]
Abstract
Reversing the conventional site-selectivity of C-H activation processes provides new retrosynthetic disconnections to otherwise unreactive bonds. Here, we report a new catalytic system based on palladium/norbornene and an S,O-ligand for the meta-C-H arylation of aryl ethers that significantly outperforms previously reported systems. We demonstrate the unique ability of this system to employ alkoxyarene substrates bearing electron donating and withdrawing substituents. Additionally, ortho-substituted aryl ethers are well tolerated, overcoming the "ortho constraint", which is the necessity to have a meta-substituent on the alkoxyarene to achieve high reaction efficiency, by enlisting novel norbornene mediators. Remarkably, for the first time the monoarylation of alkoxyarenes is achieved efficiently enabling the subsequent introduction of a second, different aryl coupling partner to rapidly furnish unsymmetrical terphenyls. Further insight into the reaction mechanism was achieved by isolation and characterization of some Pd-complexes-before and after meta C-H activation-prior to evaluation of their respective catalytic activities.
Collapse
Affiliation(s)
- Verena Sukowski
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Manuela van Borselen
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Simon Mathew
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - M. Ángeles Fernández‐Ibáñez
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
4
|
Sun L, Zhao Y, Liu B, Chang J, Li X. Rhodium III-catalyzed remote difunctionalization of arenes assisted by a relay directing group. Chem Sci 2022; 13:7347-7354. [PMID: 35799802 PMCID: PMC9214915 DOI: 10.1039/d2sc02205b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022] Open
Abstract
Rhodium-catalyzed diverse tandem twofold C-H bond activation reactions of para-olefin-tethered arenes have been realized, with unsaturated reagents such as internal alkynes, dioxazolones, and isocyanates being the coupling partner as well as a relay directing group which triggers cyclization of the para-olefin group under oxidative or redox-neutral conditions. The reaction proceeded via initial ortho-C-H activation assisted by a built-in directing group in the arene, and the ortho-incorporation of the unsaturated coupling partner simultaneously generated a relay directing group that allows sequential C-H activation at the meta-position and subsequent cyclization of the para-olefins. The overall reaction represents C-C or N-C difunctionalization of the arene with the generation of diverse 2,3-dihydrobenzofuran platforms. The catalytic system proceeded with good efficiency, simple reaction conditions, and broad substrate scope. The diverse transformations of the products demonstrated the synthetic utility of this tandem reaction.
Collapse
Affiliation(s)
- Lincong Sun
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Yuyao Zhao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Bingxian Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Xingwei Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 250100 China
| |
Collapse
|
5
|
Sukowski V, van Borselen M, Mathew S, Fernández‐Ibáñez MÁ. S,O‐Ligand Promoted
meta
‐C−H Arylation of Anisole Derivatives via Palladium/Norbornene Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Verena Sukowski
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Manuela van Borselen
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Simon Mathew
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - M. Ángeles Fernández‐Ibáñez
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
6
|
Grover J, Prakash G, Goswami N, Maiti D. Traditional and sustainable approaches for the construction of C–C bonds by harnessing C–H arylation. Nat Commun 2022; 13:1085. [PMID: 35228555 PMCID: PMC8885660 DOI: 10.1038/s41467-022-28707-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/27/2022] [Indexed: 12/18/2022] Open
Abstract
Biaryl scaffolds are found in natural products and drug molecules and exhibit a wide range of biological activities. In past decade, the transition metal-catalyzed C–H arylation reaction came out as an effective tool for the construction of biaryl motifs. However, traditional transition metal-catalyzed C–H arylation reactions have limitations like harsh reaction conditions, narrow substrate scope, use of additives etc. and therefore encouraged synthetic chemists to look for alternate greener approaches. This review aims to draw a general overview on C–H bond arylation reactions for the formation of C–C bonds with the aid of different methodologies, majorly highlighting on greener and sustainable approaches. Transition-metal-catalyzed C–H arylations are an effective tool for the construction of biaryl motifs in an efficient and selective manner. Here the authors provide an overview of the state-of-the-art of the field and perspectives on emerging directions toward increased sustainability.
