1
|
Yang D, Shao T, Wang X, Hong M, Li R, Li C, Yue Q. N-doped carbon dots for the determination of Al 3+ and Fe 3+ using aggregation-induced emission. Mikrochim Acta 2024; 191:78. [PMID: 38182922 DOI: 10.1007/s00604-023-06143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
New portable hydrogel sensors for Al3+ and Fe3+ detection were designed based on the aggregation-induced emission (AIE) and color change of N-doped carbon dots (N-CDs). N-CDs with yellow fluorescence were prepared by a one-pot hydrothermal method from 2,5-dihydroxyterephthalic acid and acrylamide. The fluorescence of N-CDs was enhanced by Al3+ about 20 times and quenched by Fe3+. It was interesting that although Fe3+ showed obvious quenching on the fluorescence of N-CDs it did not cause a noticeable change in the fluorescence of N-CDs + Al3+. The colorless solution of N-CDs appeared blue in the presence of Fe3+ without the influence of Al3+. Therefore, the turn-on fluorometry and colorimetry systems based on N-CDs were constructed for the simultaneous detection of Al3+ and Fe3+. Furthermore, the portable sensing of Al3+ and Fe3+ was realized with the assistance of hydrogel, filter paper, cellulose acetate, and cellulose nitrate film. The proposed approach was successfully applied to the detection of Al3+ and Fe3+ in food samples and cell imaging.
Collapse
Affiliation(s)
- Dou Yang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Tong Shao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Xiaoshuang Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China.
| |
Collapse
|
2
|
Mayurachayakul P, Chantarasriwong O, Yotapan N, Kamkaew A, Mingvanish W, Srisuwannaket C, Sukwattanasinitt M, Niamnont N. Novel selective "on-off" fluorescence sensor based on julolidine hydrazone-Al 3+ complex for Cu 2+ ion: DFT study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121382. [PMID: 35598577 DOI: 10.1016/j.saa.2022.121382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
A hydrazone (T1) was synthesized by reacting 8-hydroxyjulolidine-9-carboxaldehyde with 2-furoic hydrazide and then modified with Al3+ ion to form a novel hydrazone Al3+ complex (T1-Al3+) in an aqueous solution (8% propylene glycol in 10 mM HEPES pH 5.5). The T1-Al3+ complex was studied as a Cu2+ selective sensor due to its highly efficient capacibility of paramagnetic quenching. The results showed that the T1-Al3+ complexed sensor possesses remarkable sensitivity and selectivity for Cu2+ ion in 8% propylene glycol in 10 mM HEPES pH 5.5 as compared with other tested analytes. Notably, this sensor has a broad linear detection range of 10-110 µM for Cu2+ ion and a detection limit level of 0.62 µM, which is lower than the Cu2+ concentration threshold in drinking water designated by the United States Environmental Protection Agency (EPA). Additionally, it was detectable for the presence of Cu2+ ion in mineral water and tap water samples. The selectivity of T1-Al3+ complexed sensor with Cu2+ ion could be explained by the basis of computation with Gaussian software complied with the basis sets of B3LYP/6-31 G(d,p)/LANL2DZ. Furthermore, only T1 exhibited anticancer efficacy against HeLa and U251 cells with MTT assay.
Collapse
Affiliation(s)
- Pipattra Mayurachayakul
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Oraphin Chantarasriwong
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Nattawut Yotapan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science and Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Withawat Mingvanish
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Choladda Srisuwannaket
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Mongkol Sukwattanasinitt
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science and Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nakorn Niamnont
- Organic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| |
Collapse
|
3
|
An ultrasensitive 4-(Diethylamino) salicylaldehyd-based fluorescence enhancement probe for the detection of Al3+ in aqueous solutions and its application in cells. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Bhosle AA, Banerjee M, Gupta V, Ghosh S, Bhasikuttan AC, Chatterjee A. Mechanochemical synthesis of an AIE-TICT-ESIPT active orange-emissive chemodosimeter for selective detection of hydrogen peroxide in aqueous media and living cells, and solid-phase quantitation using a smartphone. NEW J CHEM 2022. [DOI: 10.1039/d2nj03064k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein the design and mechanochemical synthesis of a chemodosimeter, benzothiazole-derived unsymmetrical azine protected by 4-bromomethylphenylboronic acid (BTPAB), an orange aggregation-induced emission (AIE), for the selective detection of H2O2 in a turn-on manner.
