1
|
Lee Y, Ko J, Kwon O, Park H, Lee H, Jeong S, Ha B, Hwangbo S, Han J. Biological-chemical conversion process design and machine learning-related life cycle assessment: Bio-lubricant production in a real case study of South Korea. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124877. [PMID: 40058042 DOI: 10.1016/j.jenvman.2025.124877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
This study explores the production of poly alpha olefin (PAO) from biomass as an environmentally friendly alternative to fossil fuel-based methods, aiming to reduce greenhouse gas (GHG) emissions. The primary goal is to design a process for converting 2,000 metric tons of biomass into PAO daily, integrating biological and chemical pathways. Environmental impact is assessed through a life cycle assessment (LCA), comparing this biomass-based method with traditional fossil fuel-derived processes. Key findings include the successful production of 458 metric tons of PAO, with the LCA revealing a 34.8% reduction in GHG emissions (9.88 kg CO2-eq./kg of PAO) compared to fossil fuel-based PAO. Sensitivity analyses on the oligomerization yield (60-70%, base case at 65%) and the recycle ratio of glucose in the bioprocess for octanoic acid production show significant environmental benefits when exceeding a 55% recycle ratio. Additionally, an energy scenario analysis predicts the impact of shifting to renewable energy by 2030. In a scenario where all electric utilities are renewable (RE100 scenario), GHG emissions are estimated at 13.07 kg CO2-eq./kg of PAO, further emphasizing the environmental advantage of biomass-based PAO. This study, through its integration of biological and chemical processes and comprehensive LCA, provides critical insights into the potential of biomass-based materials for reducing GHG emissions, making a substantial contribution to future research in high-value material production from renewable resources.
Collapse
Affiliation(s)
- Yoonjae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Jaerak Ko
- Department of Chemical Engineering, Gyeongsang National University, Jinjudae-ro 501, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea
| | - Oseok Kwon
- Carbon Neutralization TFT.Platform Technology, LG Chem, Seoul, 07796, Republic of Korea
| | - Hoyoung Park
- Research & Development Institute, Lotte Engineering & Construction, Seoul, 06527, Republic of Korea
| | - Hyeonjeong Lee
- Department of Chemical Engineering, Gyeongsang National University, Jinjudae-ro 501, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea
| | - Sumin Jeong
- Department of Chemical Engineering, Gyeongsang National University, Jinjudae-ro 501, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea
| | - Byeongmin Ha
- Department of Chemical Engineering, Gyeongsang National University, Jinjudae-ro 501, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea
| | - Soonho Hwangbo
- Department of Chemical Engineering, Gyeongsang National University, Jinjudae-ro 501, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea; Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinjudae-ro 501, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea.
| | - Jeehoon Han
- Department of Chemical Engineering, Pohang University of Science and Technology, Cheongam-ro 77, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea.
| |
Collapse
|
2
|
Ninkuu V, Liu Z, Qin A, Xie Y, Song X, Sun X. Impact of straw returning on soil ecology and crop yield: A review. Heliyon 2025; 11:e41651. [PMID: 39882467 PMCID: PMC11774808 DOI: 10.1016/j.heliyon.2025.e41651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 08/18/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025] Open
Abstract
Several studies have demonstrated the effect of straw return on enhancing soil ecology, promoting sustainable agricultural practices, and cumulative effects on plant yield. Recent studies have focused on straw return methods and their impact on soil nutrient cycling and the overall physicochemical composition of the soil. Despite the substantial progress and successes, several research gaps in these studies require further investigations to harness the full potential of straw return. This review provides a thorough examination of straw diversity and decomposition mechanisms, the effects of straw on soil microorganisms, the interactions between cellulolytic nitrogen-fixing microbes and lignocellulose biomass, as well as nutrient mineralization, organic matter content, and their influence on plant growth and yield. This review also examined the effects of straw return on plant pathogens and its allelopathic impact on plant growth, highlighting research gaps to encourage further studies that could fully realize the potential benefits of straw return in agricultural fields for optimal plant growth.
Collapse
Affiliation(s)
| | | | - Aizhi Qin
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yajie Xie
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xiao Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xuwu Sun
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| |
Collapse
|
3
|
Zhou L, Gao K, Yu H, Xing R, Liu S, Liu W, Li P, Qin Y. Efficient conversion of chitin to 5-hydroxymethylfurfural in a formic acid/calcium chloride system. Int J Biol Macromol 2024; 283:137697. [PMID: 39566797 DOI: 10.1016/j.ijbiomac.2024.137697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Chitin is a class of biomass second only to cellulose in abundance, and the preparation of platform compounds from chitin holds great promise. Herein, a pretreatment biphasic solvent system and a catalytic two-stage process are combined for the direct synthesis of 5-hydroxymethylfurfural (HMF) from chitin. The first step of the process, i.e., the pretreatment of chitin with a CH3OH/CaCl2 solution, alters the structure of chitin, allowing it to be depolymerized more easily. In the second step of the process, a green and recyclable biphasic catalytic solvent system comprising a formic acid solution and n-butanol is prepared using pretreated chitin (Ca-PC) as the starting reactant, realizing an HMF yield of 47.65 % in 32 min. This HMF yield surpasses that reported in the literature (19.3 %-30 %). The synergistic interaction of Ca2+, introduced via formic acid pretreatment, is the key to the catalytic system of chitin, which disrupts the internal hydrogen bonding of chitin and simultaneously improves HMF selectivity. In summary, we have promoted the depolymerization of chitin using a simple and effective pretreatment process, designed a catalytic system with a green recyclable reaction, and effectively improved the yield of HMF directly prepared from chitin.
Collapse
Affiliation(s)
- Luxiao Zhou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Weixiang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
4
|
Bing RG, Sulis DB, Carey MJ, Manesh MJH, Ford KC, Straub CT, Laemthong T, Alexander BH, Willard DJ, Jiang X, Yang C, Wang JP, Adams MWW, Kelly RM. Beyond low lignin: Identifying the primary barrier to plant biomass conversion by fermentative bacteria. SCIENCE ADVANCES 2024; 10:eadq4941. [PMID: 39423261 PMCID: PMC11488576 DOI: 10.1126/sciadv.adq4941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Renewable alternatives for nonelectrifiable fossil-derived chemicals are needed and plant matter, the most abundant biomass on Earth, provide an ideal feedstock. However, the heterogeneous polymeric composition of lignocellulose makes conversion difficult. Lignin presents a formidable barrier to fermentation of nonpretreated biomass. Extensive chemical and enzymatic treatments can liberate fermentable carbohydrates from plant biomass, but microbial routes offer many advantages, including concomitant conversion to industrial chemicals. Here, testing of lignin content of nonpretreated biomass using the cellulolytic thermophilic bacterium, Anaerocellum bescii, revealed that the primary microbial degradation barrier relates to methoxy substitutions in lignin. This contrasts with optimal lignin composition for chemical pretreatment that favors high S/G ratio and low H lignin. Genetically modified poplar trees with diverse lignin compositions confirm these findings. In addition, poplar trees with low methoxy content achieve industrially relevant levels of microbial solubilization without any pretreatments and with no impact on tree fitness in greenhouse.
Collapse
Affiliation(s)
- Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Daniel B. Sulis
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Morgan J. Carey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mohamad J. H. Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Kathryne C. Ford
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Christopher T. Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Benjamin H. Alexander
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Daniel J. Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Xiao Jiang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Chenmin Yang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Jack P. Wang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Topalian J, Navas L, Ontañon O, Valacco MP, Noseda DG, Blasco M, Peña MJ, Urbanowicz BR, Campos E. Production of a bacterial secretome highly efficient for the deconstruction of xylans. World J Microbiol Biotechnol 2024; 40:266. [PMID: 38997527 DOI: 10.1007/s11274-024-04075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Bacteria within the Paenibacillus genus are known to secrete a diverse array of enzymes capable of breaking down plant cell wall polysaccharides. We studied the extracellular xylanolytic activity of Paenibacillus xylanivorans and examined the complete range of secreted proteins when grown on carbohydrate-based carbon sources of increasing complexity, including wheat bran, sugar cane straw, beechwood xylan and sucrose, as control. Our data showed that the relative abundances of secreted proteins varied depending on the carbon source used. Extracellular enzymatic extracts from wheat bran (WB) or sugar cane straw (SCR) cultures had the highest xylanolytic activity, coincidently with the largest representation of carbohydrate active enzymes (CAZymes). Scaling-up to a benchtop bioreactor using WB resulted in a significant enhancement in productivity and in the overall volumetric extracellular xylanase activity, that was further concentrated by freeze-drying. The enzymatic extract was efficient in the deconstruction of xylans from different sources as well as sugar cane straw pretreated by alkali extrusion (SCRe), resulting in xylobiose and xylose, as primary products. The overall yield of xylose released from SCRe was improved by supplementing the enzymatic extract with a recombinant GH43 β-xylosidase (EcXyl43) and a GH62 α-L-arabinofuranosidase (CsAbf62A), two activities that were under-represented. Overall, we showed that the extracellular enzymatic extract from P. xylanivorans, supplemented with specific enzymatic activities, is an effective approach for targeting xylan within lignocellulosic biomass.