Collapse
|
7
|
Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Toolbox for Distal C-H Bond Functionalizations in Organic Molecules. Chem Rev 2021; 122:5682-5841. [PMID: 34662117 DOI: 10.1021/acs.chemrev.1c00220] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition metal catalyzed C-H activation has developed a contemporary approach to the omnipresent area of retrosynthetic disconnection. Scientific researchers have been tempted to take the help of this methodology to plan their synthetic discourses. This paradigm shift has helped in the development of industrial units as well, making the synthesis of natural products and pharmaceutical drugs step-economical. In the vast zone of C-H bond activation, the functionalization of proximal C-H bonds has gained utmost popularity. Unlike the activation of proximal C-H bonds, the distal C-H functionalization is more strenuous and requires distinctly specialized techniques. In this review, we have compiled various methods adopted to functionalize distal C-H bonds, mechanistic insights within each of these procedures, and the scope of the methodology. With this review, we give a complete overview of the expeditious progress the distal C-H activation has made in the field of synthetic organic chemistry while also highlighting its pitfalls, thus leaving the field open for further synthetic modifications.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
8
|
Jacob C, Maes BUW, Evano G. Transient Directing Groups in Metal-Organic Cooperative Catalysis. Chemistry 2021; 27:13899-13952. [PMID: 34286873 DOI: 10.1002/chem.202101598] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 12/13/2022]
Abstract
The direct functionalization of C-H bonds is among the most fundamental chemical transformations in organic synthesis. However, when the innate reactivity of the substrate cannot be utilized for the functionalization of a given single C-H bond, this selective C-H bond functionalization mostly relies on the use of directing groups that allow bringing the catalyst in close proximity to the C-H bond to be activated and these directing groups need to be installed before and cleaved after the transformation, which involves two additional undesired synthetic operations. These additional steps dramatically reduce the overall impact and the attractiveness of C-H bond functionalization techniques since classical approaches based on substrate pre-functionalization are sometimes still more straightforward and appealing. During the past decade, a different approach involving both the in situ installation and removal of the directing group, which can then often be used in a catalytic manner, has emerged: the transient directing group strategy. In addition to its innovative character, this strategy has brought C-H bond functionalization to an unprecedented level of usefulness and has enabled the development of remarkably efficient processes for the direct and selective introduction of functional groups onto both aromatic and aliphatic substrates. The processes unlocked by the development of these transient directing groups will be comprehensively overviewed in this review article.
Collapse
Affiliation(s)
- Clément Jacob
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, 1050, Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, 1050, Brussels, Belgium
| |
Collapse
|
9
|
Wei J, Shao X, Zhao H, Yang H, Qiu S, Zhai H. Palladium-Catalyzed Arylation of C(sp 2)-H Bonds with 2-(1-Methylhydrazinyl)pyridine as the Bidentate Directing Group. ACS OMEGA 2021; 6:25151-25161. [PMID: 34632174 PMCID: PMC8495716 DOI: 10.1021/acsomega.1c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Palladium-catalyzed C(sp2)-H arylation of ortho C-H bonds involving 2-(1-methylhydrazinyl)pyridine (MHP) as the directing group has been investigated. The reaction proceeds smoothly under an air atmosphere to generate biaryl derivatives in an environmentally friendly manner while tolerating a wide range of functional groups. Notably, the directing group present in the product could be easily removed under mild reductive conditions.
Collapse
Affiliation(s)
- Jian Wei
- The
State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial
Key Laboratory of Nano-Micro Materials Research, School of Chemical
Biology and Biotechnology, Shenzhen Graduate
School of Peking University, Shenzhen 518055, China
| | - Xiaoru Shao
- The
State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial
Key Laboratory of Nano-Micro Materials Research, School of Chemical
Biology and Biotechnology, Shenzhen Graduate
School of Peking University, Shenzhen 518055, China
| | - Hua Zhao
- Institute
of Drug Discovery Technology, QianXuesen Collaborative Research Center
of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Hongjian Yang
- The
State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial
Key Laboratory of Nano-Micro Materials Research, School of Chemical
Biology and Biotechnology, Shenzhen Graduate
School of Peking University, Shenzhen 518055, China
| | - Shuxian Qiu
- The
State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial
Key Laboratory of Nano-Micro Materials Research, School of Chemical
Biology and Biotechnology, Shenzhen Graduate
School of Peking University, Shenzhen 518055, China
| | - Hongbin Zhai
- The
State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial
Key Laboratory of Nano-Micro Materials Research, School of Chemical
Biology and Biotechnology, Shenzhen Graduate
School of Peking University, Shenzhen 518055, China
- Institute
of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
10
|
