1
|
Bellucci L, Capone M, Daidone I, Zanetti-Polzi L. Conformational heterogeneity and protonation equilibria shape the photocycle branching in channelrhodopsin-2. Int J Biol Macromol 2025; 305:140977. [PMID: 39956237 DOI: 10.1016/j.ijbiomac.2025.140977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Channelrhodopsin-2 is a photoactive membrane protein serving as an ion channel, gathering significant interest for its applications in optogenetics. Despite extensive investigation, several aspects of its photocycle remain elusive and continue to be subjects of ongoing debate. Of particular interest are the localization of the P480 intermediate within the photocycle and the timing of the deprotonation of glutamic acid E90, a critical residue for ChR2 functioning. In this study, we explore the possibility of an early-P480 state, formed directly upon photoillumination of the dark-adapted state, where E90 is deprotonated, as hypothesized in a previous work [Kuhne et al. Proc. Natl. Acad. Sci. 116.19 (2019): 9380]. Employing extended molecular dynamics simulations, deprotonation free energy calculations, and the computation of the infrared band associated with E90, we provide support to the photocycle model proposed by Kuhne et al. Furthermore, our findings show that E90 protonation state is influenced by diverse interconnected variables and provide molecular detail insights that connect E90 interaction pattern with its deprotonation propensity. Our data demonstrate in fact that both protonated and deprotonated E90 are possible in P480 depending on E90 hydrogen bonding pattern and explaining the molecular mechanism at the basis of P480 accumulation under continuous illumination.
Collapse
Affiliation(s)
- Luca Bellucci
- NEST-SNS, CNR Institute of Nanoscience, Piazza San Silvestro 12, Pisa 5612, Italy
| | - Matteo Capone
- Center S3, CNR Institute of Nanoscience, Via Campi 213/A, Modena 41125, Italy
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio (Coppito 1), L'Aquila 67010, Italy
| | - Laura Zanetti-Polzi
- Center S3, CNR Institute of Nanoscience, Via Campi 213/A, Modena 41125, Italy.
| |
Collapse
|
2
|
Nardi AN, De Marco J, D'Abramo M. Modulating Charge Transfer Kinetics along Poly Adenine: Chemical Modifications, Temperature, and Conformational Effects. J Chem Theory Comput 2025; 21:530-538. [PMID: 39753378 DOI: 10.1021/acs.jctc.4c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The charge transfer (CT) reactions in nucleic acids are crucial for genome damage and repair and nanoelectronics using DNA as a molecular conductor. Previous experimental and theoretical works underlined the significance of nucleic acid structural dynamics on CT kinetics, requiring models that incorporate the dynamics of the nucleic acid, solvents, and counterions. Here, we investigated hole transfer kinetics in poly adenine single and double strands at various temperatures and the rate enhancement due to adenine-to-7-deazaadenine mutation by means of a QM/MM approach. We found that the hole transfer rate in poly adenine double strands increases with temperature while the helix conformation is retained, whereas single strands exhibit the opposite thermal response. Additionally, the positive charge migrates more efficiently in poly-7-deazaadenine double strands. Our results, consistent with experimental data, suggest that a thermally induced hopping model can accurately describe CT kinetics in these sequences. The approach is transferable for studying CT reactions in other nucleic acid strands.
Collapse
Affiliation(s)
| | - Jacopo De Marco
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | - Marco D'Abramo
- Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
3
|
Nardi AN, Olivieri A, D'Abramo M, Salvio R. Unveiling the Cleavage Mechanism of an RNA Model Compound on the whole pH Scale: Computations Meet Experiments in the Determination of Reaction Rates. Chemphyschem 2024; 25:e202300873. [PMID: 38526551 DOI: 10.1002/cphc.202300873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/24/2024] [Indexed: 03/26/2024]
Abstract
The knowledge of the mechanism of reactions occurring in solution is a primary research line both in the context of theoretical-computational chemistry and in the field of organic and bio-organic chemistry. Given the importance of the hydrolysis of nucleic acids in life-related phenomena, here we present a combined experimental and computational study on the cleavage of an RNA model compound. This phosphodiester features a cleavage rate strictly dependent on the pH with three different dependence domains. Such experimental evidence, highlighted by an in-depth kinetic investigation, unequivocally suggests a change in the reaction mechanism along the pH scale. In order to interpret the data and to explain the experimental behavior, we have applied a theoretical-computational procedure, involving a hybrid quantum/classical approach, able to model chemical reactions in complex environments, i. e. in solution. This study turns out to quantitatively reproduce the experimental data with accuracy and, in addition, provides useful mechanistic insight into the transesterification process of the investigated compound. The study indicates that the cleavage can occur through anA N D N ${A_N D_N }$ , anA N + D N ${A_N + D_N }$ , and aD N A N ${D_N A_N }$ mechanism depending on the pH values.
Collapse
Affiliation(s)
| | - Alessio Olivieri
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Riccardo Salvio
- Department of Chemical and Technological Sciences, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
4
|
Ould Mohamed L, Abtouche S, Ghoualem Z, Assfeld X. Unraveling redox pathways of the disulfide bond in dimethyl disulfide: Ab initio modeling. J Mol Model 2024; 30:180. [PMID: 38780881 DOI: 10.1007/s00894-024-05963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
CONTEXT In cellular environments, the reduction of disulfide bonds is pivotal for protein folding and synthesis. However, the intricate enzymatic mechanisms governing this process remain poorly understood. This study addresses this gap by investigating a disulfide bridge reduction reaction, serving as a model for comprehending electron and proton transfer in biological systems. Six potential mechanisms for reducing the dimethyl disulfide (DMDS) bridge through electron and proton capture were explored. Thermodynamic and kinetic analyses elucidated the sequence of proton and electron addition. MD-PMM, a method that combines molecular dynamics simulations and quantum-chemical calculations, was employed to compute the redox potential of the mechanism. This research provides valuable insights into the mechanisms and redox potentials involved in disulfide bridge reduction within proteins, offering an understanding of phenomena that are challenging to explore experimentally. METHODS All calculations used the Gaussian 09 software package at the MP2/6-311 + g(d,p) theory level. Visualization of the molecular orbitals and electron densities was conducted using Gaussview6. Molecular dynamics simulations were performed using GROMACS with the CHARMM36 force field. The PyMM program (Python Program for QM/MM Simulations Based on the Perturbed Matrix Method) is used to apply the Perturbed Matrix Method to MD simulations.
Collapse
Affiliation(s)
- Lina Ould Mohamed
- Laboratoire de Physico Chimie Théorique Et Chimie Informatique, LPCTCI, Faculté de Chimie, USTHB, 16111, Algiers, Algeria
| | - Soraya Abtouche
- Laboratoire de Physico Chimie Théorique Et Chimie Informatique, LPCTCI, Faculté de Chimie, USTHB, 16111, Algiers, Algeria.
| | - Zeyneb Ghoualem
- Laboratoire de Physico Chimie Théorique Et Chimie Informatique, LPCTCI, Faculté de Chimie, USTHB, 16111, Algiers, Algeria
| | - Xavier Assfeld
- Physique et Chimie Théoriques, UMR 7019, Faculté des Sciences et Technologies, Université de Lorraine, BP 70239, 54506, Vandoeuvre Lès Nancy Cedex, France
| |
Collapse
|
5
|
Chen CG, Amadei A, D'Abramo M. Modeling the temperature dependence of the fluorescence properties of Indole in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124096. [PMID: 38442616 DOI: 10.1016/j.saa.2024.124096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
In a recent paper, we proposed a scheme to describe the relaxation mechanism of the excited Indole in aqueous solution, involving the fluctuations among the diabatic electronic states 1Lb, 1La and 1πσ∗. Such a theoretical and computational model reproduced accurately the available experimental data at room temperature. Following these results, in the present work, we model the complex temperature dependence of the fluorescence properties of Indole in aqueous solution, with results further validating the proposed relaxation scheme. This scheme is able to explain the temperature effects on the fluorescence behavior indicating the water fluctuations as the main cause of (i) the stabilization of the dark state (1πσ∗) and (ii) the increase in temperature of the kinetics of the irreversible transition towards such a state.
Collapse
Affiliation(s)
- Cheng Giuseppe Chen
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, Rome, 00185, Italy
| | - Andrea Amadei
- Department of Technological and Chemical Sciences, Tor Vergata University of Rome, Via della Ricerca Scientifica, 1, Rome, 00133, Italy.