Collapse
Affiliation(s)
- Juliana Topalian
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura Navas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
| | - Ornella Ontañon
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
| | - Maria Pia Valacco
- Centro de Estudios Químicos y Biológicos por Espectrometría de Masa (CEQUIBIEM-FCEN), Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires (UBA-IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Gabriel Noseda
- Instituto de Investigaciones Biotecnológicas (IIBio), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Martín Blasco
- Departamento de Bioprocesos, Instituto Nacional de Tecnología Industrial (INTI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria Jesus Peña
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Eleonora Campos
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina.
| |
Collapse
|
6
|
Castañeda-Barreto A, Olivera-Gonzales P, Tamariz-Angeles C. A natural consortium of thermophilic bacteria from Huancarhuaz hot spring (Ancash-Peru) for promising lignocellulose bioconversion. Heliyon 2024; 10:e27272. [PMID: 38486736 PMCID: PMC10937689 DOI: 10.1016/j.heliyon.2024.e27272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
The lignocellulose bioconversion process is an eco-friendly and green-economy alternative technology that allows the reduction of pollution and global warming, so it is necessary for thermophilic and thermostable hydrolytic enzymes from natural sources. This research aimed to isolate cellulolytic and xylanolytic microbial consortia from Huancarhuaz hot spring (Peru) from sludge or in situ baiting cultured with or without sugarcane bagasse. According to the hydrolytic activities consortium T4 from in situ baiting was selected. It was cultivated in submerged fermentation at 65 °C, pH 6.5 for eight days using LB supplemented with sugar cane bagasse (SCB), pine wood sawdust (PWS), CMC, xylan of birchwood, or micro granular cellulose. Crude extract of culture supplemented with SCB (T4B) showed better endoglucanase and xylanase activities with higher activities at 75 °C and pH 6. In these conditions, cellulase activity was kept up to 57% after 1 h of incubation, while xylanase activity was up to 63% after 72 h. Furthermore, this crude extract released reduced sugars from pretreated SCB and PWS. According to metagenomic analysis of 16S rDNA, Geobacillus was the predominant genus. It was found thermostable genes: a type of endoglucanase (GH5), an endo-xylanase (GH10), and alkali xylanase (GH10) previously reported in Geobacillus sp. strains. Finally, Huancarhuaz hot spring harbors a genetic microbial diversity for lignocellulosic waste bioconversion in high temperatures, and the T4B consortium will be a promising source of novel extreme condition stable enzymes for the saccharification process.
Collapse
Affiliation(s)
- Alberto Castañeda-Barreto
- Facultad de Ciencias del Ambiente, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru
| | - Percy Olivera-Gonzales
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru
| | - Carmen Tamariz-Angeles
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru
| |
Collapse
|
7
|
Manaenkov O, Nikoshvili L, Bykov A, Kislitsa O, Grigoriev M, Sulman M, Matveeva V, Kiwi-Minsker L. An Overview of Heterogeneous Catalysts Based on Hypercrosslinked Polystyrene for the Synthesis and Transformation of Platform Chemicals Derived from Biomass. Molecules 2023; 28:8126. [PMID: 38138614 PMCID: PMC10745566 DOI: 10.3390/molecules28248126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Platform chemicals, also known as chemical building blocks, are substances that serve as starting materials for the synthesis of various value-added products, which find a wide range of applications. These chemicals are the key ingredients for many fine and specialty chemicals. Most of the transformations of platform chemicals are catalytic processes, which should meet the requirements of sustainable chemistry: to be not toxic for humans, to be safe for the environment, and to allow multiple reuses of catalytic materials. This paper presents an overview of a new class of heterogeneous catalysts based on nanoparticles of catalytically active metals stabilized by a polymer matrix of hypercrosslinked polystyrene (HPS). This polymeric support is characterized by hierarchical porosity (including meso- and macropores along with micropores), which is important both for the formation of metal nanoparticles and for efficient mass transfer of reactants. The influence of key parameters such as the morphology of nanoparticles (bimetallic versus monometallic) and the presence of functional groups in the polymer matrix on the catalytic properties is considered. Emphasis is placed on the use of this class of heterogeneous catalysts for the conversion of plant polysaccharides into polyols (sorbitol, mannitol, and glycols), hydrogenation of levulinic acid, furfural, oxidation of disaccharides, and some other reactions that might be useful for large-scale industrial processes that aim to be sustainable. Some challenges related to the use of HPS-based catalysts are addressed and multiple perspectives are discussed.
Collapse
Affiliation(s)
- Oleg Manaenkov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Linda Nikoshvili
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Alexey Bykov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Olga Kislitsa
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Maxim Grigoriev
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Mikhail Sulman
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Valentina Matveeva
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
| | - Lioubov Kiwi-Minsker
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 170026 Tver, Russia; (O.M.); (L.N.); (A.B.); (O.K.); (M.G.); (M.S.); (V.M.)
- Ecole Polytechnique Fédérale de Lausanne, ISIC-FSB-EPFL, CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Suzuki S, Takahashi K. Ionic Liquids as Organocatalysts and Solvents for Lignocellulose Reactions. CHEM REC 2023; 23:e202200264. [PMID: 36638244 DOI: 10.1002/tcr.202200264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Indexed: 01/14/2023]
Abstract
Ionic liquids (ILs) are the only media that can allow the homogeneous organocatalytic reactions of lignocellulosic biomass (lignocellulose), since the designability of their cations and anions offers the dual functions of solubility and catalytic activity. This review provides an account of our recent achievements in the organocatalytic approaches for converting lignocellulose into polymer materials based on the principles of IL design that we have originally established. These methodologies include the simple and mild chemical modification of cellulose and lignin under high conversions, with high selectivity, and/or with efficient atom economy. Similar reactions and subsequent fractionation processes are applied to lignocellulose, and a highly productive reaction system is developed using a twin-screw extruder that is specific to the IL media.
Collapse
Affiliation(s)
- Shiori Suzuki
- Division of Fundamental Agriscience Research, Research Faculty of Agriculture, Hokkaido University, North-9, West-9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Kenji Takahashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
9
|
Xu J, Li H, Alam MA, Muhammad G, Lv Y, Zhao A, Zhang S, Xiong W. Employing Cationic Kraft Lignin as Additive to Enhance Enzymatic Hydrolysis of Corn Stalk. Polymers (Basel) 2023; 15:polym15091991. [PMID: 37177139 PMCID: PMC10180774 DOI: 10.3390/polym15091991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
A water-soluble cationic kraft lignin (named JLQKL50), synthesized by combining quaternization and crosslinking reactions, was used as an additive to enhance the enzymatic hydrolysis of dilute-alkali-pretreated corn stalk. The chemical constitution of JLQKL50 was investigated by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR) and 13C NMR spectroscopy, and elemental analysis. The enzymatic hydrolysis efficiency of corn stalk at solid content of 10% (w/v) was significantly improved from 70.67% to 78.88% after 24 h when JLQKL50 was added at a concentration of 2 g/L. Meanwhile, the enzymatic hydrolysis efficiency after 72 h reached 91.11% with 10 FPU/g of cellulase and 97.92% with 15 FPU/g of cellulase. In addition, JLQKL50 was found capable of extending the pH and temperature ranges of enzymatic hydrolysis to maintain high efficiency (higher than 70%). The decrease in cellulase activity under vigorous stirring with the addition of JLQKL50 was 17.4%, which was much lower than that (29.7%) without JLQKL50. The addition of JLQKL50 reduced the nonproductive adsorption of cellulase on the lignin substrate and improved the longevity, dispersity, and stability of the cellulase by enabling electrostatic repulsion. Therefore, the enzymatic hydrolysis of the corn stalk was enhanced. This study paves the way for the design of sustainable lignin-based additives to boost the enzymatic hydrolysis of lignocellulosic biomass.