Murali K, Machado LA, Carvalho RL, Pedrosa LF, Mukherjee R, Da Silva Júnior EN, Maiti D. Decoding Directing Groups and Their Pivotal Role in C-H Activation. Chemistry 2021; 27:12453-12508. [PMID: 34038596 DOI: 10.1002/chem.202101004] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Synthetic organic chemistry has witnessed a plethora of functionalization and defunctionalization strategies. In this regard, C-H functionalization has been at the forefront due to the multifarious applications in the development of simple to complex molecular architectures and holds a brilliant prospect in drug development and discovery. Despite been explored tremendously by chemists, this functionalization strategy still enjoys the employment of novel metal catalysts as well metal-free organic ligands. Moreover, the switch to photo- and electrochemistry has widened our understanding of the alternative pathways via which a reaction can proceed and these strategies have garnered prominence when applied to C-H activation. Synthetic chemists have been foraging for new directing groups and templates for the selective activation of C-H bonds from a myriad of carbon-hydrogen bonds in aromatic as well as aliphatic systems. As a matter of fact, by varying the templates and directing groups, scientists found the answer to the challenge of distal C-H bond activation which remained an obstacle for a very long time. These templates have been frequently harnessed for selectively activating C-H bonds of natural products, drugs, and macromolecules decorated with multiple C-H bonds. This itself was a challenge before the commencement of this field as functionalization of a site other than the targeted site could modify and hamper the biological activity of the pharmacophore. Total synthesis and pharmacophore development often faces the difficulty of superfluous reaction steps towards selective functionalization. This obstacle has been solved by late-stage functionalization simply by harnessing C-H bond activation. Moreover, green chemistry and metal-free reaction conditions have seen light in the past few decades due to the rising concern about environmental issues. Therefore, metal-free catalysts or the usage of non-toxic metals have been recently showcased in a number of elegant works. Also, research groups across the world are developing rational strategies for directing group free or non-directed protocols that are just guided by ligands. This review encapsulates the research works pertinent to C-H bond activation and discusses the science devoted to it at the fundamental level. This review gives the readers a broad understanding of how these strategies work, the execution of various metal catalysts, and directing groups. This not only helps a budding scientist towards the commencement of his/her research but also helps a matured mind searching out for selective functionalization. A detailed picture of this field and its progress with time has been portrayed in lucid scientific language with a motive to inculcate and educate scientific minds about this beautiful strategy with an overview of the most relevant and significant works of this era. The unique trait of this review is the detailed description and classification of various directing groups and their utility over a wide substrate scope. This allows an experimental chemist to understand the applicability of this domain and employ it over any targeted substrate.
Collapse
Affiliation(s)
- Karunanidhi Murali
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Luana A Machado
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.,Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Renato L Carvalho
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Leandro F Pedrosa
- Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Rishav Mukherjee
- Department of Chemistry IIT Bombay, Powai, Mumbai, 400076, India
| | | | - Debabrata Maiti
- Department of Chemistry IIT Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
11
|
Chen Y, Huang Z, Dai C, Yang S, Shi DQ, Zhao Y. Palladium-Catalyzed Isoquinoline Synthesis by Tandem C-H Allylation and Oxidative Cyclization of Benzylamines with Allyl Acetate. Org Lett 2021; 23:4209-4213. [PMID: 33999646 DOI: 10.1021/acs.orglett.1c01153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel approach to synthesize 3-methylisoquinolines via a one-pot, two-step, palladium(II)-catalyzed tandem C-H allylation/intermolecular amination and aromatization is reported. A wide series of 3-methylisoquinoline derivatives were obtained directly using this method in moderate to good yields, and we highlight the synthetic importance of this new transformation.
Collapse
Affiliation(s)
- Yujie Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chenyang Dai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Shan Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Da-Qing Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P.R.China
| |
Collapse
|
12
|
Dutta U, Maiti S, Bhattacharya T, Maiti D. Arene diversification through distal C(sp
2
)−H functionalization. Science 2021; 372:372/6543/eabd5992. [DOI: 10.1126/science.abd5992] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/07/2021] [Indexed: 01/01/2023]
Affiliation(s)
- Uttam Dutta
- Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Debabrata Maiti
- Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
13
|
Strategic evolution in transition metal-catalyzed directed C–H bond activation and future directions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213683] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Carvalho RL, Almeida RG, Murali K, Machado LA, Pedrosa LF, Dolui P, Maiti D, da Silva Júnior EN. Removal and modification of directing groups used in metal-catalyzed C–H functionalization: the magical step of conversion into ‘conventional’ functional groups. Org Biomol Chem 2021; 19:525-547. [DOI: 10.1039/d0ob02232b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature review is focused on recent approaches for removing versatile directing groups.
Collapse
Affiliation(s)
- Renato L. Carvalho
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Renata G. Almeida
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Karunanidhi Murali
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Luana A. Machado
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | | | - Pravas Dolui
- Department of Chemistry
- IIT Bombay
- Mumbai 400076
- India
| | | | | |
Collapse
|
15
|
Cai L, Li S, Zhou C, Li G. Carboxyl-Assisted meta-Selective C-H Functionalizations of Benzylsulfonamides. Org Lett 2020; 22:7791-7796. [PMID: 32991192 DOI: 10.1021/acs.orglett.0c02528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A protocol of carboxyl-group-assisted, Pd(II)-catalyzed remote meta-C(sp2)-H olefination and arylation of benzylsulfonamides has been developed. It was supposed to proceed through a κ2 coordination of the carboxyl group to the Pd center. These findings demonstrated the versatility of carboxyl-assisted remote meta-C-H activation strategy and might stimulate the exploration of novel reactivity and selectivity of other traditional chelating groups in different contexts.