Collapse
Affiliation(s)
- Akhil A. Bhosle
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Mainak Banerjee
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Varsha Gupta
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Surajit Ghosh
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Achikanath C. Bhasikuttan
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Amrita Chatterjee
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| |
Collapse
|
5
|
|
6
|
Bhosle AA, Hiremath SD, Bhasikuttan AC, Banerjee M, Chatterjee A. Solvent-free mechanochemical synthesis of a novel benzothiazole-azine based ESIPT-coupled orange AIEgen for the selective recognition of Cu2+ ions in solution and solid phase. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113265] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Alam P, Leung NL, Zhang J, Kwok RT, Lam JW, Tang BZ. AIE-based luminescence probes for metal ion detection. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213693] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Mathivanan M, Tharmalingam B, Devaraj T, Murugan A, Lin CH, Jothi M, Murugesapandian B. A new 7-diethylamino- 4-hydroxycoumarin based reversible colorimetric/fluorometric probe for sequential detection of Al 3+/PPi and its potential use in biodetection and bioimaging applications. NEW J CHEM 2021. [DOI: 10.1039/d0nj05718e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new 7-diethylamino-4-hydroxycoumarin appended acylhydrazone probe was prepared and utilized for the sequential detection of Al3+/PPi in a reversible off–on–off emissive manner. The various practical applications of the probe were established.
Collapse
Affiliation(s)
| | | | | | - Abinayaselvi Murugan
- Department of Human Genetics
- National Institute of Mental Health and Neurosciences
- Bengaluru
- India
| | - Chia-Her Lin
- Department of Chemistry
- National Taiwan Normal University
- Taipei
- Taiwan
| | - Mathivanan Jothi
- Department of Human Genetics
- National Institute of Mental Health and Neurosciences
- Bengaluru
- India
| | | |
Collapse
|
9
|
Panja A, Raza R, Ghosh K. Cholesterol‐Coupled Diazine‐Phenol Gelator: Cyanide Sensing, Phase‐Selective Gelation in Oil Spill Recovery and Dye Adsorption. ChemistrySelect 2020. [DOI: 10.1002/slct.202002868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Atanu Panja
- Department of Chemistry University of Kalyani Kalyani 741235 India
| | - Rameez Raza
- Department of Chemistry University of Kalyani Kalyani 741235 India
| | - Kumaresh Ghosh
- Department of Chemistry University of Kalyani Kalyani 741235 India
| |
Collapse
|
10
|
Wang CX, Ai SL, Wu B, Huang SW, Liu Z. Biotinylated and fluorophore-incorporated polymeric mixed micelles for tumor cell-specific turn-on fluorescence imaging of Al 3. J Mater Chem B 2020; 8:3557-3565. [PMID: 31560346 DOI: 10.1039/c9tb01508f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Excessive amounts of Al3+ in the human body can cause adverse effects on immune function and induce several neurodegenerative disorders. So far, most of the reported fluorescent probes for Al3+ present some common drawbacks, such as low sensitivity and poor water solubility. In addition, a number of traditional fluorescent probes failed to image Al3+ in tumor cells due to the lack of tumor cell targeting capacity and cell penetrating abilities. To overcome these shortcomings, we constructed tumor-targeting fluorescent mixed nano-micelles (mPEG-Dye-Biotin) with an average particle size of 21 nm from an amphiphilic polymer containing a Schiff-base fluorescent unit (mPEG-Dye) and another amphiphilic polymer containing a tumor cell recognition ligand (DSPE-PEG-Biotin), through the co-self-assembly of both amphiphilic polymers in water using the film rehydration method. The as-prepared nanoprobe showed a highly sensitive and selective turn-on fluorescence response to Al3+ in aqueous solution with a low detection limit. MTT assay revealed the negligible cytotoxicity of the mPEG-Dye-Biotin nanoprobe to both HeLa cells and COS-7 cells, indicating the safety of mPEG-Dye-Biotin for biological applications. More importantly, the biotinylated nanoprobe showed better ability to enter biotin receptor-positive HeLa cells than that of the non-biotinylated micelle mPEG-Dye, which made it more suitable for imaging Al3+ in biotin receptor-positive tumor cells. This work provides a simple and general strategy to design a highly sensitive and tumor cell-specific metal ion nanoprobe, which can not only be applied in Al3+ imaging, but can also be extended to other ions or biomolecules by changing the incorporated fluorescent unit in the amphiphilic polymer.