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, Rome, 00185, Italy.
| |
Collapse
|
6
|
Nardi AN, Olivieri A, D'Abramo M, Amadei A. A Theoretical-Computational Study of Phosphodiester Bond Cleavage Kinetics as a Function of the Temperature. Chemphyschem 2024; 25:e202300952. [PMID: 38372713 DOI: 10.1002/cphc.202300952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
The hydrolysis of the phosphodiester bond is an important chemical reaction involved in several biological processes. Here, we study the cleavage of this bond by means of a theoretical-computational method in a model system, the dineopentyl phosphate. By such an approach, we reconstructed the kinetics and related thermodynamics of this chemical reaction along an isochore. In particular, we evaluated the kinetic constants of all the reaction steps within a wide range of temperatures, mostly corresponding to conditions where no experimental measures are available due to the extremely slow kinetics. Our results, in good agreement with the experimental data, show the robustness of our theoretical-computational methodology which can be easily extended to more complex systems.
Collapse
Affiliation(s)
| | - Alessio Olivieri
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Andrea Amadei
- Department of Technological and Chemical Sciences, Tor Vergata University of Rome, Italy
| |
Collapse
|
7
|
De Sciscio M, Nardi AN, Centola F, Rossi M, Guarnera E, D’Abramo M. Molecular Modeling of the Deamidation Reaction in Solution: A Theoretical-Computational Study. J Phys Chem B 2023; 127:9550-9559. [PMID: 37903302 PMCID: PMC10641835 DOI: 10.1021/acs.jpcb.3c04662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/15/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023]
Abstract
In this work, a theoretical-computational method is applied to study the deamidation reaction, a critical post-translational modification in proteins, using a simple model molecule in solution. The method allows one to comprehensively address the environmental effect, thereby enabling one to accurately derive the kinetic rate constants for the three main steps of the deamidation process. The results presented, in rather good agreement with the available experimental data, underline the necessity for a rigorous treatment of environmental factors and a precise kinetic model to correctly assess the overall kinetics of the deamidation reaction.
Collapse
Affiliation(s)
- Maria
Laura De Sciscio
- Department
of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | | | - Fabio Centola
- Global
Analytical Development, Merck Serono S.p.A., 00012 Guidonia Montecelio, Italy
| | - Mara Rossi
- Global
Analytical Development, Merck Serono S.p.A., 00012 Guidonia Montecelio, Italy
| | - Enrico Guarnera
- Global
Analytical Development, Merck Serono S.p.A., 00012 Guidonia Montecelio, Italy
- Antibody
Discovery and Protein Engineering, Merck
Healthcare KGaA, 64293 Darmstadt, Germany
| | - Marco D’Abramo
- Department
of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Barcza B, Szirmai Á, Tajti A, Stanton JF, Szalay PG. Benchmarking Aspects of Ab Initio Fragment Models for Accurate Excimer Potential Energy Surfaces. J Chem Theory Comput 2023; 19:3580-3600. [PMID: 37236166 PMCID: PMC10694823 DOI: 10.1021/acs.jctc.3c00104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 05/28/2023]
Abstract
While Coupled-Cluster methods have been proven to provide an accurate description of excited electronic states, the scaling of the computational costs with the system size limits the degree for which these methods can be applied. In this work different aspects of fragment-based approaches are studied on noncovalently bound molecular complexes with interacting chromophores of the fragments, such as π-stacked nucleobases. The interaction of the fragments is considered at two distinct steps. First, the states localized on the fragments are described in the presence of the other fragment(s); for this we test two approaches. One method is founded on QM/MM principles, only including the electrostatic interaction between the fragments in the electronic structure calculation with Pauli repulsion and dispersion effects added separately. The other model, a Projection-based Embedding (PbE) using the Huzinaga equation, includes both electrostatic and Pauli repulsion and only needs to be augmented by dispersion interactions. In both schemes the extended Effective Fragment Potential (EFP2) method of Gordon et al. was found to provide an adequate correction for the missing terms. In the second step, the interaction of the localized chromophores is modeled for a proper description of the excitonic coupling. Here the inclusion of purely electrostatic contributions appears to be sufficient: it is found that the Coulomb part of the coupling provides accurate splitting of the energies of interacting chromophores that are separated by more than 4 Å.
Collapse
Affiliation(s)
- Bónis Barcza
- Laboratory
of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1117 Budapest, Hungary
- György
Hevesy Doctoral School, Institute of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Ádám
B. Szirmai
- Laboratory
of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1117 Budapest, Hungary
- György
Hevesy Doctoral School, Institute of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Attila Tajti
- Laboratory
of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1117 Budapest, Hungary
| | - John F. Stanton
- Quantum
Theory Project, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Péter G. Szalay
- Laboratory
of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1117 Budapest, Hungary
| |
Collapse
|
9
|
Chen CG, Giustini M, D'Abramo M, Amadei A. Unveiling the Excited State Dynamics of Indole in Solution. J Chem Theory Comput 2023. [PMID: 37329333 DOI: 10.1021/acs.jctc.3c00221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In this paper, we reconstruct in detail the dynamics of the emitting electronic excited state of aqueous indole, investigating its relaxation mechanism and kinetics to be related to the time-dependent fluorescence signal. Taking advantage of the results shown in a very recent paper, we were able to model the relaxation process in solution in terms of the transitions between two gas-phase singlet electronic states (1La and 1Lb), subsequently irreversibly relaxing to the gas-phase singlet dark state (1πσ*). A comparison of the results with the available experimental data shows that the relaxation mechanism we obtain by our theoretical-computational model is reliable, reproducing rather accurately all the experimental observables.
Collapse
Affiliation(s)
| | - Mauro Giustini
- Department of Chemistry, Sapienza University of Rome, Rome 00185, Italy
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, Rome 00185, Italy
| | - Andrea Amadei
- Department of Technological and Chemical Sciences, Tor Vergata University of Rome, Rome 00133, Italy
| |
Collapse
|
10
|
Aschi M, Palombi L, Amadei A. Theoretical-Computational Modeling of CD Spectra of Aqueous Monosaccharides by Means of Molecular Dynamics Simulations and Perturbed Matrix Method. Molecules 2023; 28:molecules28083591. [PMID: 37110825 PMCID: PMC10144652 DOI: 10.3390/molecules28083591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The electronic circular dichroism (ECD) spectra of aqueous d-glucose and d-galactose were modeled using a theoretical-computational approach combining molecular dynamics (MD) simulations and perturbed matrix method (PMM) calculations, hereafter termed MD-PMM. The experimental spectra were reproduced with a satisfactory accuracy, confirming the good performances of MD-PMM in modeling different spectral features in complex atomic-molecular systems, as already reported in previous studies. The underlying strategy of the method was to perform a preliminary long timescale MD simulation of the chromophore followed by the extraction of the relevant conformations through essential dynamics analysis. On this (limited) number of relevant conformations, the ECD spectrum was calculated via the PMM approach. This study showed that MD-PMM was able to reproduce the essential features of the ECD spectrum (i.e., the position, the intensity, and the shape of the bands) of d-glucose and d-galactose while avoiding the rather computationally expensive aspects, which were demonstrated to be important for the final outcome, such as (i) the use of a large number of chromophore conformations; (ii) the inclusion of quantum vibronic coupling; and (iii) the inclusion of explicit solvent molecules interacting with the chromophore atoms within the chromophore itself (e.g., via hydrogen bonds).