Collapse
Affiliation(s)
- Lei Cai
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Fujian College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangda Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Chunlin Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Fujian College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Fujian College, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Ghosh K, Rit RK, Shankar M, Mukherjee K, Sahoo AK. Directing Group Assisted Unsymmetrical Multiple Functionalization of Arene C-H Bonds. CHEM REC 2020; 20:1017-1042. [PMID: 32779389 DOI: 10.1002/tcr.202000063] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/28/2022]
Abstract
Multiple C-H bond functionalizations promptly install diverse groups on the molecular framework and consequently fabricate complex molecular entities. This review briefly surveys the conceptual development of directing group assisted unsymmetrical multiple functionalization of arene C(sp2 )-H bonds, which is exceedingly appealing and highly important.
Collapse
Affiliation(s)
- Koushik Ghosh
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Raja K Rit
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Majji Shankar
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Kallol Mukherjee
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
17
|
Affiliation(s)
- Quan Zheng
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chen‐Fu Liu
- College of Pharmaceutical ScienceGannan Medical University Ganzhou 341000 People's Republic of China
| | - Jie Chen
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Guo‐Wu Rao
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
18
|
Dai C, Huang ZB, Liu L, Han Y, Shi DQ, Zhao Y. Palladium-Catalyzed ortho
-Heteroarylation of β-Arylethylamines Through Cross-Dehydrogenative Coupling. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chenyang Dai
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou China
| | - Zhi-Bin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou China
| | - Lingling Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou China
| | - Yi Han
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou China
| | - Da-Qing Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou China
| |
Collapse
|
19
|
Rej S, Ano Y, Chatani N. Bidentate Directing Groups: An Efficient Tool in C-H Bond Functionalization Chemistry for the Expedient Construction of C-C Bonds. Chem Rev 2020; 120:1788-1887. [PMID: 31904219 DOI: 10.1021/acs.chemrev.9b00495] [Citation(s) in RCA: 624] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decades, synthetic organic chemistry discovered that directing group assisted C-H activation is a key tool for the expedient and siteselective construction of C-C bonds. Among the various directing group strategies, bidentate directing groups are now recognized as one of the most efficient devices for the selective functionalization of certain positions due to fact that its metal center permits fine, tunable, and reversible coordination. The family of bidentate directing groups permit various types of assistance to be achieved, such as N,N-dentate, N,O-dentate, and N,S-dentate auxiliaries, which are categorized based on the coordination site. In this review, we broadly discuss various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| |
Collapse
|
20
|
Yang T, Kong C, Yang S, Yang Z, Yang S, Ehara M. Reaction mechanism, norbornene and ligand effects, and origins of meta-selectivity of Pd/norbornene-catalyzed C–H activation. Chem Sci 2020. [DOI: 10.1039/c9sc04720d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Density functional theory calculations disclosed the key steps of Pd/norbornene-catalyzed meta-C–H functionalization.
Collapse
Affiliation(s)
- Tao Yang
- School of Science
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Chuncai Kong
- School of Science
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Shengchun Yang
- School of Science
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Zhimao Yang
- School of Science
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Sen Yang
- School of Science
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Masahiro Ehara
- Research Center for Computational Science
- Institute for Molecular Science
- Okazaki 444-8585
- Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
| |
Collapse
|
21
|
Ji X, Wei F, Wan B, Cheng C, Zhang Y. Palladium-catalyzed intermolecular C–H silylation initiated by aminopalladation. Chem Commun (Camb) 2020; 56:7801-7804. [PMID: 32555917 DOI: 10.1039/d0cc00872a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The intermolecular disilylation reaction of C,C-palladacycles obtained through aminopalladation has been developed.
Collapse
Affiliation(s)
- Xiaoming Ji
- School of Chemical Science and Engineering
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- P. R. China
| | - Feng Wei
- School of Chemical Science and Engineering
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- P. R. China
| | - Bin Wan
- School of Chemical Science and Engineering
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- P. R. China
| | - Cang Cheng
- School of Chemical Science and Engineering
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- P. R. China
| | - Yanghui Zhang
- School of Chemical Science and Engineering
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- Tongji University
- Shanghai
- P. R. China
| |
Collapse
|
22
|
Fu WC, Kwong FY. A denitrogenative palladium-catalyzed cascade for regioselective synthesis of fluorenes. Chem Sci 2019; 11:1411-1417. [PMID: 34123265 PMCID: PMC8148384 DOI: 10.1039/c9sc04062e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We herein report a denitrogenative palladium-catalyzed cascade for the modular and regioselective synthesis of polysubstituted fluorenes. Hydrazone facilitates the Pd(ii) to Pd(iv) oxidative addition in a Catellani pathway and is also the methylene synthon in the proposed reaction. Aryl iodides and 2-bromoarylaldehyde hydrazones undergo a norbornene-controlled tandem reaction sequence to give a broad scope of fluorenes in the presence of a palladium catalyst. The method described is scalable and adaptable to a three-component reaction with in situ generation of the hydrazone group. Preliminary mechanistic investigations have been conducted.