Collapse
Affiliation(s)
- Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Center for Outstanding Overseas Scientists, Zhengzhou 450001, China
| | - Huihua Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Gul Muhammad
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Anqi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shen Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenlong Xiong
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- Henan Center for Outstanding Overseas Scientists, Zhengzhou 450001, China
| |
Collapse
|
10
|
Piątek-Gołda W, Sulej J, Grąz M, Waśko P, Janik-Zabrotowicz E, Osińska-Jaroszuk M. Multi-Enzymatic Synthesis of Lactobionic Acid Using Wood-Degrading Enzymes Produced by White Rot Fungi. Metabolites 2023; 13:metabo13040469. [PMID: 37110128 PMCID: PMC10146812 DOI: 10.3390/metabo13040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Enzymes produced by white rot fungi are involved in the synthesis of secondary metabolites with valuable biotechnological properties. One of these metabolites is lactobionic acid (LBA). The aim of this study was to characterize a novel enzyme system consisting of a cellobiose dehydrogenase from Phlebia lindtneri (PlCDH), a laccase from Cerrena unicolor (CuLAC), a redox mediator (ABTS or DCPIP), and lactose as a substrate. We used quantitative (HPLC) and qualitative methods (TLC, FTIR) to characterise the obtained LBA. The free radical scavenging effect of the synthesised LBA was assessed with the DPPH method. Bactericidal properties were tested against Gram-negative and Gram-positive bacteria. We obtained LBA in all the systems tested; however, the study showed that the temperature of 50 °C with the addition of ABTS was the most advantageous condition for the synthesis of lactobionic acid. A mixture with 13 mM LBA synthesised at 50 °C with DCPIP showed the best antioxidant properties (40% higher compared with the commercial reagent). Furthermore, LBA had an inhibitory effect on all the bacteria tested, but the effect was better against Gram-negative bacteria with growth inhibition no lower than 70%. Summarizing the obtained data, lactobionic acid derived in a multienzymatic system is a compound with great biotechnological potential.
Collapse
Affiliation(s)
- Wiktoria Piątek-Gołda
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| | - Justyna Sulej
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| | - Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| | - Piotr Waśko
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
- Core Facility of Biospectroscopy, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| | - Ewa Janik-Zabrotowicz
- Core Facility of Biospectroscopy, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| | - Monika Osińska-Jaroszuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| |
Collapse
|
11
|
Non-Thermal Plasma as a Biomass Pretreatment in Biorefining Processes. Processes (Basel) 2023. [DOI: 10.3390/pr11020536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Climatic changes and the growing population call for innovative solutions that are able to produce biochemicals by adopting environmentally sustainable procedures. The biorefinery concept meets this requirement. However, one of the main drawbacks of biorefineries is represented by the feedstocks’ pretreatment. Lately, scientific research has focused on non-thermal plasma, which is an innovative and sustainable pretreatment that is able to obtain a high sugar concentration. In the present review, literature related to the use of non-thermal plasma for the production of fermentable sugar have been collected. In particular, its sugar extraction, time, and energy consumption have been compared with those of traditional biomass pretreatments. As reported, on one hand, this emerging technology is characterized by low costs and no waste production; on the other hand, the reactor’s configuration must be optimized to reduce time and energy demand.
Collapse
|
12
|
Shi CY, Zhan YF, Liu Y, Zhang ZP, Shen XY, Wu CK, Bai ZY, Zhang ZA, Wang J. Hydrophobic effects enhance xylooligosaccharides production from mulberry branch using xylanase-methacrylate conjugate-catalyzed hydrolysis. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
13
|
da Cruz MGA, Onwumere JN, Chen J, Beele B, Yarema M, Budnyk S, Slabon A, Rodrigues BVM. Solvent-free synthesis of photoluminescent carbon nanoparticles from lignin-derived monomers as feedstock. GREEN CHEMISTRY LETTERS AND REVIEWS 2023; 16. [DOI: 10.1080/17518253.2023.2196031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/22/2023] [Indexed: 01/06/2025]
Affiliation(s)
- Márcia G. A. da Cruz
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Joy N. Onwumere
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Jianhong Chen
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Björn Beele
- Chair of Inorganic Chemistry, University of Wuppertal, Wuppertal, Germany
| | - Maksym Yarema
- Department of Information Technology and Electrical Engineering, Institute for Electronics, ETH Zurich, Zurich, Switzerland
| | | | - Adam Slabon
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Chair of Inorganic Chemistry, University of Wuppertal, Wuppertal, Germany
| | - Bruno V. M. Rodrigues
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Chair of Inorganic Chemistry, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
14
|
Ultrafiltration-based diafiltration for post-delignification fractionation of lignin from a deep eutectic solvent comprised of lactic acid and choline chloride. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Deivayanai VC, Yaashikaa PR, Senthil Kumar P, Rangasamy G. A comprehensive review on the biological conversion of lignocellulosic biomass into hydrogen: Pretreatment strategy, technology advances and perspectives. BIORESOURCE TECHNOLOGY 2022; 365:128166. [PMID: 36283663 DOI: 10.1016/j.biortech.2022.128166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 05/16/2023]
Abstract
The globe has dependent on energy generation and utilization for many years; conversely, ecological concerns constrained the world to view hydrogen as an alternative for economic development. Lignocellulosic biomass is broadly accessible as a low-cost renewable feedstock and nonreactive nature; it has received a lot of consideration as a global energy source and the most attractive alternative to replace fossil natural substances for energy production. Pretreatment of lignocellulosic biomass is essential to advance its fragmentation and lower the lignin content for sustainable energy generation. This review's goal is to provide the different pretreatment strategies for enlarging the solubility and surface area of lignocellulosic biomass. The biological conversion of lignocellulosic biomass to hydrogen was reviewed and operational conditions and enhancing methods were discussed. This review summarizes the working conditions, parameters, yield percentages, techno-economic analysis, challenges, and future recommendations on the direct conversion of biomass to hydrogen.
Collapse
Affiliation(s)
- V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
16
|
Pandit C, Pandit S, Pant M, Ghosh D, Agarwal D, Lahiri D, Nag M, Ray RR. A Concise Review on the Synthesis, and Characterization of the Pyrolytic Lignocellulosic Biomass for Oil, Char and Gas Production: Recent Advances and its Environmental Application. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Conversion of dihydroxyacetone to carboxylic acids on pretreated clinoptilolite modified with iron, copper, and cobalt. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Remón J, Sevilla-Gasca R, Frecha E, Pinilla JL, Suelves I. Direct conversion of almond waste into value-added liquids using carbon-neutral catalysts: Hydrothermal hydrogenation of almond hulls over a Ru/CNF catalyst. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154044. [PMID: 35202688 DOI: 10.1016/j.scitotenv.2022.154044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The almond industry leaves behind substantial amounts of by-products, with almond hulls being the primary residue generated. Given that one way to improve food security is by decreasing waste to reduce environmental impacts, developing sustainable processes to manage this by-product is necessary. Herein, we report on the hydrothermal hydrogenation of almond hulls over a carbon-neutral Ru supported on carbon nanofibres (Ru/CNF) catalyst, addressing the temperature, H2 pressure, time and catalyst loading. These variables controlled the distribution of the reaction products: gas (0-5%), liquid (49-82%) and solid (13-51%), and ruled the composition of the liquid effluent. This aqueous fraction comprised oligomers (46-81 wt%), saccharides (2-7 wt%), sugar alcohols (2-15 wt%), polyhydric alcohols (1-8 wt%) and carboxylic acids (7-31 wt%). The temperature and reaction time influenced the extension of hydrolysis, depolymerisation, deamination, hydrolysis, hydrogenation and dehydration reactions. Additionally, the initial H2 pressure and catalyst loading kinetically promoted these transformations, whose extensions were ruled by the amount of H2 effectively dissolved in the reaction medium and the prevalence of hydrogenations over dehydration/decarboxylation reactions or vice versa depending on the catalyst loading. Process optimisation revealed that it is feasible to convert up to 67% of almond hulls into merchantable oligomers at 230 °C, 35 bar initial H2, using 1 g catalyst/g biomass (0.4 g Ru/g biomass) for 360 min. Additionally, decreasing the temperature to 187 °C without modifying the other parameters could convert this material into oligomers (31 wt%) and small oxygenates (17 wt% carboxylic acids, 11 wt% sugar alcohols and 6 wt% polyhydric alcohols) concurrently. The theoretical energy assessment revealed that the total and partial combustion of the spent solid material could provide the required energy for the process and allow catalyst recovery and reutilisation. This environmental friendliness and holistic features exemplify a landmark step-change to valorising unavoidable food waste.