Collapse
Affiliation(s)
- Massimiliano Aschi
- Dipartimento di Scienze Fisiche e Chimiche, Università dell'Aquila via Vetoio (Coppito 2), 67010 l'Aquila, Italy
| | - Laura Palombi
- Dipartimento di Scienze Fisiche e Chimiche, Università dell'Aquila via Vetoio (Coppito 2), 67010 l'Aquila, Italy
| | - Andrea Amadei
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Roma, Italy
| |
Collapse
|
11
|
D'Annibale V, Chen CG, Bonomo M, Dini D, D'Abramo M. P1 Push‐Pull Dye as a Case Study in QM/MM Theoretical Characterization for Dye‐sensitized Solar Cell Organic Chromophores**. ChemistrySelect 2023. [DOI: 10.1002/slct.202204904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Valeria D'Annibale
- Department of Chemistry Sapienza University of Rome 00185 Rome Italy
- Department of Basic and Applied Sciences for Engineering Sapienza University of Rome 00185 Rome Italy
| | | | - Matteo Bonomo
- Department of Chemistry Sapienza University of Rome 00185 Rome Italy
- Department of Chemistry and NIS Interdepartmental Center University of Turin Turin Italy
| | - Danilo Dini
- Department of Chemistry Sapienza University of Rome 00185 Rome Italy
| | - Marco D'Abramo
- Department of Chemistry Sapienza University of Rome 00185 Rome Italy
| |
Collapse
|
12
|
Modelling Complex Bimolecular Reactions in a Condensed Phase: The Case of Phosphodiester Hydrolysis. Molecules 2023; 28:molecules28052152. [PMID: 36903398 PMCID: PMC10004441 DOI: 10.3390/molecules28052152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
(1) Background: the theoretical modelling of reactions occurring in liquid phase is a research line of primary importance both in theoretical-computational chemistry and in the context of organic and biological chemistry. Here we present the modelling of the kinetics of the hydroxide-promoted hydrolysis of phosphoric diesters. (2) Method: the theoretical-computational procedure involves a hybrid quantum/classical approach based on the perturbed matrix method (PMM) in conjunction with molecular mechanics. (3) Results: the presented study reproduces the experimental data both in the rate constants and in the mechanistic aspects (C-O bond vs. O-P bond reactivity). The study suggests that the basic hydrolysis of phosphodiesters occurs through a concerted ANDN mechanism, with no formation of penta-coordinated species as reaction intermediates. (4) Conclusions: the presented approach, despite the approximations, is potentially applicable to a large number of bimolecular transformations in solution and therefore leads the way to a fast and general method to predict the rate constants and reactivities/selectivities in complex environments.
Collapse
|
13
|
Zanetti-Polzi L, Charchar P, Yarovsky I, Corni S. Origins of the pH-Responsive Photoluminescence of Peptide-Functionalized Au Nanoclusters. ACS NANO 2022; 16:20129-20140. [PMID: 36300936 DOI: 10.1021/acsnano.2c04335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrasmall peptide-protected gold nanoclusters are a promising class of bioresponsive material exhibiting pH-sensitive photoluminescence. We present a theoretical insight into the effect peptide-ligand environment has on pH-responsive fluorescence, with the aim of enhancing the rational design of gold nanoclusters for bioapplications. Employing a hybrid quantum/classical computational methodology, we systematically calculate deprotonation free energies of N-terminal cysteine amine groups in proximity to the inherently fluorescent core of Au25(Peptide)18 nanoclusters. We find that subtle changes in hexapeptide sequence alter the electrostatic environment and significantly shift the conventional N-terminal amine pKa expected for amino acids free-in-solution. Our findings provide an insight into how the deprotonation equilibrium of N-terminal amine and side chain carboxyl groups cooperatively respond to solution pH changes, explaining the experimentally observed, yet elusive, pH-responsive fluorescence of peptide-functionalized Au25 clusters.
Collapse
Affiliation(s)
- Laura Zanetti-Polzi
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125Modena, Italy
| | | | - Irene Yarovsky
- School of Engineering, RMIT University, Victoria3001, Australia
| | - Stefano Corni
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125Modena, Italy
- Dipartimento di Scienze Chimiche, Università di Padova, 35131Padova, Italy
| |
Collapse
|
14
|
A Simplified Treatment for Efficiently Modeling the Spectral Signal of Vibronic Transitions: Application to Aqueous Indole. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238135. [PMID: 36500228 PMCID: PMC9739849 DOI: 10.3390/molecules27238135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
In this paper, we introduce specific approximations to simplify the vibronic treatment in modeling absorption and emission spectra, allowing us to include a huge number of vibronic transitions in the calculations. Implementation of such a simplified vibronic treatment within our general approach for modelling vibronic spectra, based on molecular dynamics simulations and the perturbed matrix method, provided a quantitative reproduction of the absorption and emission spectra of aqueous indole with higher accuracy than the one obtained when using the existing vibronic treatment. Such results, showing the reliability of the approximations employed, indicate that the proposed method can be a very efficient and accurate tool for computational spectroscopy.
Collapse
|
15
|
Theoretical Evaluation of Sulfur-Based Reactions as a Model for Biological Antioxidant Defense. Int J Mol Sci 2022; 23:ijms232314515. [PMID: 36498842 PMCID: PMC9741100 DOI: 10.3390/ijms232314515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Sulfur-containing amino acids, Methionine (Met) and Cysteine (Cys), are very susceptible to Reactive Oxygen Species (ROS). Therefore, sulfur-based reactions regulate many biological processes, playing a key role in maintaining cellular redox homeostasis and modulating intracellular signaling cascades. In oxidative conditions, Met acts as a ROS scavenger, through Met sulfoxide formation, while thiol/disulfide interchange reactions take place between Cys residues as a response to many environmental stimuli. In this work, we apply a QM/MM theoretical-computational approach, which combines quantum-mechanical calculations with classical molecular dynamics simulations to estimate the free energy profile for the above-mentioned reactions in solution. The results obtained, in good agreement with experimental data, show the validity of our approach in modeling sulfur-based reactions, enabling us to study these mechanisms in more complex biological systems.
Collapse
|
16
|
Chen C, Nardi AN, Amadei A, D’Abramo M. PyMM: An Open-Source Python Program for QM/MM Simulations Based on the Perturbed Matrix Method. J Chem Theory Comput 2022; 19:33-41. [PMID: 36378163 PMCID: PMC9835827 DOI: 10.1021/acs.jctc.2c00767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Quantum mechanical/molecular mechanics (QM/MM) methods are important tools in molecular modeling as they are able to couple an extended phase space sampling with an accurate description of the electronic properties of the system. Here, we describe a Python software package, called PyMM, which has been developed to apply a QM/MM approach, the perturbed matrix method, in a simple and efficient way. PyMM requires a classical atomic trajectory of the whole system and a set of unperturbed electronic properties of the ground and electronic excited states. The software output includes a set of the most common perturbed properties, such as the electronic excitation energies and the transitions dipole moments, as well as the eigenvectors describing the perturbed electronic states, which can be then used to estimate whatever electronic property. The software is composed of a simple and complete command-line interface, a set of internal input validation, and three main analyses focusing on (i) the perturbed eigenvector behavior, (ii) the calculation of the electronic absorption spectrum, and (iii) the estimation of the free energy differences along a reaction coordinate.
Collapse
Affiliation(s)
| | | | - Andrea Amadei
- Department
of Technological and Chemical Sciences, University of Rome Tor Vergata, Rome00133, Italy
| | - Marco D’Abramo
- Department
of Chemistry, Sapienza University of Rome, Rome00185, Italy,
| |
Collapse
|
17
|
Nardi AN, D’Abramo M, Amadei A. Modeling Charge Transfer Reactions by Hopping between Electronic Ground State Minima: Application to Hole Transfer between DNA Bases. Molecules 2022; 27:7408. [PMID: 36364237 PMCID: PMC9654243 DOI: 10.3390/molecules27217408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2024] Open
Abstract
In this paper, we extend the previously described general model for charge transfer reactions, introducing specific changes to treat the hopping between energy minima of the electronic ground state (i.e., transitions between the corresponding vibrational ground states). We applied the theoretical-computational model to the charge transfer reactions in DNA molecules which still represent a challenge for a rational full understanding of their mechanism. Results show that the presented model can provide a valid, relatively simple, approach to quantitatively study such reactions shedding light on several important aspects of the reaction mechanism.