Collapse
Affiliation(s)
- Wai Chung Fu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin New Territories Hong Kong
| | - Fuk Yee Kwong
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin New Territories Hong Kong
| |
Collapse
|
23
|
Zhang D, Gao D, Cai J, Wu X, Qin H, Qiao K, Liu C, Fang Z, Guo K. The ruthenium-catalyzed meta-selective C-H nitration of various azole ring-substituted arenes. Org Biomol Chem 2019; 17:9065-9069. [PMID: 31584058 DOI: 10.1039/c9ob01930h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The efficient ruthenium-catalyzed meta-selective CAr-H nitration of azole ring substituted arenes has been developed. In this work, Ru3(CO)12 was used as the catalyst, AgNO2 as the nitro source, HPcy3+·BF4- as the ligand, pivalic acid as the additive, and DCE as the solvent, and a wide spectrum of arenes bearing thiazole, pyrazolyl or removable oxazoline directing groups were tolerated in this meta-selective CAr-H nitration, affording the nitrated products in moderate to good yields. Moreover, this study reveals a gentler and environmentally friendly way to access meta-nitration arenes compared to the traditional process.
Collapse
Affiliation(s)
- Dong Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Di Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Jinlin Cai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Xiaoyu Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Hong Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Kai Qiao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China. and State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, China
| |
Collapse
|
24
|
Yang SY, Han WY, He C, Cui BD, Wan NW, Chen YZ. 2,2-Bifunctionalization of Norbornene in Palladium-Catalyzed Domino Annulation. Org Lett 2019; 21:8857-8860. [DOI: 10.1021/acs.orglett.9b03565] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Si-Yi Yang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Chen He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| |
Collapse
|
25
|
Li P, Li Q, Weng H, Diao J, Yao H, Lin A. Intramolecular Remote C-H Activation via Sequential 1,4-Palladium Migration To Access Fused Polycycles. Org Lett 2019; 21:6765-6769. [PMID: 31414827 DOI: 10.1021/acs.orglett.9b02392] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An unprecedented intramolecular remote C-H activation via sequential 1,4-palladium migration with an aromatic ring as a conveyor has been described. This reaction provides an efficient route to construct diverse polycyclic frameworks in moderate to good yield via palladium-catalyzed remote C-H activation/alkene insertion, arylation, alkenylation, and the Heck reaction. The preliminary mechanistic studies revealed that the 1,4-palladium migration process was reversible.
Collapse
Affiliation(s)
- Panpan Li
- State Key Laboratory of Natural Medicines (SKLNM) and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qiuyu Li
- State Key Laboratory of Natural Medicines (SKLNM) and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - He Weng
- State Key Laboratory of Natural Medicines (SKLNM) and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiaming Diao
- State Key Laboratory of Natural Medicines (SKLNM) and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
26
|
Abstract
Palladium/norbornene cooperative catalysis has emerged as a distinct approach to construct polyfunctionalized arenes from readily available starting materials. This Review provides a comprehensive overview of this field, including the early stoichiometric investigations, catalytic reaction developments, as well as the applications in the syntheses of bioactive compounds and polymers. The section of catalytic reactions is divided into two parts according to the reaction initiation mode: Pd(0)-initiated reactions and Pd(II)-initiated reactions.
Collapse
Affiliation(s)
- Jianchun Wang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
27
|
Ding Y, Fan S, Chen X, Gao Y, Li S, Li G. Ligand Promoted, Palladium-Catalyzed C(sp 2)-H Arylation of Free Primary 2-Phenylethylamines. Org Lett 2019; 21:4224-4228. [PMID: 31120257 DOI: 10.1021/acs.orglett.9b01411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A mono- N-protected amino acid (MPAA) ligand promoted, Pd(II)-catalyzed C(sp2)-H arylation of free primary 2-phenylethylamines using the native NH2 as the directing group has been achieved. This method is compatible with challenging simple primary 2-phenylethylamines bearing α-hydrogen atoms. Application of this protocol in the direct structure modification of the drug molecule amphetamine is also demonstrated.