Collapse
Affiliation(s)
- Javier Remón
- Instituto de Carboquímica, CSIC, C/Miguel Luesma Castán 4, 50018 Zaragoza, Spain.
| | - Raquel Sevilla-Gasca
- Instituto de Carboquímica, CSIC, C/Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - Esther Frecha
- Instituto de Carboquímica, CSIC, C/Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - José Luis Pinilla
- Instituto de Carboquímica, CSIC, C/Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - Isabel Suelves
- Instituto de Carboquímica, CSIC, C/Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| |
Collapse
|
19
|
Ying W, Ouyang J, Lian Z, Xu Y, Zhang J. Lignin removal improves xylooligosaccharides production from poplar by acetic acid hydrolysis. BIORESOURCE TECHNOLOGY 2022; 354:127190. [PMID: 35452823 DOI: 10.1016/j.biortech.2022.127190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Organic acid hydrolysis is a potential method for xylooligosaccharides (XOS) production from lignocelluloses. However, the effect of lignin content on XOS production using organic acid hydrolysis remains unclear. In this work, the effect of delignification on XOS production from poplar by acetic acid (AC) hydrolysis was investigated. Hydrogen peroxide-acetic acid (HPAC) pretreatment catalyzed by 0-200 mM H2SO4 (HPAC0-HPAC200) removed 21.6-86.5% of lignin in poplar. HPAC pretreatment increased the xylan accessibility to AC solution, thus increasing the xylan removal during AC hydrolysis. An appropriate delignification (61.7%) resulted in the highest XOS yield of 37.4% by AC hydrolysis, increased by 29.9% compared to the optimal XOS yield (28.8%) from raw poplar. After alkaline post-incubation, the glucose yield of poplar residue rose from 57.1% to 78.6%. This work developed a delignification process to efficiently improve XOS and monosaccharides production from poplar.
Collapse
Affiliation(s)
- Wenjun Ying
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Zhina Lian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; College of Forestry, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
20
|
Raina D, Kumar V, Saran S. A critical review on exploitation of agro-industrial biomass as substrates for the therapeutic microbial enzymes production and implemented protein purification techniques. CHEMOSPHERE 2022; 294:133712. [PMID: 35081402 DOI: 10.1016/j.chemosphere.2022.133712] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Annually, a huge amount of waste is generated by the industries that use agricultural biomass. Researchers have looked into employing this cheap and renewable agro-biomass as a substrate for enzyme production via fermentation processes to meet the ever-increasing worldwide need. Although there are a number of sources for enzyme extraction, microbial sources have dominated industrial sectors due to their easy availability and rapid growth. Microbial enzymes are currently used in a variety of industries, including pharmaceuticals, food, biofuels, textiles, paper, detergents, and so on, and using these nutritious feedstocks not only reduces production costs but also helps to reduce environmental concerns. The present review focuses on the therapeutic microbial enzymes produced using different agro-industrial biomass as raw materials, with down-streaming techniques for obtaining a final pure product. Additionally, the article also discussed biomass pretreatment processes, including physical, chemical and biological. The type of pretreatment method to be used is mostly governed by the intended use of the major molecular components of biomass (cellulose, hemicelluloses and lignin). Finally, purification challenges are included. All of this information will be useful in the industrial synthesis of high-purity targeted enzymes if the crucial aspects that have been discussed are taken into account.
Collapse
Affiliation(s)
- Diksha Raina
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinod Kumar
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Saurabh Saran
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
21
|
Son J, Joo JC, Baritugo KA, Jeong S, Lee JY, Lim HJ, Lim SH, Yoo JI, Park SJ. Consolidated microbial production of four-, five-, and six-carbon organic acids from crop residues: Current status and perspectives. BIORESOURCE TECHNOLOGY 2022; 351:127001. [PMID: 35292386 DOI: 10.1016/j.biortech.2022.127001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The production of platform organic acids has been heavily dependent on petroleum-based industries. However, petrochemical-based industries that cannot guarantee a virtuous cycle of carbons released during various processes are now facing obsolescence because of the depletion of finite fossil fuel reserves and associated environmental pollutions. Thus, the transition into a circular economy in terms of the carbon footprint has been evaluated with the development of efficient microbial cell factories using renewable feedstocks. Herein, the recent progress on bio-based production of organic acids with four-, five-, and six-carbon backbones, including butyric acid and 3-hydroxybutyric acid (C4), 5-aminolevulinic acid and citramalic acid (C5), and hexanoic acid (C6), is discussed. Then, the current research on the production of C4-C6 organic acids is illustrated to suggest future directions for developing crop-residue based consolidated bioprocessing of C4-C6 organic acids using host strains with tailor-made capabilities.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kei-Anne Baritugo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seona Jeong
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
22
|
Nitro-Oxidation Process for Fabrication of Efficient Bioadsorbent from Lignocellulosic Biomass by Combined Liquid-Gas Phase Treatment. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Lu H, Yadav V, Bilal M, Iqbal HMN. Bioprospecting microbial hosts to valorize lignocellulose biomass - Environmental perspectives and value-added bioproducts. CHEMOSPHERE 2022; 288:132574. [PMID: 34656619 DOI: 10.1016/j.chemosphere.2021.132574] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023]
Abstract
Current biorefinery approaches comprehend diverse biomass feedstocks and various conversion techniques to produce a variety of high-value biochemicals and biofuels. Lignocellulose is among the most abundant, bio-renewable, and sustainable bioresources on earth. It is regarded as a prodigious alternative raw feedstock to produce a large number of chemicals and biofuels. Producing biofuels and platform chemicals from lignocellulosic biomasses represent advantages in terms of energy and environmental perspectives. Lignocellulose is a main structural constituent of non-woody and woody plants consisting of lignin, cellulose, and hemicellulose. Efficient exploitation of all these components is likely to play a considerable contribution to the economic viability of the processes since lignocellulosic biomass often necessitate pretreatment for liberating fermentable sugars and added value products that might serve as feedstocks for microbial strains to produce biofuels and biochemicals. Developing robust microbial culture and advancements in metabolic engineering approaches might lead to the rapid construction of cell factories for the effective biotechnological transformation of biomass feedstocks to produce biorefinery products. In this comprehensive review, we discuss the recent progress in the valorization of agro-industrial wastes as prospective microbial feedstocks to produce a spectrum of high-value products, such as microbial pigments, biopolymers, industrial biocatalysts, biofuels, biologically active compounds, bioplastics, biosurfactants, and biocontrol agents with therapeutic and industrial potentialities. Lignocellulosic biomass architecture, compositional aspects, revalorization, and pretreatment strategies are outlined for efficient conversion of lignocellulosic biomass. Moreover, metabolic engineering approaches are briefly highlighted to develop cell factories to make the lignocellulose biorefinery platforms appealing.
Collapse
Affiliation(s)
- Hedong Lu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
24
|
Abstract
Globally, lignocellulosic biomass has great potential for industrial production of materials and products, but this resource must be used in an environmentally friendly, socially acceptable and sustainable manner. Wood and agricultural residues such as walnut shells as lignocellulosic biomass are one of the most affordable and important renewable resources in the world, which can partially replace fossil resources. The overall objective of the research is to provide background information that supports new applications of walnut shells in a biorefinery context and to increase the economic value of these non-wood forest products. This paper presents the properties characterization of liquefied biomass according to their chemical composition. All results were compared to liquefied wood. In this study, the liquefaction properties of five different walnut shell particle sizes were determined using glycerol as the liquefaction reagent under defined reaction conditions. The liquefied biomass was characterized for properties such as percentage residue, degree of liquefaction, and hydroxyl OH numbers. The chemical composition of the same biomass was investigated for its influence on the liquefaction properties. Accordingly, the main objective of this study was to determine the liquefaction properties of different particle sizes as a function of their chemical composition, also in comparison with the chemical composition of wood. The study revealed that walnut shell biomass can be effectively liquefied into glycerol using H2SO4 as the catalyst, with liquefaction efficiency ranging from 89.21 to 90.98%.