Collapse
Affiliation(s)
| | - Marco D’Abramo
- Department of Chemistry, Sapienza University, 00185 Rome, Italy
| | - Andrea Amadei
- Department of Chemical and Technological Sciences, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
18
|
Falbo E, Fusè M, Lazzari F, Mancini G, Barone V. Integration of Quantum Chemistry, Statistical Mechanics, and Artificial Intelligence for Computational Spectroscopy: The UV-Vis Spectrum of TEMPO Radical in Different Solvents. J Chem Theory Comput 2022; 18:6203-6216. [PMID: 36166322 PMCID: PMC9558374 DOI: 10.1021/acs.jctc.2c00654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 11/30/2022]
Abstract
The ongoing integration of quantum chemistry, statistical mechanics, and artificial intelligence is paving the route toward more effective and accurate strategies for the investigation of the spectroscopic properties of medium-to-large size chromophores in condensed phases. In this context we are developing a novel workflow aimed at improving the generality, reliability, and ease of use of the available computational tools. In this paper we report our latest developments with specific reference to unsupervised atomistic simulations employing non periodic boundary conditions (NPBC) followed by clustering of the trajectories employing optimized feature spaces. Next accurate variational computations are performed for a representative point of each cluster, whereas intracluster fluctuations are taken into account by a cheap yet reliable perturbative approach. A number of methodological improvements have been introduced including, e.g., more realistic reaction field effects at the outer boundary of the simulation sphere, automatic definition of the feature space by continuous perception of solute-solvent interactions, full account of polarization and charge transfer in the first solvation shell, and inclusion of vibronic contributions. After its validation, this new approach has been applied to the challenging case of solvatochromic effects on the UV-vis spectra of a prototypical nitroxide radical (TEMPO) in different solvents. The reliability, effectiveness, and robustness of the new platform is demonstrated by the remarkable agreement with experiment of the results obtained through an unsupervised approach characterized by a strongly reduced computational cost as compared to that of conventional quantum mechanics and molecular mechanics models without any accuracy reduction.
Collapse
Affiliation(s)
- Emanuele Falbo
- Scuola
Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Fusè
- Scuola
Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
- Dipartimento
di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Federico Lazzari
- Scuola
Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Giordano Mancini
- Scuola
Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola
Normale Superiore di Pisa, piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
19
|
D’Annibale V, Fracassi D, Marracino P, D’Inzeo G, D’Abramo M. Effects of Environmental and Electric Perturbations on the pKa of Thioredoxin Cysteine 35: A Computational Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196454. [PMID: 36234991 PMCID: PMC9570579 DOI: 10.3390/molecules27196454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022]
Abstract
Here we present a theoretical-computational study dealing with the evaluation of the pKa of the Cysteine residues in Thioredoxin (TRX) and in its complex with the Thioredoxin-interacting protein (TXNIP). The free energy differences between the anionic and neutral form of the Cysteine 32 and 35 have been evaluated by means of the Perturbed Matrix Method with classical perturbations due to both the environment and an exogenous electric field as provided by Molecular Dynamics (MD) simulations. The evaluation of the free energies allowed us to show that the effect of the perturbing terms is to lower the pKa of Cysteine 32 and Cysteine 35 with respect to the free amino-acid. On the other hand, in the complex TRX-TXNIP, our data show an enhanced stabilization of the neutral reduced form of Cys 35. These results suggest that external electric stimuli higher than 0.02 V/nm can modulate the Cysteine pKa, which can be connected to the tight regulation of the TRX acting as an antioxidant agent.
Collapse
Affiliation(s)
- Valeria D’Annibale
- Department of Chemistry, La Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Basic and Applied Sciences for Engineering, La Sapienza University of Rome, Via Antonio Scarpa 14, 00161 Rome, Italy
| | - Donatella Fracassi
- Department of Information Engineering, Electronics and Telecommunications, La Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Paolo Marracino
- Rise Technology S.r.l., Lungomare Paolo Toscanelli, 00121 Rome, Italy
- Correspondence: (P.M.); (M.D.)
| | - Guglielmo D’Inzeo
- Department of Information Engineering, Electronics and Telecommunications, La Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Marco D’Abramo
- Department of Chemistry, La Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence: (P.M.); (M.D.)
| |
Collapse
|
20
|
Del Galdo S, Chiarini M, Casieri C, Daidone I. High density water clusters observed at high concentrations of the macromolecular crowder PEG400. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Lucia-Tamudo J, Cárdenas G, Anguita-Ortiz N, Díaz-Tendero S, Nogueira JJ. Computation of Oxidation Potentials of Solvated Nucleobases by Static and Dynamic Multilayer Approaches. J Chem Inf Model 2022; 62:3365-3380. [PMID: 35771991 PMCID: PMC9326891 DOI: 10.1021/acs.jcim.2c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The determination
of the redox properties of nucleobases is of
paramount importance to get insight into the charge-transfer processes
in which they are involved, such as those occurring in DNA-inspired
biosensors. Although many theoretical and experimental studies have
been conducted, the value of the one-electron oxidation potentials
of nucleobases is not well-defined. Moreover, the most appropriate
theoretical protocol to model the redox properties has not been established
yet. In this work, we have implemented and evaluated different static
and dynamic approaches to compute the one-electron oxidation potentials
of solvated nucleobases. In the static framework, two thermodynamic
cycles have been tested to assess their accuracy against the direct
determination of oxidation potentials from the adiabatic ionization
energies. Then, the introduction of vibrational sampling, the effect
of implicit and explicit solvation models, and the application of
the Marcus theory have been analyzed through dynamic methods. The
results revealed that the static direct determination provides more
accurate results than thermodynamic cycles. Moreover, the effect of
sampling has not shown to be relevant, and the results are improved
within the dynamic framework when the Marcus theory is applied, especially
in explicit solvent, with respect to the direct approach. Finally,
the presence of different tautomers in water does not affect significantly
the one-electron oxidation potentials.
Collapse
Affiliation(s)
- Jesús Lucia-Tamudo
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gustavo Cárdenas
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nuria Anguita-Ortiz
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sergio Díaz-Tendero
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan J Nogueira
- Department of Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
22
|
Nardi AN, Olivieri A, D'Abramo M. Rationalizing Sequence and Conformational Effects on the Guanine Oxidation in Different DNA Conformations. J Phys Chem B 2022; 126:5017-5023. [PMID: 35671051 PMCID: PMC9289878 DOI: 10.1021/acs.jpcb.2c02391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
The effect of the
environment on the guanine redox potential is
studied by means of a theoretical–computational approach. Our
data, in agreement with previous experimental findings, clearly show
that the presence of consecutive guanine bases in both single- and
double-stranded DNA oligomers lowers their reduction potential. Such
an effect is even more marked when a G-rich quadruplex is considered,
where the oxidized form of guanine is particularly stabilized. To
the best of our knowledge, this is the first computational study reporting
on a quantitative estimate of the dependence of the guanine redox
potential on sequence and conformational effects in complex DNA molecules,
ranging from single-stranded DNA to G-quadruplex.
Collapse
Affiliation(s)
| | - Alessio Olivieri
- Department of Chemistry, Sapienza University of Rome, Rome, Italy 00185
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy 00185
| |
Collapse
|
23
|
Capone M, Zanetti-Polzi L, Leonzi I, Spreti N, Daidone I. Evidence for a high pK a of an aspartic acid residue in the active site of CALB by a fully atomistic multiscale approach. J Biomol Struct Dyn 2022:1-8. [PMID: 35593533 DOI: 10.1080/07391102.2022.2077834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Candida antarctica Lipase B (CALB) is a paradigm for the family of lipases. At pH 7, the optimal pH for catalysis, the protonation state of an aspartic acid of the active site (Asp134) could not be conclusively assigned. In fact, the pKa estimate provided by a widely used computational tool, namely PropKa, that predicts pKa values of ionizable groups in proteins based on the crystallographic structure, is only slightly above 7 (pKa = 7.25). This, along with the lack of an experimental evaluation, makes the assignment of its protonation state at neutral pH challenging. Here, we calculate the pKa of Asp134 by means of a fully atomistic multiscale computational approach based on classical molecular dynamics (MD) simulation and the perturbed matrix method (PMM), namely the MD-PMM approach. MD-PMM is able to take into account the dynamics of the system and, at the same time, to treat the deprotonation step at the quantum level. The calculations provide a pKa value of 8.9 ± 1.1, hence suggesting that Asp134 in CALB should be protonated at neutral, and even at slightly basic, pH.
Collapse
Affiliation(s)
- Matteo Capone
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Ilenia Leonzi
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nicoletta Spreti
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
24
|
Chen CG, Nardi AN, Giustini M, D'Abramo M. Absorption behavior of doxorubicin hydrochloride in visible region in different environments: a combined experimental and computational study. Phys Chem Chem Phys 2022; 24:12027-12035. [PMID: 35536553 DOI: 10.1039/d1cp05182b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The experimental absorption measurements in the interval 350-600 nm (Vis), molecular dynamics simulations, quantum-mechanics calculations and an advanced molecular treatment of simulation data are here combined to provide a complete picture of the absorption behavior in the visible portion of the electromagnetic spectrum of the doxorubicin hydrochloride (DX) molecule in different environments. By such an approach, we have shown that it is possible to characterize the effect of the environment on the DX absorption behavior - including the vibronic contributions - as well as to interpret such differences in terms of molecular electronic excited states, which are found to be strongly influenced by the environment.