Collapse
Affiliation(s)
- Yongzheng Ding
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China.,University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Shuai Fan
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350002 , China
| | - Xiaoxi Chen
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China.,University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Yuzhen Gao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China
| | - Shangda Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China.,University of Chinese Academy of Sciences , Beijing , 100049 , China
| |
Collapse
|
28
|
Cheng H, Chen S, Chen R, Zhou Q. Palladium(II)‐Initiated Catellani‐Type Reactions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813491] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hong‐Gang Cheng
- College of Chemistry and Molecular SciencesInstitute for Advanced Studies (IAS)Wuhan University 430072 Wuhan P. R. China
| | - Shuqing Chen
- College of Chemistry and Molecular SciencesInstitute for Advanced Studies (IAS)Wuhan University 430072 Wuhan P. R. China
| | - Ruiming Chen
- College of Chemistry and Molecular SciencesInstitute for Advanced Studies (IAS)Wuhan University 430072 Wuhan P. R. China
| | - Qianghui Zhou
- College of Chemistry and Molecular SciencesInstitute for Advanced Studies (IAS)Wuhan University 430072 Wuhan P. R. China
| |
Collapse
|
29
|
Cheng H, Chen S, Chen R, Zhou Q. Palladium(II)‐Initiated Catellani‐Type Reactions. Angew Chem Int Ed Engl 2019; 58:5832-5844. [DOI: 10.1002/anie.201813491] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Hong‐Gang Cheng
- College of Chemistry and Molecular SciencesInstitute for Advanced Studies (IAS)Wuhan University 430072 Wuhan P. R. China
| | - Shuqing Chen
- College of Chemistry and Molecular SciencesInstitute for Advanced Studies (IAS)Wuhan University 430072 Wuhan P. R. China
| | - Ruiming Chen
- College of Chemistry and Molecular SciencesInstitute for Advanced Studies (IAS)Wuhan University 430072 Wuhan P. R. China
| | - Qianghui Zhou
- College of Chemistry and Molecular SciencesInstitute for Advanced Studies (IAS)Wuhan University 430072 Wuhan P. R. China
| |
Collapse
|
30
|
Li W, Chen W, Zhou B, Xu Y, Deng G, Liang Y, Yang Y. NBE-Controlled Palladium-Catalyzed Interannular Selective C-H Silylation: Access to Divergent Silicon-Containing 1,1'-Biaryl-2-Acetamides. Org Lett 2019; 21:2718-2722. [PMID: 30924667 DOI: 10.1021/acs.orglett.9b00690] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel palladium-catalyzed interannular selective C-H silylation of 1,1'-biaryl-2-acetamides is described. The combination of palladium catalyst with copper oxidant enables meta- or ortho-selective C-H silylation by employing hexamethyldisilane as a trimethylsilyl source, which relies on the control of NBE derivatives as a switch, thus providing straightforward access to divergent silicon-containing 1,1'-biaryl-2-acetamides.
Collapse
Affiliation(s)
- Wenguang Li
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Wenqi Chen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Bang Zhou
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Yankun Xu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province , Hunan Normal University , Changsha , Hunan 410081 , China
| |
Collapse
|
31
|
Annamalai P, Hsiao HC, Raju S, Fu YH, Chen PL, Horng JC, Liu YH, Chuang SC. Synthesis, Isolation, and Characterization of Mono- and Bis-norbornene-Annulated Biarylamines through Pseudo-Catellani Intermediates. Org Lett 2019; 21:1182-1186. [DOI: 10.1021/acs.orglett.9b00119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Huan-Chang Hsiao
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Selvam Raju
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yi-Hsuan Fu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30010, Taiwan
| | - Pei-Ling Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu 30010, Taiwan
| | - Jia-Cherng Horng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30010, Taiwan
| | - Yi-Hung Liu
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Ching Chuang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
32
|
Wu M, Huang X, Zhang H, Li P. Advances on Directing-Group Assisted meta-C-H Functionalization Catalyzed by Transition Metal. CHINESE J ORG CHEM 2019. [DOI: 10.6023/cjoc201903029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Yu SP, Zhong Y, Gu T, Wu WY, Fan TY, Li NG, Shi ZH, Tang YP, Duan JA. Palladium-catalyzed one-pot Catellani reaction: An efficient synthesis of α-alkynyl aromatic ketones via ortho acylation and ipso alkynylation. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.08.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1142] [Impact Index Per Article: 163.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
35
|
Lv W, Wen S, Yu J, Cheng G. Palladium-Catalyzed Ortho-Silylation of Aryl Iodides with Concomitant Arylsilylation of Oxanorbornadiene: Accessing Functionalized (Z)-β-Substituted Vinylsilanes and Their Analogues. Org Lett 2018; 20:4984-4987. [DOI: 10.1021/acs.orglett.8b02106] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weiwei Lv
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Si Wen
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Jia Yu
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
36
|
Ghosh M, De Sarkar S. meta
- and para
-Selective C−H Functionalization using Transient Mediators and Noncovalent Templates. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Munmun Ghosh
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur 741246 West Bengal India
| | - Suman De Sarkar
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur 741246 West Bengal India
| |
Collapse
|
37
|
Chen S, Liu ZS, Yang T, Hua Y, Zhou Z, Cheng HG, Zhou Q. The Discovery of a Palladium(II)-Initiated Borono-Catellani Reaction. Angew Chem Int Ed Engl 2018; 57:7161-7165. [PMID: 29696768 DOI: 10.1002/anie.201803865] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/25/2018] [Indexed: 11/09/2022]
Abstract
Reported is a novel palladium(II)-initiated Catellani-type reaction that utilizes widely accessible aryl boronic acids as the substrates instead of aryl halides, thereby greatly expanding the existing scope of this powerful transformation. This borono-Catellani reaction was promoted by cooperative catalysis between Pd(OAc)2 and the inexpensive 5-norbornene-2-carbonitrile. Practicality is the striking feature of the reaction: it is run open to air at ambient temperature and no phosphine ligand is needed. This mild, chemoselective, and scalable protocol is compatible with a large range of readily available functionalized aryl boronic acids and bromides, as well as terminating olefins (50 examples, 39-97 % yields). Moreover, the orthogonal reactivity between the borono-Catellani and classical Catellani reaction was demonstrated. This work is expected to open new avenues for developing novel Catellani-type reactions.