Collapse
|
25
|
Banerjee A, Show BK, Chaudhury S, Balachandran S. Biological pretreatment for enhancement of biogas production. COST EFFECTIVE TECHNOLOGIES FOR SOLID WASTE AND WASTEWATER TREATMENT 2022:101-114. [DOI: 10.1016/b978-0-12-822933-0.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
26
|
Saini S, Sharma KK. Fungal lignocellulolytic enzymes and lignocellulose: A critical review on their contribution to multiproduct biorefinery and global biofuel research. Int J Biol Macromol 2021; 193:2304-2319. [PMID: 34800524 DOI: 10.1016/j.ijbiomac.2021.11.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 01/15/2023]
Abstract
The continuous increase in the global energy demand has diminished fossil fuel reserves and elevated the risk of environmental deterioration and human health. Biorefinery processes involved in producing bio-based energy-enriched chemicals have paved way to meet the energy demands. Compared to the thermochemical processes, fungal system biorefinery processes seems to be a promising approach for lignocellulose conversion. It also offers an eco-friendly and energy-efficient route for biofuel generation. Essentially, ligninolytic white-rot fungi and their enzyme arsenals degrade the plant biomass into structural constituents with minimal by-products generation. Hemi- or cellulolytic enzymes from certain soft and brown-rot fungi are always favoured to hydrolyze complex polysaccharides into fermentable sugars and other value-added products. However, the cost of saccharifying enzymes remains the major limitation, which hinders their application in lignocellulosic biorefinery. In the past, research has been focused on the role of lignocellulolytic fungi in biofuel production; however, a cumulative study comprising the contribution of the lignocellulolytic enzymes in biorefinery technologies is still lagging. Therefore, the overarching goal of this review article is to discuss the major contribution of lignocellulolytic fungi and their enzyme arsenal in global biofuel research and multiproduct biorefinery.
Collapse
Affiliation(s)
- Sonu Saini
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
27
|
Djakovitch L, Essayem N, Eternot M, Rataboul F. A Landscape of Lignocellulosic Biopolymer Transformations into Valuable Molecules by Heterogeneous Catalysis in C'Durable Team at IRCELYON. Molecules 2021; 26:molecules26226796. [PMID: 34833888 PMCID: PMC8621028 DOI: 10.3390/molecules26226796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
This review article highlights part of the research activity of the C’Durable team at IRCELYON in the field of sustainable chemistry. This review presents a landscape of the work performed on the valorization of lignocellulosic biopolymers. These studies intend to transform cellulose, hemicellulose and lignin into valuable molecules. The methodology usually consists in evaluating the behavior of the biopolymers in the absence of catalyst under various conditions (solvent, temperature), and then to assess the influence of a catalyst, most often a heterogeneous catalyst, on the reactivity. The most significant results obtained on the upgrading of cellulose and lignin, which have been mainly investigated in the team, will be presented with an opening on studies involving raw lignocellulose.
Collapse
|
28
|
Robledo-Ortíz JR, Martín Del Campo AS, Blackaller JA, González-López ME, Pérez Fonseca AA. Valorization of Sugarcane Straw for the Development of Sustainable Biopolymer-Based Composites. Polymers (Basel) 2021; 13:polym13193335. [PMID: 34641150 PMCID: PMC8512035 DOI: 10.3390/polym13193335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Sugarcane straw (SCS) is a common agro-industrial waste that is usually incinerated or discarded in fields after harvesting, increasing the importance of developing added-value applications for this residue. In this study, sustainable biocomposites were produced, and the effect of sugarcane straw as a filler/reinforcement of commercial biopolymers was evaluated. Biocomposites were prepared using polylactic acid (PLA), polyhydroxybutyrate (PHB), polyhydroxybutyrate-co-hydroxyvalerate (PHBV), or green polyethylene (Green-PE) with different fiber contents (20, 30, and 40 wt.%). Dry-blending followed by compression molding was used for the biocomposites preparation. The results showed that PLA, PHB, and PHBV biocomposites retained the same impact strength as the neat matrices, even with 40 wt.% of sugarcane straw. The flexural and tensile modulus of PLA, PHB, and PHBV biocomposites increased with 20% of SCS, whereas, in Green-PE biocomposites, these properties increased at all fiber contents. Since any compatibilizer was used, both the flexural and tensile strength decreased with the addition of SCS. However, even with the highest content of SCS, the tensile and flexural strength values were around 20 MPa, making these materials competitive for specific industrial applications.
Collapse
Affiliation(s)
- Jorge R Robledo-Ortíz
- Department of Wood, Cellulose and Paper, University of Guadalajara, Zapopan 45510, Mexico
| | | | - Juan A Blackaller
- Department of Chemical Engineering, University of Guadalajara, Guadalajara 44430, Mexico
| | | | - Aida A Pérez Fonseca
- Department of Chemical Engineering, University of Guadalajara, Guadalajara 44430, Mexico
| |
Collapse
|
29
|
Li J, Liu Z, Feng C, Liu X, Qin F, Liang C, Bian H, Qin C, Yao S. Green, efficient extraction of bamboo hemicellulose using freeze-thaw assisted alkali treatment. BIORESOURCE TECHNOLOGY 2021; 333:125107. [PMID: 33878499 DOI: 10.1016/j.biortech.2021.125107] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
The premise of high value utilization of lignocellulosic biomass is effective separation of hemicellulose. In this paper, the extraction of bamboo hemicellulose using freeze-thaw assisted alkali treatment (FAT) was studied. The effect of alkali concentration, alkali treatment time, freezing temperature, and freeze-thaw time on the main components was studied. Bamboo was frozen at -30 °C for 12 h, thawed at room temperature, and then treated at 75 °C for 90 min with 7.0% alkali. The extraction rate of hemicellulose was as high as 64.71%. The purity of hemicellulose samples using conventional AT decreased from 82.63% to 78.56%. Hemicellulose with the same yield as that of conventional alkali treatment was obtained by further reducing the alkali concentration. The purity of hemicellulose samples increased from 82.63% to 89.45%. It had a higher purity, higher molecular weight, and lower polydispersity. A new, green and efficient alkaline extraction method for hemicellulose was developed.
Collapse
Affiliation(s)
- Jing Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zhaomeng Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengqi Feng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xiaoying Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Fangyu Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
30
|
Hu Y, Shi CY, Xun XM, Huang BR, You S, Wu FA, Wang J. Xylanase-polymer conjugates as new catalysts for xylooligosaccharides production from lignocellulose. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Dhali K, Ghasemlou M, Daver F, Cass P, Adhikari B. A review of nanocellulose as a new material towards environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145871. [PMID: 33631573 DOI: 10.1016/j.scitotenv.2021.145871] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Synthetic polymers, commonly referred to as plastics, are anthropogenic contaminants that adversely affect the natural ecosystems. The continuous disposal of long lifespan plastics has resulted in the accumulation of plastic waste, leading to significant pollution of both marine and terrestrial habitats. Scientific pursuit to seek environment-friendly materials from renewable resources has focused on cellulose, the primary reinforcement component of the cell wall of plants, as it is the most abundantly available biopolymer on earth. This paper provides an overview on the current state of science on nanocellulose research; highlighting its extraction procedures from lignocellulosic biomass. Literature shows that the process used to obtain nanocellulose from lignocellulosic biomass greatly influences its morphology, properties and surface chemistry. The efficacy of chemical methods that use alkali, acid, bleaching agents, ionic liquids, deep eutectic solvent for pre-treatment of biomass is discussed. There has been a continuous endeavour to optimize the pre-treatment protocol as it is specific to lignocellulosic biomass and also depends on factors such as nature of the biomass, process and environmental parameters and economic viability. Nanofibers are primarily isolated through mechanical fibrillation while nanocrystals are predominantly extracted using acid hydrolysis. A concise overview on the ways to improve the yield of nanocellulose from cellulosic biomass is also presented in this review. This work also reviews the techniques used to modify the surface properties of nanocellulose by functionalizing surface hydroxyl groups to impart desirable hydrophilic-hydrophobic balance. An assessment on the emerging application of nanocellulose with an emphasis on development of nanocomposite materials for designing environmentally sustainable products is incorporated. Finally, the status of the industrial production of nanocellulose presented, which indicates that there is a continuously increased demand for cellulose nanomaterials. The demand for cellulose is expected to increase further due to its increasing and broadening applications.