Collapse
Affiliation(s)
| | | | - Mauro Giustini
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
25
|
Chen CG, Nardi AN, Amadei A, D’Abramo M. Theoretical Modeling of Redox Potentials of Biomolecules. Molecules 2022; 27:1077. [PMID: 35164342 PMCID: PMC8838479 DOI: 10.3390/molecules27031077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
The estimation of the redox potentials of biologically relevant systems by means of theoretical-computational approaches still represents a challenge. In fact, the size of these systems typically does not allow a full quantum-mechanical treatment needed to describe electron loss/gain in such a complex environment, where the redox process takes place. Therefore, a number of different theoretical strategies have been developed so far to make the calculation of the redox free energy feasible with current computational resources. In this review, we provide a survey of such theoretical-computational approaches used in this context, highlighting their physical principles and discussing their advantages and limitations. Several examples of these approaches applied to the estimation of the redox potentials of both proteins and nucleic acids are described and critically discussed. Finally, general considerations on the most promising strategies are reported.
Collapse
Affiliation(s)
- Cheng Giuseppe Chen
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (C.G.C.); (A.N.N.)
| | | | - Andrea Amadei
- Department of Chemical and Technological Sciences, Tor Vergata University, 00133 Rome, Italy;
| | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (C.G.C.); (A.N.N.)
| |
Collapse
|
26
|
Amadei A, Aschi M. Theoretical-Computational Modelling of the Vibrational Relaxation of Small Inorganic Species in Condensed Phase. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
27
|
Chen CG, Giustini M, Scipioni A, Amadei A, D’Abramo M. Theoretical-computational modelling of the L-alanine CD spectrum in water. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Amadei A, Aschi M. Stationary and Time-Dependent Carbon Monoxide Stretching Mode Features in Carboxy Myoglobin: A Theoretical-Computational Reappraisal. J Phys Chem B 2021; 125:13624-13634. [PMID: 34904432 DOI: 10.1021/acs.jpcb.1c05815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The stationary and time-dependent infrared spectrum (IR) of the CO stretching mode (νCO) in carboxymyoglobin (MbCO), a longstanding problem of biophysical chemistry, has been modeled through a theoretical-computational method specifically designed for simulating quantum observables in complex atomic-molecular systems and based on a combined application of long time scale molecular dynamics simulations and quantum-chemical calculations. This study is basically focused on two aspects: (i) the origin of the stationary IR substates (termed as A0, A1, and A3) and (ii) the modeling and the interpretation of the νCO energy relaxation. The results, strengthened by a more than satisfactory agreement with the experimental data, concisely indicate that (i) the conformational His64-FeCO relevant substates, i.e., characterized by the formation-disruption of the H-bond between the above moieties, are the main responsible of the presence of two distinct and well separated (A0 and A1/A3) spectroscopic regions; (ii) the characteristic bimodal shape of the A1/A3 spectral region, according to our model, is the result of the fluctuation of the electric field pattern as provided by the protein-solvent framework perturbing the bound His64-CO-Heme complex; and (iii) the electric field pattern, in conjunction with the relatively high density of MbCO vibrational states, is also the main determinant of the νCO energy relaxation, characterizing its kinetic efficiency.
Collapse
Affiliation(s)
- Andrea Amadei
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", via della Ricerca Scientifica 1, 00 133 Roma, Italia
| | - Massimiliano Aschi
- Dipartimento di Scienze Fisiche e Chimiche, Università de l'Aquila, via Vetoio (Coppito 1), 67 010 l'Aquila, Italia
| |
Collapse
|
29
|
Zanetti-Polzi L, Amadei A, Daidone I. Segregation on the nanoscale coupled to liquid water polyamorphism in supercooled aqueous ionic-liquid solution. J Chem Phys 2021; 155:104502. [PMID: 34525825 DOI: 10.1063/5.0061659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The most intriguing hypothesis explaining many water anomalies is a metastable liquid-liquid phase transition (LLPT) at high pressure and low temperatures, experimentally hidden by homogeneous nucleation. Recent infrared spectroscopic experiments showed that upon addition of hydrazinium trifluoroacetate to water, the supercooled ionic solution undergoes a sharp, reversible LLPT at ambient pressure, possible offspring of that in pure water. Here, we calculate the temperature-dependent signature of the OH-stretching band, reporting on the low/high density phase of water, in neat water and in the same experimentally investigated ionic solution. The comparison between the infrared signature of the pure liquid and that of the ionic solution can be achieved only computationally, providing insight into the nature of the experimentally observed phase transition and allowing us to investigate the effects of ionic compounds on the high to low density supercooled liquid water transition. We show that the experimentally observed crossover behavior in the ionic solution can be reproduced only if the phase transition between the low- and high-density liquid states of water is coupled to a mixing-unmixing transition between the water component and the ions: at low temperatures, water and ions are separated and the water component is a low density liquid. At high temperatures, water and ions get mixed and the water component is a high-density liquid. The separation at low temperatures into ion-rich and ion-poor regions allows unveiling the polyamorphic nature of liquid water, leading to a crossover behavior resembling that observed in supercooled neat water under high pressure.
Collapse
Affiliation(s)
- Laura Zanetti-Polzi
- Center S3, CNR-Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | - Andrea Amadei
- Department of Chemical and Technological Sciences, University of Rome "Tor Vergata", Via della Ricerca Scientifica, I-00185 Rome, Italy
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio (Coppito 1), 67010 L'Aquila, Italy
| |
Collapse
|
30
|
Barone V, Puzzarini C, Mancini G. Integration of theory, simulation, artificial intelligence and virtual reality: a four-pillar approach for reconciling accuracy and interpretability in computational spectroscopy. Phys Chem Chem Phys 2021; 23:17079-17096. [PMID: 34346437 DOI: 10.1039/d1cp02507d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The established pillars of computational spectroscopy are theory and computer based simulations. Recently, artificial intelligence and virtual reality are becoming the third and fourth pillars of an integrated strategy for the investigation of complex phenomena. The main goal of the present contribution is the description of some new perspectives for computational spectroscopy, in the framework of a strategy in which computational methodologies at the state of the art, high-performance computing, artificial intelligence and virtual reality tools are integrated with the aim of improving research throughput and achieving goals otherwise not possible. Some of the key tools (e.g., continuous molecular perception model and virtual multifrequency spectrometer) and theoretical developments (e.g., non-periodic boundaries, joint variational-perturbative models) are shortly sketched and their application illustrated by means of representative case studies taken from recent work by the authors. Some of the results presented are already well beyond the state of the art in the field of computational spectroscopy, thereby also providing a proof of concept for other research fields.
Collapse
Affiliation(s)
- Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| | | | | |
Collapse
|
31
|
Pinto SMV, Tasinato N, Barone V, Zanetti-Polzi L, Daidone I. A computational insight into the relationship between side chain IR line shapes and local environment in fibril-like structures. J Chem Phys 2021; 154:084105. [PMID: 33639764 DOI: 10.1063/5.0038913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Infrared spectroscopy is a widely used technique to characterize protein structures and protein mediated processes. While the amide I band provides information on proteins' secondary structure, amino acid side chains are used as infrared probes for the investigation of protein reactions and local properties. In this paper, we use a hybrid quantum mechanical/classical molecular dynamical approach based on the perturbed matrix method to compute the infrared band due to the C=O stretching mode of amide-containing side chains. We calculate, at first, the infrared band of zwitterionic glutamine in water and obtain results in very good agreement with the experimental data. Then, we compute the signal arising from glutamine side chains in a microcrystal of the yeast prion Sup35-derived peptide, GNNQQNY, with a fibrillar structure. The infrared bands obtained by selective isotopic labeling of the two glutamine residues, Q4 and Q5, of each peptide were experimentally used to investigate the local hydration in the fibrillar microcrystal. The experimental spectra of the two glutamine residues, which experience different hydration environments, feature different spectral signals that are well reproduced by the corresponding calculated spectra. In addition, the analysis of the simulated spectra clarifies the molecular origin of the experimentally observed spectroscopic differences that arise from the different local electric field experienced by the two glutamine residues, which is, in turn, determined by a different hydrogen bonding pattern.