Collapse
Affiliation(s)
- Shuqing Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ze-Shui Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Tao Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yu Hua
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiyu Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hong-Gang Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qianghui Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.,The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
38
|
Chen S, Liu ZS, Yang T, Hua Y, Zhou Z, Cheng HG, Zhou Q. The Discovery of a Palladium(II)-Initiated Borono-Catellani Reaction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuqing Chen
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Ze-Shui Liu
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Tao Yang
- The Institute for Advanced Studies; Wuhan University; Wuhan 430072 China
| | - Yu Hua
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Zhiyu Zhou
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Hong-Gang Cheng
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Qianghui Zhou
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
- The Institute for Advanced Studies; Wuhan University; Wuhan 430072 China
| |
Collapse
|
39
|
Shi G, Shao C, Ma X, Gu Y, Zhang Y. Pd(II)-Catalyzed Catellani-Type Domino Reaction Utilizing Arylboronic Acids as Substrates. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00637] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guangfa Shi
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Changdong Shao
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaotian Ma
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yichao Gu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
40
|
Zhao Q, Fu WC, Kwong FY. Palladium-Catalyzed Regioselective Aromatic Extension of Internal Alkynes through a Norbornene-Controlled Reaction Sequence. Angew Chem Int Ed Engl 2018; 57:3381-3385. [DOI: 10.1002/anie.201713207] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Qingyang Zhao
- Department of Chemistry; The Chinese University of Hong Kong; Shatin New Territories Hong Kong Hong Kong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Wai Chung Fu
- Department of Chemistry; The Chinese University of Hong Kong; Shatin New Territories Hong Kong Hong Kong
| | - Fuk Yee Kwong
- Department of Chemistry; The Chinese University of Hong Kong; Shatin New Territories Hong Kong Hong Kong
| |
Collapse
|
41
|
Zhao Q, Fu WC, Kwong FY. Palladium-Catalyzed Regioselective Aromatic Extension of Internal Alkynes through a Norbornene-Controlled Reaction Sequence. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Qingyang Zhao
- Department of Chemistry; The Chinese University of Hong Kong; Shatin New Territories Hong Kong Hong Kong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education; College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Wai Chung Fu
- Department of Chemistry; The Chinese University of Hong Kong; Shatin New Territories Hong Kong Hong Kong
| | - Fuk Yee Kwong
- Department of Chemistry; The Chinese University of Hong Kong; Shatin New Territories Hong Kong Hong Kong
| |
Collapse
|
42
|
Jin Z, Chu L, Chen YQ, Yu JQ. Pd-Catalyzed Remote Meta-C–H Functionalization of Phenylacetic Acids Using a Pyridine Template. Org Lett 2018; 20:425-428. [DOI: 10.1021/acs.orglett.7b03336] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhong Jin
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ling Chu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yan-Qiao Chen
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
43
|
Whyte A, Olson ME, Lautens M. Palladium-Catalyzed, Norbornene-Mediated, ortho-Amination ipso-Amidation: Sequential C–N Bond Formation. Org Lett 2017; 20:345-348. [DOI: 10.1021/acs.orglett.7b03577] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew Whyte
- Davenport Research
Laboratories,
Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| | - Maxwell E. Olson
- Davenport Research
Laboratories,
Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research
Laboratories,
Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
| |
Collapse
|
44
|
Li Q, Ferreira EM. Meta-Selective C-H Arylation of Aromatic Alcohols with a Readily Attachable and Cleavable Molecular Scaffold. Chemistry 2017; 23:11519-11523. [PMID: 28675786 PMCID: PMC5984653 DOI: 10.1002/chem.201703054] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 01/11/2023]
Abstract
The first example of meta-selective C-H arylations of arene alcohol-based substrates is described. The strategy involves the combination of the transient norbornene strategy with the quinoline-based acetal scaffold to achieve the formation of biaryl compounds. Both a two-step meta-arylation/scaffold cleavage process and a total telescoping procedure are described, highlighting the convenient attributes of attachment, removal, and recovery of the acetal scaffold. Moreover, the meta-arylated compounds can be further derivatized via ortho-selective functionalizations. These processes establish a foundation for catalytic polyfunctionalization of alcohol-based compounds.