Collapse
Affiliation(s)
- Kingshuk Dhali
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; Department of Post-Harvest Engineering, Faculty of Agricultural Engineering, Bidhan Chandra Krishi Viswavidyalaya, Nadia, W.B., India
| | - Mehran Ghasemlou
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Fugen Daver
- School of Engineering, RMIT University, Melbourne, VIC 3083, Australia
| | - Peter Cass
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO) Clayton, VIC 3168, Australia
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| |
Collapse
|
32
|
Rashid T, Sher F, Khan AS, Khalid U, Rasheed T, Iqbal HM, Murugesan T. Effect of protic ionic liquid treatment on the pyrolysis products of lignin extracted from oil palm biomass. FUEL 2021; 291:120133. [DOI: 10.1016/j.fuel.2021.120133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Nelson K, Muge E, Wamalwa B. Cellulolytic Bacillus species isolated from the gut of the desert locust Schistocerca gregaria. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2020.e00665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
34
|
Devi MM, Aggarwal N, Saravanamurugan S. Rice Straw: A Major Renewable Lignocellulosic Biomass for Value-Added Carbonaceous Materials. CURRENT GREEN CHEMISTRY 2020. [DOI: 10.2174/2213346106666191127120259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Carbonaceous materials are proven to be vital in day-to-day life as well as in advanced science
and technology applications. Rice straw, a secondary agricultural lignocellulosic biomass, has
drawn great attention for the production of value-added carbonaceous material. Because, it can provide
an alternative economic, greener and sustainable resource of carbon to non-renewable fossil fuelbased
precursors while controlling the worsening situation of environmental pollution due to improper
disposal and stubble burning. In this review, recent developments in the production of carbonaceous
materials from rice straw are presented. Biochar and activated carbon were reported to be the prime
carbonaceous materials prepared from the rice straw. Thus, pyrogenic preparation of biochar and the
influence of its pyrolysis temperature to the yield, composition, surface area, porosity and morphology
are preliminarily discussed. This is followed by a detailed discussion on the preparation of activated
carbon with an emphasis on the influencing reaction factors for improving the characteristic properties
of the activated carbons. Additionally, the major characterization techniques dealing with determining
the surface area and porosity (BET analyzer) and microstructure (secondary electron microscope
(SEM) and transmission electron microscope (TEM)) for both the carbonaceous materials are also discussed.
Finally, major applications of both the carbonaceous materials are briefly reviewed. Thus, the
present review clearly highlights the usefulness of agricultural lignocellulosic waste rice straw for the
conversion of waste to value-added carbonaceous materials.
Collapse
Affiliation(s)
- Mayanglambam Manolata Devi
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali-140306, Punjab, India
| | - Nidhi Aggarwal
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali-140306, Punjab, India
| | - Shunmugavel Saravanamurugan
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali-140306, Punjab, India
| |
Collapse
|
35
|
Herrera C, Pinto‐Neira J, Fuentealba D, Sepúlveda C, Rosenkranz A, García‐Fierro JL, González M, Escalona N. Effect of Ni Metal Content on Emulsifying Properties of Ni/CNTox Catalysts for Catalytic Conversion of Furfural in Pickering Emulsions. ChemCatChem 2020. [DOI: 10.1002/cctc.202001045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- C. Herrera
- Departamento de Química física Facultad de Química y Farmacia Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Macul, Santiago Chile
- ANID – Millennium Science Initiative Program-Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC), Av. Vicuña Mackenna 4860 Macul, Santiago Chile
| | - J. Pinto‐Neira
- Departamento de Química física Facultad de Química y Farmacia Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Macul, Santiago Chile
- ANID – Millennium Science Initiative Program-Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC), Av. Vicuña Mackenna 4860 Macul, Santiago Chile
| | - D. Fuentealba
- Departamento de Química física Facultad de Química y Farmacia Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Macul, Santiago Chile
| | - C. Sepúlveda
- ANID – Millennium Science Initiative Program-Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC), Av. Vicuña Mackenna 4860 Macul, Santiago Chile
- Facultad de Ciencias Químicas Universidad de Concepción Chile
- Casilla 160 C Universidad de Concepción Concepción Chile
| | - A. Rosenkranz
- Departamento de Ingeniería Química Biotecnología y Materiales Facultad de Ciencias Físicas y Matemáticas Universidad de Chile Av. Beaucheff 851 Santiago Chile
| | - J. L. García‐Fierro
- Instituto de Catálisis y Petroleoquímica CSIC C/Marie Curie 2, Cantoblanco Madrid Spain
| | - M. González
- Departamento de Ingeniería y gestión de la construcción Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Macul, Santiago Chile
| | - N. Escalona
- Departamento de Química física Facultad de Química y Farmacia Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Macul, Santiago Chile
- ANID – Millennium Science Initiative Program-Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC), Av. Vicuña Mackenna 4860 Macul, Santiago Chile
- Departamento de Ingeniería Química y Bioprocesos Escuela de Ingeniería Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Macul, Santiago Chile
- Unidad de Desarrollo Tecnológico Universidad de Concepción Avenida Cordillera N° 3624, Parque Industrial Coronel Coronel, Concepciòn Chile
| |
Collapse
|
36
|
Ahuja V, Macho M, Ewe D, Singh M, Saha S, Saurav K. Biological and Pharmacological Potential of Xylitol: A Molecular Insight of Unique Metabolism. Foods 2020; 9:E1592. [PMID: 33147854 PMCID: PMC7693686 DOI: 10.3390/foods9111592] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Xylitol is a white crystalline, amorphous sugar alcohol and low-calorie sweetener. Xylitol prevents demineralization of teeth and bones, otitis media infection, respiratory tract infections, inflammation and cancer progression. NADPH generated in xylitol metabolism aid in the treatment of glucose-6-phosphate deficiency-associated hemolytic anemia. Moreover, it has a negligible effect on blood glucose and plasma insulin levels due to its unique metabolism. Its diverse applications in pharmaceuticals, cosmetics, food and polymer industries fueled its market growth and made it one of the top 12 bio-products. Recently, xylitol has also been used as a drug carrier due to its high permeability and non-toxic nature. However, it become a challenge to fulfil the rapidly increasing market demand of xylitol. Xylitol is present in fruit and vegetables, but at very low concentrations, which is not adequate to satisfy the consumer demand. With the passage of time, other methods including chemical catalysis, microbial and enzymatic biotransformation, have also been developed for its large-scale production. Nevertheless, large scale production still suffers from high cost of production. In this review, we summarize some alternative approaches and recent advancements that significantly improve the yield and lower the cost of production.
Collapse
Affiliation(s)
- Vishal Ahuja
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, India;
| | - Markéta Macho
- Laboratory of Algal Biotechnology—Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (M.M.); (D.E.); (S.S.)
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Daniela Ewe
- Laboratory of Algal Biotechnology—Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (M.M.); (D.E.); (S.S.)
| | - Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India;
| | - Subhasish Saha
- Laboratory of Algal Biotechnology—Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (M.M.); (D.E.); (S.S.)
| | - Kumar Saurav
- Laboratory of Algal Biotechnology—Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (M.M.); (D.E.); (S.S.)
| |
Collapse
|
37
|
Garedew M, Lin F, Song B, DeWinter TM, Jackson JE, Saffron CM, Lam CH, Anastas PT. Greener Routes to Biomass Waste Valorization: Lignin Transformation Through Electrocatalysis for Renewable Chemicals and Fuels Production. CHEMSUSCHEM 2020; 13:4214-4237. [PMID: 32460408 DOI: 10.1002/cssc.202000987] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Lignin valorization is essential for biorefineries to produce fuels and chemicals for a sustainable future. Today's biorefineries pursue profitable value propositions for cellulose and hemicellulose; however, lignin is typically used mainly for its thermal energy value. To enhance the profit potential for biorefineries, lignin valorization would be a necessary practice. Lignin valorization is greatly advantaged when biomass carbon is retained in the fuel and chemical products and when energy quality is enhanced by electrochemical upgrading. Though lignin upgrading and valorization are very desirable in principle, many barriers involved in lignin pretreatment, extraction, and depolymerization must be overcome to unlock its full potential. This Review addresses the electrochemical transformation of various lignins with the aim of gaining a better understanding of many of the barriers that currently exist in such technologies. These studies give insight into electrochemical lignin depolymerization and upgrading to value-added commodities with the end goal of achieving a global low-carbon circular economy.