Collapse
Affiliation(s)
- Sandra M V Pinto
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | | | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, I-67100 L'Aquila, Italy
| |
Collapse
|
32
|
Zanetti-Polzi L, Smith MD, Chipot C, Gumbart JC, Lynch DL, Pavlova A, Smith JC, Daidone I. Tuning Proton Transfer Thermodynamics in SARS-CoV-2 Main Protease: Implications for Catalysis and Inhibitor Design. J Phys Chem Lett 2021; 12:4195-4202. [PMID: 33900080 PMCID: PMC8097931 DOI: 10.1021/acs.jpclett.1c00425] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/21/2021] [Indexed: 05/03/2023]
Abstract
The catalytic reaction in SARS-CoV-2 main protease is activated by a proton transfer (PT) from Cys145 to His41. The same PT is likely also required for the covalent binding of some inhibitors. Here we use a multiscale computational approach to investigate the PT thermodynamics in the apo enzyme and in complex with two potent inhibitors, N3 and the α-ketoamide 13b. We show that with the inhibitors the free energy cost to reach the charge-separated state of the active-site dyad is lower, with N3 inducing the most significant reduction. We also show that a few key sites (including specific water molecules) significantly enhance or reduce the thermodynamic feasibility of the PT reaction, with selective desolvation of the active site playing a crucial role. The approach presented is a cost-effective procedure to identify the enzyme regions that control the activation of the catalytic reaction and is thus also useful to guide the design of inhibitors.
Collapse
Affiliation(s)
- Laura Zanetti-Polzi
- Center
S3, CNR Institute of Nanoscience, Via Campi 213/A, I-41125 Modena, Italy
| | - Micholas Dean Smith
- Department
of Biochemistry, Molecular and Cellular Biology, The University of Tennessee, Knoxville, 309 Ken and Blaire Mossman Bldg., 1311 Cumberland
Avenue, Knoxville, Tennessee 37996, United States
| | - Chris Chipot
- UMR 7019, Université de Lorraine, Laboratoire
International Associé CNRS, 54506 Vandœuvre-lès-Nancy, France
- University
of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - James C. Gumbart
- School
of Physics, Georgia Institute of Technology, Atlanta Georgia 30332, United States
| | - Diane L. Lynch
- School
of Physics, Georgia Institute of Technology, Atlanta Georgia 30332, United States
| | - Anna Pavlova
- School
of Physics, Georgia Institute of Technology, Atlanta Georgia 30332, United States
| | - Jeremy C. Smith
- Department
of Biochemistry, Molecular and Cellular Biology, The University of Tennessee, Knoxville, 309 Ken and Blaire Mossman Bldg., 1311 Cumberland
Avenue, Knoxville, Tennessee 37996, United States
- UT/ORNL
Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Isabella Daidone
- Department
of Physical and Chemical Sciences, University
of L’Aquila, Via
Vetoio, I-67010 L’Aquila, Italy
| |
Collapse
|
33
|
D'Annibale V, Nardi AN, Amadei A, D'Abramo M. Theoretical Characterization of the Reduction Potentials of Nucleic Acids in Solution. J Chem Theory Comput 2021; 17:1301-1307. [PMID: 33621084 PMCID: PMC8028051 DOI: 10.1021/acs.jctc.0c00728] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we present the theoretical-computational modeling of the oxidation properties of four DNA nucleosides and nucleotides and a set of dinucleotides in solutions. Our estimates of the vertical ionization energies and reduction potentials, close to the corresponding experimental data, show that an accurate calculation of the molecular electronic properties in solutions requires a proper treatment of the effect of the environment. In particular, we found that the effect of the environment is to stabilize the oxidized state of the nucleobases resulting in a remarkable reduction-up to 6.6 eV-of the energy with respect to the gas phase. Our estimates of the aqueous and gas-phase vertical ionization energies, in good agreement with photoelectron spectroscopy experiments, also show that the effect on the reduction potential of the phosphate group and of the additional nucleotide in dinucleotides is rather limited.
Collapse
Affiliation(s)
| | | | - Andrea Amadei
- Department of Chemical Sciences and Technology, Tor Vergata University, Rome 00133, Italy
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, Rome 00185, Italy
| |
Collapse
|
34
|
Zanetti-Polzi L, Aschi M, Daidone I. Cooperative protein-solvent tuning of proton transfer energetics: carbonic anhydrase as a case study. Phys Chem Chem Phys 2021; 22:19975-19981. [PMID: 32857091 DOI: 10.1039/d0cp03652h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We investigate the coupling between the proton transfer (PT) energetics and the protein-solvent dynamics using the intra-molecular PT in wild type (wt) human carbonic anhydrase II and its ten-fold faster mutant Y7F/N67Q as a test case. We calculate the energy variation upon PT, and from that we also calculate the PT reaction free energy, making use of a hybrid quantum mechanics/molecular dynamics approach. In agreement with the experimental data, we obtain that the reaction free energy is basically the same in the two systems. Yet, we show that the instantaneous PT energy is on average lower in the mutant possibly contributing to the faster PT rate. Analysis of the contribution to the PT energetics of the solvent and of each protein residue, also not in the vicinity of the active site, provides evidence for electrostatic tuning of the PT energy arising from the combined effect of the solvent and the protein environment. These findings open up a way to the more general task of the rational design of mutants with either enhanced or reduced PT rate.
Collapse
Affiliation(s)
| | - Massimiliano Aschi
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, I-67010 L'Aquila, Italy.
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, I-67010 L'Aquila, Italy.
| |
Collapse
|
35
|
IR spectroscopy of condensed phase systems: Can the environment induce vibrational mode coupling? Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Zanetti-Polzi L, Smith MD, Chipot C, Gumbart JC, Lynch DL, Pavlova A, Smith JC, Daidone I. Tuning Proton Transfer Thermodynamics in SARS-Cov-2 Main Protease: Implications for Catalysis and Inhibitor Design. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020:13200227. [PMID: 33200115 PMCID: PMC7668740 DOI: 10.26434/chemrxiv.13200227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 11/06/2020] [Indexed: 12/21/2022]
Abstract
In this comutational work a hybrid quantum mechanics/molecular mechanics approach, the MD-PMM approach, is used to investigate the proton transfer reaction the activates the catalytic activity of SARS-CoV-2 main protease. The proton transfer thermodynamics is investigated for the apo ensyme (i.e., without any bound substrate or inhibitor) and in the presence of a inhibitor, N3, which was previously shown to covalently bind SARS-CoV-2 main protease.
Collapse
Affiliation(s)
- Laura Zanetti-Polzi
- Center S3, CNR Institute of Nanoscience, Via Campi 213/A, I-41125 Modena, Italy
| | - Micholas Dean Smith
- Department of Biochemistry, Molecular and Cellular Biology, The University of Tennessee, Knoxville. 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue, Knoxville, TN 37996, United States
| | - Chris Chipot
- UMR 7019, Universite de Lorraine, Laboratoire International Associe CNRS
- University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801, United States
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta GA 30332, United States
| | - Diane L Lynch
- School of Physics, Georgia Institute of Technology, Atlanta GA 30332, United States
| | - Anna Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta GA 30332, United States
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, TN 37831, United States
- Department of Biochemistry, Molecular and Cellular Biology, The University of Tennessee, Knoxville. 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue, Knoxville, TN 37996, United States
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, I-67010 L'Aquila, Italy
| |
Collapse
|
37
|
Chen MS, Zuehlsdorff TJ, Morawietz T, Isborn CM, Markland TE. Exploiting Machine Learning to Efficiently Predict Multidimensional Optical Spectra in Complex Environments. J Phys Chem Lett 2020; 11:7559-7568. [PMID: 32808797 DOI: 10.1021/acs.jpclett.0c02168] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The excited-state dynamics of chromophores in complex environments determine a range of vital biological and energy capture processes. Time-resolved, multidimensional optical spectroscopies provide a key tool to investigate these processes. Although theory has the potential to decode these spectra in terms of the electronic and atomistic dynamics, the need for large numbers of excited-state electronic structure calculations severely limits first-principles predictions of multidimensional optical spectra for chromophores in the condensed phase. Here, we leverage the locality of chromophore excitations to develop machine learning models to predict the excited-state energy gap of chromophores in complex environments for efficiently constructing linear and multidimensional optical spectra. By analyzing the performance of these models, which span a hierarchy of physical approximations, across a range of chromophore-environment interaction strengths, we provide strategies for the construction of machine learning models that greatly accelerate the calculation of multidimensional optical spectra from first principles.