Collapse
Affiliation(s)
- Qiankun Li
- Department of Chemistry, University of Georgia, Athens, GA 30602 (USA)
| | - Eric M. Ferreira
- Department of Chemistry, University of Georgia, Athens, GA 30602 (USA)
| |
Collapse
|
45
|
Kotha S, Gunta R. Synthesis of Intricate Fused N-Heterocycles via Ring-Rearrangement Metathesis. J Org Chem 2017; 82:8527-8535. [PMID: 28721727 DOI: 10.1021/acs.joc.7b01299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Herein, a facile synthesis of intricate fused N-heterocycles is disclosed by employing C-H activation and ring-rearrangement metathesis/enyne ring-rearrangement metathesis as key steps. Interestingly, some of these N-heterocyclic products possess the tricyclic core of epimeloscine, deoxycalyciphylline B, daphlongamine H, isodaphlongamine H, and a bioactive alkaloid, annotinolide A, which shows antiaggregation activity against amyloid-β (Aβ)1-42 peptide aggregation. Moreover, various starting materials required in this protocol are easily assembled via C-X bond annulation of 2-bromo-N-protected aniline with norbornadiene or directing group-assisted ruthenium-catalyzed C-H activation of N-methoxybenzamide.
Collapse
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistry, Indian Institute of Technology-Bombay , Powai, Mumbai 400076, India
| | - Rama Gunta
- Department of Chemistry, Indian Institute of Technology-Bombay , Powai, Mumbai 400076, India
| |
Collapse
|
46
|
Cheng G, Wang P, Yu JQ. meta-C-H Arylation and Alkylation of Benzylsulfonamide Enabled by a Palladium(II)/Isoquinoline Catalyst. Angew Chem Int Ed Engl 2017; 56:8183-8186. [PMID: 28516518 PMCID: PMC5553125 DOI: 10.1002/anie.201704411] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Indexed: 12/13/2022]
Abstract
Palladium(II)-catalyzed meta-C-H arylation and alkylation of benzylsulfonamide using 2-carbomethoxynorbornene (NBE-CO2 Me) as a transient mediator are realized by using a newly developed electron-deficient directing group and isoquinoline as a ligand. This protocol features broad substrate scope and excellent functional-group tolerance. The meta-substituted benyzlsulfonamides can be readily transformed into sodium sulfonates, sulfonate esters, and sulfonamides, as well as styrenes by Julia-type olefination. The unique impact of the isoquinoline ligand underscores the importance of subtle matching between ligands and the directing groups.
Collapse
Affiliation(s)
- Guolin Cheng
- Department of Chemistry, The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peng Wang
- Department of Chemistry, The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
47
|
Cheng G, Wang P, Yu JQ. meta-C−H Arylation and Alkylation of Benzylsulfonamide Enabled by a Palladium(II)/Isoquinoline Catalyst. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704411] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guolin Cheng
- Department of Chemistry; The Scripps Research Institute (TSRI); 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Peng Wang
- Department of Chemistry; The Scripps Research Institute (TSRI); 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Jin-Quan Yu
- Department of Chemistry; The Scripps Research Institute (TSRI); 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
48
|
Li GC, Wang P, Farmer ME, Yu JQ. Ligand-Enabled Auxiliary-Free meta-C-H Arylation of Phenylacetic Acids. Angew Chem Int Ed Engl 2017; 56:6874-6877. [PMID: 28485900 PMCID: PMC5535739 DOI: 10.1002/anie.201702686] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Indexed: 01/25/2023]
Abstract
The meta-C-H arylation of free phenylacetic acid was realized using 2-carbomethoxynorbornene (NBE-CO2 Me) as a transient mediator. Both the modified norbornene and the mono-protected 3-amino-2-hydroxypyridine type ligand are crucial for this auxiliary-free meta-C-H arylation reaction. A series of phenylacetic acids, including mandelic acid and phenylglycine, react smoothly with various aryl iodides to provide the meta-arylated products in high yields.
Collapse
Affiliation(s)
- Gen-Cheng Li
- Department of Chemistry, The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peng Wang
- Department of Chemistry, The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Marcus E Farmer
- Department of Chemistry, The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
49
|
Li G, Li D, Zhang J, Shi DQ, Zhao Y. Ligand-Enabled Regioselectivity in the Oxidative Cross-coupling of Arenes with Toluenes and Cycloalkanes Using Ruthenium Catalysts: Tuning the Site-Selectivity from the ortho to meta Positions. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01072] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Guobao Li
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Dongze Li
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jingyu Zhang
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Da-Qing Shi
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yingsheng Zhao
- Key Laboratory of Organic
Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
50
|
Yang L, Fu L, Li G. Incorporation of Carbon Dioxide into Carbamate Directing Groups: Palladium-Catalyzed meta
-C-H Olefination and Acetoxylation of Aniline Derivatives. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700261] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Long Yang
- College of Chemistry; Fuzhou University; Fuzhou 350002 People's Republic of China
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou, Fujian 350002 People's Republic of China
| | - Lei Fu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou, Fujian 350002 People's Republic of China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou, Fujian 350002 People's Republic of China
| |
Collapse
|