Collapse
Affiliation(s)
- Mahlet Garedew
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, CT, 06511, USA
| | - Fang Lin
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Bing Song
- Scion, 49 Sala Street, Private Bag 3020, Rotorua, 3020, New Zealand
| | - Tamara M DeWinter
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, CT, 06511, USA
| | - James E Jackson
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Christopher M Saffron
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Chun Ho Lam
- City University of Hong Kong, School of Energy and Environment, Kowloon Tong, China
| | - Paul T Anastas
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, CT, 06511, USA
- School of Public Health, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
38
|
Sekeri SH, Ibrahim MNM, Umar K, Yaqoob AA, Azmi MN, Hussin MH, Othman MBH, Malik MFIA. Preparation and characterization of nanosized lignin from oil palm (Elaeis guineensis) biomass as a novel emulsifying agent. Int J Biol Macromol 2020; 164:3114-3124. [PMID: 32853611 DOI: 10.1016/j.ijbiomac.2020.08.181] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 12/01/2022]
Abstract
A study was carried out to determine the effectiveness of lignin, extracted from oil palm (Elaeis guineensis) biomass as water-in-oil (W/O) emulsifying agent. To achieve this goal, soda lignin (SL) was extracted via soda pulping process and a series of nanosized soda lignin (NSL) were prepared using homogenizer at three different speed i.e. 10,400 rpm (NSL 10), 11,400 rpm (NSL 11) and 12,400 rpm (NSL 12) for one hour. All prepared samples were characterized by FT-IR, UV-Vis spectroscopy, thermogravimetric analysis (TGA), zeta potential analyser, Transmission Electron Microscope (TEM) and Extreme High Resolution Field Emission Scanning Electron Microscope (XHR-FESEM). The result of FTIR showed that there is no prominent change occurred in spectra of all samples while a good stability was reflected by TGA curves. The percentage of creaming index and visual observations of all samples demonstrated that NSL 12 and dosage 2 g (out of 1 g, 1.5 g and 2 g) were found to be the best among all samples. Furthermore, the results of IFT indicate that NSL 12 was proven to be more stable than the commercial product. Therefore, NSL 12 is selected for toxicological studies and was found safe in both, in vitro and in vivo studies.
Collapse
Affiliation(s)
- Siti Hajar Sekeri
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Mohamad Nasir Mohamad Ibrahim
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Khalid Umar
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Asim Ali Yaqoob
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Mohamad Nurul Azmi
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Muhammad Bisyrul Hafi Othman
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | | |
Collapse
|
39
|
Recent Insights into Lignocellulosic Biomass Pyrolysis: A Critical Review on Pretreatment, Characterization, and Products Upgrading. Processes (Basel) 2020. [DOI: 10.3390/pr8070799] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pyrolysis process has been considered to be an efficient approach for valorization of lignocellulosic biomass into bio-oil and value-added chemicals. Bio-oil refers to biomass pyrolysis liquid, which contains alkanes, aromatic compounds, phenol derivatives, and small amounts of ketone, ester, ether, amine, and alcohol. Lignocellulosic biomass is a renewable and sustainable energy resource for carbon that is readily available in the environment. This review article provides an outline of the pyrolysis process including pretreatment of biomass, pyrolysis mechanism, and process products upgrading. The pretreatment processes for biomass are reviewed including physical and chemical processes. In addition, the gaps in research and recommendations for improving the pretreatment processes are highlighted. Furthermore, the effect of feedstock characterization, operating parameters, and types of biomass on the performance of the pyrolysis process are explained. Recent progress in the identification of the mechanism of the pyrolysis process is addressed with some recommendations for future work. In addition, the article critically provides insight into process upgrading via several approaches specifically using catalytic upgrading. In spite of the current catalytic achievements of catalytic pyrolysis for providing high-quality bio-oil, the production yield has simultaneously dropped. This article explains the current drawbacks of catalytic approaches while suggesting alternative methodologies that could possibly improve the deoxygenation of bio-oil while maintaining high production yield.
Collapse
|
40
|
Novel Routes in Transformation of Lignocellulosic Biomass to Furan Platform Chemicals: From Pretreatment to Enzyme Catalysis. Catalysts 2020. [DOI: 10.3390/catal10070743] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The constant depletion of fossil fuels along with the increasing need for novel materials, necessitate the development of alternative routes for polymer synthesis. Lignocellulosic biomass, the most abundant carbon source on the planet, can serve as a renewable starting material for the design of environmentally-friendly processes for the synthesis of polyesters, polyamides and other polymers with significant value. The present review provides an overview of the main processes that have been reported throughout the literature for the production of bio-based monomers from lignocellulose, focusing on physicochemical procedures and biocatalysis. An extensive description of all different stages for the production of furans is presented, starting from physicochemical pretreatment of biomass and biocatalytic decomposition to monomeric sugars, coupled with isomerization by enzymes prior to chemical dehydration by acid Lewis catalysts. A summary of all biotransformations of furans carried out by enzymes is also described, focusing on galactose, glyoxal and aryl-alcohol oxidases, monooxygenases and transaminases for the production of oxidized derivatives and amines. The increased interest in these products in polymer chemistry can lead to a redirection of biomass valorization from second generation biofuels to chemical synthesis, by creating novel pathways to produce bio-based polymers.
Collapse
|
41
|
Stabilization strategies in biomass depolymerization using chemical functionalization. Nat Rev Chem 2020; 4:311-330. [PMID: 37127959 DOI: 10.1038/s41570-020-0187-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 12/26/2022]
Abstract
A central feature of most lignocellulosic-biomass-valorization strategies is the depolymerization of all its three major constituents: cellulose and hemicellulose to simple sugars, and lignin to phenolic monomers. However, reactive intermediates, generally resulting from dehydration reactions, can participate in undesirable condensation pathways during biomass deconstruction, which have posed fundamental challenges to commercial biomass valorization. Thus, new strategies specifically aim to suppress condensations of reactive intermediates, either avoiding their formation by functionalizing the native structure or intermediates or selectively transforming these intermediates into stable derivatives. These strategies have provided unforeseen upgrading pathways, products and process solutions. In this Review, we outline the molecular driving forces that shape the deconstruction landscape and describe the strategies for chemical functionalization. We then offer an outlook on further developments and the potential of these strategies to sustainably produce renewable-platform chemicals.
Collapse
|
42
|
Ortiz-Serna P, Carsí M, Culebras M, Collins MN, Sanchis MJ. Exploring the role of lignin structure in molecular dynamics of lignin/bio-derived thermoplastic elastomer polyurethane blends. Int J Biol Macromol 2020; 158:S0141-8130(20)33132-9. [PMID: 32376254 DOI: 10.1016/j.ijbiomac.2020.04.261] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022]
Abstract
The relaxation behavior of two lignins (Alcell organosolv, OSL, and hydroxypropyl modified Kraft, ML) and bio-based thermoplastic polyurethane (TPU) blends have been studied by Differential Scanning Calorimetry (DSC), Dynamic-Mechanical Analysis (DMA) and Dielectric Relaxation Spectroscopy (DRS). The effect of blending on the glass and local relaxation processes as a function of composition, frequency, and temperature has been assessed. The dielectric spectra were resolved into dipolar relaxations as well as conductive processes for differing blend compositions. Characteristic relaxation times, activation energies and dielectric relaxation strengths of lignin/xTPU blends were also investigated. It was found that blending suppresses the α-relaxation process of the blends compared to virgin TPU. On the other hand, while the position of the β-relaxation was not influenced by blending, a reduction of the activation energies, Ea, of this process was observed in the lignin/xTPU blends. Finally, changes are observed in the conductivity behavior of both blends, with conductivity processes more favorable for the OSL/xTPU blends.
Collapse
Affiliation(s)
- P Ortiz-Serna
- Department of Applied Thermodynamics and Institute of Electric Technology, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
| | - M Carsí
- Department of Applied Thermodynamics and Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain..
| | - M Culebras
- Stokes Laboratories, Bernal Institute, School of Engineering, University of Limerick, Ireland
| | - M N Collins
- Stokes Laboratories, Bernal Institute, School of Engineering, University of Limerick, Ireland
| | - M J Sanchis
- Department of Applied Thermodynamics and Institute of Electric Technology, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain..
| |
Collapse
|
43
|
Kar AK, Kaur SP, Kumar TJD, Srivastava R. Efficient hydrogenolysis of aryl ethers over Ce-MOF supported Pd NPs under mild conditions: mechanistic insight using density functional theoretical calculations. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01279c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The significant Pd0 content and optimum bonding of the reactant & product (higher adsorption energy of benzyl phenyl ether and lower desorption energy for phenol) are responsible for the exceptional catalytic activity of Pd/Ce-MOF.