Collapse
Affiliation(s)
- Michael S Chen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Tim J Zuehlsdorff
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, United States
| | - Tobias Morawietz
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Christine M Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, United States
| | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
38
|
Mancini G, Del Galdo S, Chandramouli B, Pagliai M, Barone V. Computational Spectroscopy in Solution by Integration of Variational and Perturbative Approaches on Top of Clusterized Molecular Dynamics. J Chem Theory Comput 2020; 16:5747-5761. [PMID: 32697580 PMCID: PMC8009517 DOI: 10.1021/acs.jctc.0c00454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Multiscale QM/MM approaches have
become the most suitable and effective
methods for the investigation of spectroscopic properties of medium-
or large-size chromophores in condensed phases. On these grounds,
we are developing a novel workflow aimed at improving the generality,
reliability, and ease of use of the available tools. In the present
paper, we report the latest developments of such an approach with
specific reference to a general workplan starting with the addition
of acetonitrile to the panel of solvents already available in the
General Liquid Optimized Boundary (GLOB) model enforcing nonperiodic
boundary conditions (NPBC). Next, the solvatochromic shifts induced
by acetonitrile on both rigid (uracil and thymine) and flexible (thyrosine)
chromophores have been studied introducing in our software a number
of new features ranging from rigid-geometry NPBC molecular dynamics
based on the quaternion formalism to a full integration of variational
(ONIOM) and perturbative (perturbed matrix method (PMM)) approaches
for describing different solute–solvent topologies and local
fluctuations, respectively. Finally, thymine and uracil have been
studied also in methanol to point out the generality of the computational
strategy. While further developments are surely needed, the strengths
of our integrated approach even in its present version are demonstrated
by the accuracy of the results obtained by an unsupervised approach
and coupled to a computational cost strongly reduced with respect
to that of conventional QM/MM models without any appreciable accuracy
deterioration.
Collapse
Affiliation(s)
- Giordano Mancini
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.,Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Sara Del Galdo
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | | | - Marco Pagliai
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.,Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| |
Collapse
|
39
|
Del Galdo S, Fusè M, Barone V. CPL Spectra of Camphor Derivatives in Solution by an Integrated QM/MD Approach. Front Chem 2020; 8:584. [PMID: 32733856 PMCID: PMC7358700 DOI: 10.3389/fchem.2020.00584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/05/2020] [Indexed: 11/16/2022] Open
Abstract
We extend a recently proposed computational strategy for the simulation of absorption spectra of semi-rigid molecular systems in condensed phases to the emission spectra of flexible chromophores. As a case study, we have chosen the CPL spectrum of camphor in methanol solution, which shows a well-defined bisignate shape. The first step of our approach is the quantum mechanical computation of reference spectra including vibrational averaging effects and taking bulk solvent effects into account by means of the polarizable continuum model. In the present case, the large amplitude inversion mode is explicitly treated by a numerical approach, whereas the other small-amplitude vibrational modes are taken into account within the harmonic approximation. Next, the snapshots of classical molecular dynamics computations are clusterized and one representative configuration from each cluster is used to compute a reference spectrum. In the present case, different clusters correspond to the two stable conformers of camphor in the S1 excited electronic state and, for each of them, to different numbers of strong solute-solvent hydrogen bonds. Finally, local fluctuation effects within each cluster are taken into account by means of the perturbed matrix model. The overall procedure leads to good agreement with experiment for absorption and emission spectra together with their chiral counterparts, thus allowing to analyze the role of different effects (stereo-electronic, vibrational, environmental) in tuning the overall experimental spectra.
Collapse
Affiliation(s)
| | - Marco Fusè
- SMART Laboratory, Scuola Normale Superiore, Pisa, Italy
| | | |
Collapse
|
40
|
Zanetti-Polzi L, Daidone I, Amadei A. Fully Atomistic Multiscale Approach for p Ka Prediction. J Phys Chem B 2020; 124:4712-4722. [PMID: 32427481 DOI: 10.1021/acs.jpcb.0c01752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The ionization state of titratable amino acids strongly affects proteins structure and functioning in a large number of biological processes. It is therefore essential to be able to characterize the pKa of ionizable groups inside proteins and to understand its microscopic determinants in order to gain insights into many functional properties of proteins. A big effort has been devoted to the development of theoretical approaches for the prediction of deprotonation free energies, yet the accurate theoretical/computational calculation of pKa values is recognized as a current challenge. A methodology based on a hybrid quantum/classical approach is here proposed for the computation of deprotonation free energies. The method is applied to calculate the pKa of formic acid, methylammonium, and methanethiol, providing results in good agreement with the corresponding experimental estimates. The pKa is also calculated for aspartic acid and lysine as single residues in solution and for three aspartic/glutamic acids inside a well-characterized protein: hen egg white lysozyme. While for small molecules the method is able to deal with multiple protonation states of all titratable groups, this becomes computationally very expensive for proteins. The calculated pKa values for the single amino acids (except for the zwitterionic aspartic acid) and inside the protein display a systematic shift with respect to the experimental values that suggests that the fine balance between hydrophobic and polar interactions might be not accurately reproduced by the usual classical force-fields, thus affecting the computation of deprotonation free energies. The calculated pKa shifts inside the protein are in good agreement with the corresponding experimental ones (within 1 pKa unit), well reproducing the pKa changes due to the protein environment even in the case of large pKa shifts.
Collapse
Affiliation(s)
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, I-67010 L'Aquila, Italy
| | - Andrea Amadei
- Department of Chemical and Technological Sciences, University of Rome "Tor Vergata", Via della Ricerca Scientifica, I-00185 Rome, Italy
| |
Collapse
|
41
|
Puzzarini C, Spada L, Alessandrini S, Barone V. The challenge of non-covalent interactions: theory meets experiment for reconciling accuracy and interpretation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:343002. [PMID: 32203942 DOI: 10.1088/1361-648x/ab8253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 03/23/2020] [Indexed: 06/10/2023]
Abstract
In the past decade, many gas-phase spectroscopic investigations have focused on the understanding of the nature of weak interactions in model systems. Despite the fact that non-covalent interactions play a key role in several biological and technological processes, their characterization and interpretation are still far from being satisfactory. In this connection, integrated experimental and computational investigations can play an invaluable role. Indeed, a number of different issues relevant to unraveling the properties of bulk or solvated systems can be addressed from experimental investigations on molecular complexes. Focusing on the interaction of biological model systems with solvent molecules (e.g., water), since the hydration of the biomolecules controls their structure and mechanism of action, the study of the molecular properties of hydrated systems containing a limited number of water molecules (microsolvation) is the basis for understanding the solvation process and how structure and reactivity vary from gas phase to solution. Although hydrogen bonding is probably the most widespread interaction in nature, other emerging classes, such as halogen, chalcogen and pnicogen interactions, have attracted much attention because of the role they play in different fields. Their understanding requires, first of all, the characterization of the directionality, strength, and nature of such interactions as well as a comprehensive analysis of their competition with other non-covalent bonds. In this review, it is shown how state-of-the-art quantum-chemical computations combined with rotational spectroscopy allow for fully characterizing intermolecular interactions taking place in molecular complexes from both structural and energetic points of view. The transition from bi-molecular complex to microsolvation and then to condensed phase is shortly addressed.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
| | - Lorenzo Spada
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Silvia Alessandrini
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
42
|
Futera Z, Jiang X, Blumberger J. Ergodicity Breaking in Thermal Biological Electron Transfer? Cytochrome C Revisited II. J Phys Chem B 2020; 124:3336-3342. [PMID: 32223243 DOI: 10.1021/acs.jpcb.0c01414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It was recently suggested that cytochrome c operates in an ergodicity-breaking regime characterized by unusually large energy gap thermal fluctuations and associated reorganization free energies for heme oxidation of up to 3.0 eV. The large fluctuations were reported to lower activation free energy for oxidation of the heme cofactor by almost a factor of 2 compared to the case where ergodicity is maintained. Our group has recently investigated this claim computationally at several levels of theory and found no evidence for such large energy gap fluctuations. Here we address the points of our earlier work that have raised criticism and we also extend our previous investigation by considering a simple linear polarizability model for cytochrome c oxidation. We find very consistent results among all our computational approaches, ranging from classical molecular dynamics, to the linear polarizability model to QM(PMM)/MM to full QM(DFT)/MM electrostatic emdedding. None of them support the notion of very large energy gap fluctuations or ergodicity breaking. The deviation between our simulations and the ones reported in [ J. Phys. Chem. B 2017, 121, 4958] is traced back to rather large electric fields at the Fe site of the heme c cofactor in that study, not seen in our simulations, neither with the AMBER nor with the CHARMM force field. While ergodicity breaking effects may well occur in other biological ET, our numerical evidence suggests that this is not the case for cytochrome c.