Collapse
Affiliation(s)
- Cai-Xia Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | | | | | | | | |
Collapse
|
11
|
Zhang Y, Li L, Wang J, Jia L, Yang R, Guo X. A 4,5-quinolimide-based fluorescent sensor for sequential detection of Cu 2+ and cysteine in water and living cells with application in a memorized device. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118030. [PMID: 31951867 DOI: 10.1016/j.saa.2020.118030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/25/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
In this study, a new 4,5-quinolimide-based fluorescent sensor BNC was synthesized and characterized. BNC showed single selectivity for Cu2+via the "turn-off" fluorescence among various common metal ions. After forming a 1:1 stoichiometric complex with Cu2+, the detection limit (LOD) of BNC for Cu2+ was measured to be 0.44 μM. Subsequently, the in situ generated BNC-Cu2+ complex had been used for sensing Cys with the LOD of 1.5 μM through the displacement strategy, resulting in the revivable emission of BNC. According to the "off-on-off" fluorescence cycle of BNC generated by the alternate addition of Cu2+ and Cys, a reversible memorized device with "read-write-read-erase" behavior was constructed at the molecular level. Furthermore, the recoveries of Cu2+ in lake water with BNC were in the range of 95.0-105%. And sequential fluorescence imagings of BNC for Cu2+ and Cys were successfully applied in living yeast cells.
Collapse
Affiliation(s)
- Yu Zhang
- College of Heilongjiang Province Key Laboratory of Fine Chemicals, Qiqihar University, Qiqihar 161006, China
| | - Lan Li
- College of Heilongjiang Province Key Laboratory of Fine Chemicals, Qiqihar University, Qiqihar 161006, China
| | - Jinping Wang
- College of Heilongjiang Province Key Laboratory of Fine Chemicals, Qiqihar University, Qiqihar 161006, China
| | - Lihua Jia
- College of Heilongjiang Province Key Laboratory of Fine Chemicals, Qiqihar University, Qiqihar 161006, China.
| | - Rui Yang
- College of Heilongjiang Province Key Laboratory of Fine Chemicals, Qiqihar University, Qiqihar 161006, China
| | - Xiangfeng Guo
- College of Heilongjiang Province Key Laboratory of Fine Chemicals, Qiqihar University, Qiqihar 161006, China.
| |
Collapse
|
12
|
Zhang J, Zhao Z, Shang H, Liu Q, Liu F. An easy-to-synthesize multi-photoresponse smart sensor for rapidly detecting Zn2+ and quantifying Fe3+ based on the enol/keto binding mode. NEW J CHEM 2019. [DOI: 10.1039/c9nj03635k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A readily available salicylaldazine-modified fluorene Schiff base (EASA-F) exhibits fast fluorescent OFF–ON response to Zn2+ and OFF–ON–OFF behavior to Fe3+ synchronously accompanied the diverse absorption-ratiometric and colorimetric changes.
Collapse
Affiliation(s)
- Jingzhe Zhang
- School of Water Resources and Environment
- China University of Geosciences
- Beijing 100083
- China
| | - Zheng Zhao
- School of Information Engineering
- China University of Geosciences
- Beijing 100083
- China
| | - Hong Shang
- School of Science
- China University of Geosciences
- Beijing 100083
- China
| | - Qingsong Liu
- School of Water Resources and Environment
- China University of Geosciences
- Beijing 100083
- China
| | - Fei Liu
- School of Water Resources and Environment
- China University of Geosciences
- Beijing 100083
- China
| |
Collapse
|
13
|
Yin Y, Chen Z, Yang Y, Liu G, Fan C, Pu S. Thiophene-containing tetraphenylethene derivatives with different aggregation-induced emission (AIE) and mechanofluorochromic characteristics. RSC Adv 2019; 9:24338-24343. [PMID: 35527855 PMCID: PMC9069574 DOI: 10.1039/c9ra04611a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022] Open
Abstract
Four thiophene-containing tetraphenylethene derivatives were successfully synthesized and characterized. All these highly fluorescent compounds showed typical aggregation-induced emission (AIE) characteristics and emitted different fluorescence colors including blue-green, green, yellow and orange in the aggregation state. In addition, these luminogens also exhibited various mechanofluorochromic phenomena. Four thiophene-containing AIE-active TPE derivatives were synthesized. Furthermore, these luminogens exhibited various mechanofluorochromic phenomena.![]()
Collapse
Affiliation(s)
- Ya Yin
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Zhao Chen
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Yue Yang
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| |
Collapse
|