Collapse
Affiliation(s)
- Ashish Kumar Kar
- Catalysis Research Laboratory
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| | - Surinder Pal Kaur
- Catalysis Research Laboratory
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| | - T. J. Dhilip Kumar
- Catalysis Research Laboratory
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| | - Rajendra Srivastava
- Catalysis Research Laboratory
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| |
Collapse
|
44
|
Zhao C, Zhang Y, Li Y. Production of fuels and chemicals from renewable resources using engineered Escherichia coli. Biotechnol Adv 2019; 37:107402. [DOI: 10.1016/j.biotechadv.2019.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 05/23/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
|
45
|
Kainthola J, Kalamdhad AS, Goud VV. A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Husson E, Hulin L, Hadad C, Boughanmi C, Stevanovic T, Sarazin C. Acidic Ionic Liquid as Both Solvent and Catalyst for Fast Chemical Esterification of Industrial Lignins: Performances and Regioselectivity. Front Chem 2019; 7:578. [PMID: 31475140 PMCID: PMC6705185 DOI: 10.3389/fchem.2019.00578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/30/2019] [Indexed: 11/15/2022] Open
Abstract
Lignin can be considered an essential under-exploited polymer from lignocellulosic biomass representing a key for a profitable biorefinery. One method of lignin valorization could be the improvement of physico-chemical properties by esterification to enhance miscibility in apolar polyolefin matrices, thereby helping the production of bio-based composites. The present work describes for the first time a succeeded chemical esterification of industrial lignins with maleic anhydride in an acidic ionic liquid: 1-butyl-3-methyl imidazolium hydrogen sulfate without additional catalyst. This efficient strategy was applied to four industrial lignins: two softwood Kraft lignins (Indulin AT, Wayagamack), one hardwood Kraft lignin (Windsor), and one softwood organosolv lignin (Lignol), distinct in origin, extraction process and thus chemical structure. The chemical, structural, and thermal properties of modified lignins were characterized by 31P nuclear magnetic resonance, infrared spectroscopy and thermal analyses, then compared to those of unmodified lignins. After 4 h of reaction, between 30 to 52% of the constitutive hydroxyls were esterified depending on the type of lignin sample. The regioselectivity of the reaction was demonstrated to be preferentially orientated toward aliphatic hydroxyls for three out of four lignins (66.6, 65.5, and 83.6% for Indulin AT, Windsor and Lignol, respectively, vs. 51.7% for Wayagamack). The origin and the extraction process of the polymer would thus influence the efficiency and the regioselectivity of this reaction. Finally, we demonstrated that the covalent grafting of maleyl chain on lignins did not significantly affect thermal stability and increased significantly the solubility in polar and protic solvent probably due to additional exposed carboxylic groups resulted from mono-acylation independently of H/G/S ratio. Blending with polyolefins could then be considered in regard of compatibility with the obtained physico-chemical properties.
Collapse
Affiliation(s)
- Eric Husson
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Lise Hulin
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Caroline Hadad
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, UMR CNRS 7378, Université de Picardie Jules Verne, Amiens, France
| | - Chaima Boughanmi
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Tatjana Stevanovic
- Département des Sciences du Bois et de la Forêt, Centre de Recherche sur les Matériaux Renouvelables, Université Laval, Quebec City, QC, Canada
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
47
|
Zhang Y, Liang J, Zhou W, Xiao N. Comparison of Fenton and bismuth ferrite Fenton-like pretreatments of sugarcane bagasse to enhance enzymatic saccharification. BIORESOURCE TECHNOLOGY 2019; 285:121343. [PMID: 31004952 DOI: 10.1016/j.biortech.2019.121343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
This study compared enzymatic saccharification of sugarcane bagasse (SCB) after application of two different pretreatment methods, Fenton pretreatment (FP) and BiFeO3 Fenton-like pretreatment (BFP). The composition, morphology and structural properties of SCB with different pretreatments were analyzed. Results showed that, after BFP, the yield of reducing sugar of SCB under enzymatic saccharification for 72 h was 25.8%, and the sugar conversion rate was 36.6%, which were 2.2 and 2.4-fold those of the FP, respectively. Moreover, the removal of hemicellulose and delignification in the BFP was more severe than that in the FP. The determination of hydroxyl radical (OH) in the two different Fenton processes revealed that the OH generated in the BiFeO3 Fenton-like system was higher in concentration and longer in action time than that in the Fenton system, which was likely key to the stronger effect of BFP than FP on the enzymatic saccharification of SCB.
Collapse
Affiliation(s)
- Yuting Zhang
- Laboratory of Ecological and Environmental Engineering, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ju Liang
- Laboratory of Ecological and Environmental Engineering, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenbing Zhou
- Laboratory of Ecological and Environmental Engineering, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Sustainable Pig Production, Hubei Province, China.
| | - Naidong Xiao
- Laboratory of Ecological and Environmental Engineering, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Sustainable Pig Production, Hubei Province, China
| |
Collapse
|
48
|
Environmental Sustainability: A Review of Termite Mound Soil Material and Its Bacteria. SUSTAINABILITY 2019. [DOI: 10.3390/su11143847] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The high quantity of nutrients accumulated in termite mound soils have placed termite mound as a ‘gold mine’ for bacteria concentrations. However, over the years, not much attention has been given to the bacteria present in termite mound soil. This is because many studies have focused on approaches to manage termites which they see as menace to agricultural crops and buildings. Therefore, we aimed to evaluate the potential application of termite mound soil material and its bacteria for biotechnological purposes. This review has been grouped into four key parts: The termite mound as hotspot for bacterial concentration, the degradation of lignocellulose for biofuel production, termite mound soil as a soil amendment, and the role of termite mound soil and its bacteria in bioremediation and bio-filtration. Therefore, the effective usage of the termite mound soil material and its bacteria in an ecofriendly manner could ensure environmental sustainability.
Collapse
|
49
|
Amoah J, Kahar P, Ogino C, Kondo A. Bioenergy and Biorefinery: Feedstock, Biotechnological Conversion, and Products. Biotechnol J 2019; 14:e1800494. [DOI: 10.1002/biot.201800494] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/07/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Jerome Amoah
- Department of Science, Graduate School of Science, Technology and InnovationKobe University1‐1 Rokkodai, Nada‐ku Kobe 657‐8501 Japan
| | - Prihardi Kahar
- Department of Science, Graduate School of Science, Technology and InnovationKobe University1‐1 Rokkodai, Nada‐ku Kobe 657‐8501 Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of EngineeringKobe University1‐1 Rokkodai, Nada‐ku Kobe 657‐8501 Japan
| | - Akihiko Kondo
- Department of Science, Graduate School of Science, Technology and InnovationKobe University1‐1 Rokkodai, Nada‐ku Kobe 657‐8501 Japan
- Department of Chemical Science and Engineering, Graduate School of EngineeringKobe University1‐1 Rokkodai, Nada‐ku Kobe 657‐8501 Japan
| |
Collapse
|
50
|
Park J, Riaz A, Verma D, Lee HJ, Woo HM, Kim J. Fractionation of Lignocellulosic Biomass over Core-Shell Ni@Al 2 O 3 Catalysts with Formic Acid as a Cocatalyst and Hydrogen Source. CHEMSUSCHEM 2019; 12:1743-1762. [PMID: 30702216 DOI: 10.1002/cssc.201802847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Highly dispersed, core-shell Ni@Al2 O3 on activated carbon (AC) catalysts were prepared to develop an effective, external-hydrogen-free fractionation process for various types of lignocellulosic biomass. In a mixture of formic acid, ethanol, and water at 190 °C, the conversion of oak wood produced 23.4 C% lignin-derived phenolic monomers (LDPMs) and highly delignified pulp-rich solid. At an early stage, formic acid acted as a cocatalyst to enhance the delignification by solvolysis, and at a later stage, it acted as a hydrogen source to stabilize the phenolic monomers by hydrodeoxygenation and hydrogenation. Based on the positive correlation between spillover hydrogen on the catalysts and LDPM yields, a new suite of catalyst design criteria was proposed to develop highly active, non-noble-metal based catalysts for realizing economically viable biorefineries. Enzymatic saccharification of the pulp-rich solid indicated that the pulp-rich solid is an excellent source of fermentable sugars.
Collapse
Affiliation(s)
- Jaeyong Park
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
| | - Asim Riaz
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
| | - Deepak Verma
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
| | - Hyun Jeong Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
| | - Jaehoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
| |
Collapse
|