Collapse
Affiliation(s)
- Zdenek Futera
- Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
| | - Xiuyun Jiang
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, U.K
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, U.K
| |
Collapse
|
43
|
Del Galdo S, Fusè M, Barone V. The ONIOM/PMM Model for Effective Yet Accurate Simulation of Optical and Chiroptical Spectra in Solution: Camphorquinone in Methanol as a Case Study. J Chem Theory Comput 2020; 16:3294-3306. [PMID: 32250614 PMCID: PMC7222099 DOI: 10.1021/acs.jctc.0c00124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
This paper deals
with the development and first validation of a
composite approach for the simulation of chiroptical spectra in solution
aimed to strongly reduce the number of full QM computations without
any significant accuracy loss. The approach starts from the quantum
mechanical computation of reference spectra including vibrational
averaging effects and taking average solvent effects into account
by means of the polarizable continuum model. Next, the snapshots of
classical molecular dynamics computations are clusterized and one
reference configuration from each cluster is used to compute a reference
spectrum. Local fluctuation effects within each cluster are then taken
into account by means of the perturbed matrix model. The performance
of the proposed approach is tested on the challenging case of the
optical and chiroptical spectra
of camphorquinone in methanol solution. Although further validations
are surely needed, the results of this first study are quite promising
also taking into account that agreement with experimental data is
reached by just a couple of full quantum mechanical geometry optimizations
and frequency computations.
Collapse
Affiliation(s)
- Sara Del Galdo
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Marco Fusè
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
44
|
Vieira Pinto SM, Tasinato N, Barone V, Amadei A, Zanetti-Polzi L, Daidone I. Modeling amino-acid side chain infrared spectra: the case of carboxylic residues. Phys Chem Chem Phys 2020; 22:3008-3016. [DOI: 10.1039/c9cp04774c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Infrared (IR) spectroscopy is commonly utilized for the investigation of protein structures and protein-mediated processes.
Collapse
Affiliation(s)
- Sandra Mónica Vieira Pinto
- Scuola Normale Superiore
- I-56126 Pisa
- Italy
- Department of Physical and Chemical Sciences
- University of L'Aquila
| | | | | | - Andrea Amadei
- Department of Chemical and Technological Sciences
- University of Rome “Tor Vergata
- I-00185 Rome
- Italy
| | - Laura Zanetti-Polzi
- Department of Physical and Chemical Sciences
- University of L'Aquila
- I-67010 L'Aquila
- Italy
- CNR Institute of Nanoscience
| | - Isabella Daidone
- Department of Physical and Chemical Sciences
- University of L'Aquila
- I-67010 L'Aquila
- Italy
| |
Collapse
|
45
|
Segarra-Martí J, Segatta F, Mackenzie TA, Nenov A, Rivalta I, Bearpark MJ, Garavelli M. Modeling multidimensional spectral lineshapes from first principles: application to water-solvated adenine. Faraday Discuss 2020; 221:219-244. [DOI: 10.1039/c9fd00072k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We theoretically describe spectral lineshape from first principles, providing insight into solvent–solute interactions in terms of static and dynamic disorder and how these shape experimental signals in linear and non-linear optical spectroscopies.
Collapse
Affiliation(s)
- Javier Segarra-Martí
- Department of Chemistry
- Molecular Sciences Research Hub
- Imperial College London
- London
- UK
| | - Francesco Segatta
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università degli studi di Bologna
- 40136 Bologna
- Italy
| | - Tristan A. Mackenzie
- Department of Chemistry
- Molecular Sciences Research Hub
- Imperial College London
- London
- UK
| | - Artur Nenov
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università degli studi di Bologna
- 40136 Bologna
- Italy
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università degli studi di Bologna
- 40136 Bologna
- Italy
- Univ Lyon
| | - Michael J. Bearpark
- Department of Chemistry
- Molecular Sciences Research Hub
- Imperial College London
- London
- UK
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università degli studi di Bologna
- 40136 Bologna
- Italy
| |
Collapse
|
46
|
Amadei A, Aschi M. Modelling vibrational relaxation in complex molecular systems. Phys Chem Chem Phys 2019; 21:20003-20017. [PMID: 31478042 DOI: 10.1039/c9cp03379c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we show how it is possible to treat the quantum vibrational relaxation of a chromophore, embedded in a complex atomic-molecular environment, via the explicit solution of the time-dependent Schroedinger equation once using a proper separation between quantum and semiclassical degrees of freedom. The rigorous theoretical framework derived, based on first principles and making use of well defined approximations/assumptions, is utilized to construct a general model for the kinetics of the vibrational relaxation as obtained by the direct evaluation of the density matrix for all the relevant quantum state transitions. Application to (deuterated) N-methylacetamide (the typical benchmark used as a model for the amino acids) shows that the obtained theoretical-computational approach captures the essential features of the experimental process, unveiling the basic relaxation mechanism involving several vibrational state transitions.
Collapse
Affiliation(s)
- Andrea Amadei
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", via della Ricerca Scientifica 1, 00133 Roma, Italy.
| | | |
Collapse
|
47
|
Jiang X, Futera Z, Blumberger J. Ergodicity-Breaking in Thermal Biological Electron Transfer? Cytochrome C Revisited. J Phys Chem B 2019; 123:7588-7598. [PMID: 31405279 DOI: 10.1021/acs.jpcb.9b05253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It was recently suggested that certain redox proteins operate in an ergodicity-breaking regime to facilitate biological electron transfer (ET). A signature for this is a large variance reorganization free energy (several electronvolts) but a significantly smaller Stokes reorganization free energy due to incomplete protein relaxation on the time scale of the ET event. Here we investigate whether this picture holds for oxidation of cytochrome c in aqueous solution, at various levels of theory including classical molecular dynamics with two additive and one electronically polarizable force field, and QM/MM calculations with the QM region treated by full electrostatic DFT embedding and by the perturbed matrix method. Sampling the protein and energy gap dynamics over more than 250 ns, we find no evidence for ergodicity-breaking effects. In particular, the inclusion of electronic polarizability of the heme group at QM/MM levels did not induce nonergodic effects, contrary to previous reports by Matyushov et al. The well-known problem of overestimation of reorganization free energies with additive force fields is cured when the protein and solvent are treated as electronically polarizable. Ergodicity-breaking effects may occur in other redox proteins, and our results suggest that long simulations, ideally on the ET time scale, with electronically polarizable force fields are required to obtain strong numerical evidence for them.
Collapse
Affiliation(s)
- Xiuyun Jiang
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Zdenek Futera
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
48
|
Puzzarini C, Bloino J, Tasinato N, Barone V. Accuracy and Interpretability: The Devil and the Holy Grail. New Routes across Old Boundaries in Computational Spectroscopy. Chem Rev 2019; 119:8131-8191. [DOI: 10.1021/acs.chemrev.9b00007] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi 2, I-40126 Bologna, Italy
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
49
|
Del Galdo S, Chandramouli B, Mancini G, Barone V. Assessment of Multi-Scale Approaches for Computing UV–Vis Spectra in Condensed Phases: Toward an Effective yet Reliable Integration of Variational and Perturbative QM/MM Approaches. J Chem Theory Comput 2019; 15:3170-3184. [DOI: 10.1021/acs.jctc.9b00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sara Del Galdo
- Istituto di Chimica dei Composti OrganoMetallici (ICCOMCNR), UOS di Pisa, Area della Ricerca CNR, Consiglio Nazionale delle Ricerche, Via G. Moruzzi 1, I-56124 Pisa, Italy
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Balasubramanian Chandramouli
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
- Compunet, Istituto Italiano di Tecnologia (IIT), Via Morego 30, I-16163 Genova, Italy
| | - Giordano Mancini
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
| |
Collapse
|