1
|
Yadav SK, Yadav S. Total synthesis of conjugation ready repeating unit of Acinetobacter baumannii strain K141 capsular polysaccharide via a [2 + 2] convergent approach. Carbohydr Res 2025; 552:109478. [PMID: 40184954 DOI: 10.1016/j.carres.2025.109478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Acinetobacter baumannii is a well-known opportunistic gram-negative bacterium responsible for serious concerns to human health due to its high virulence and extensive resistance to numerous antibiotics such as carbapenem, colistin, tigecycline, and many more. Herein, we have conducted the first total synthesis of the repeating unit of Acinetobacter baumannii strain K141 via the convergent [2 + 2] approach featuring the coupling of β-L-Rhap-(1 → 4)-β-D-GlcpNAc and β-D-Galp-(1 → 3)-β-D-GlcpNAc units. The synthesis of the first disaccharide unit involved a stereoselective cis-rhamnosylation that was achieved via the picoloyl-induced hydrogen bond mediated aglycon delivery with high β-stereo control.
Collapse
Affiliation(s)
- Sunil K Yadav
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand, 826004, India
| | - Somnath Yadav
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand, 826004, India.
| |
Collapse
|
2
|
Jian X, Sun Q, Xu W, Qu H, Feng X, Li C. Engineering the Substrate Specificity of UDP-Glycosyltransferases for Synthesizing Triterpenoid Glycosides with a Linear Trisaccharide as Aided by Ancestral Sequence Reconstruction. Angew Chem Int Ed Engl 2024; 63:e202409867. [PMID: 39172135 DOI: 10.1002/anie.202409867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/23/2024]
Abstract
Triterpenoids have wide applications in the pharmaceutical and agricultural industries. The glycosylation of triterpenoids catalyzed by UDP-glycosyltransferases (UGTs) is a crucial method for producing valuable derivatives with enhanced functions. However, only a few UDP-glucosyltransferases have been reported to synthesize the rare triterpenoids with linear-chain trisaccharide at C3-OH. This study revealed that the UGT91H subfamily primarily contributed to the 2"-O-glycosylation of triterpenoids with high regioselectivity, then the substrate scope was further expanded by ancestral sequence reconstruction (ASR). With ancestral enzyme UGT91H_A1 as a model, the sequence-structure-function relationship was explored. A RTAS loop (R212/T213/A214/S215) was identified to affect the substrate specificity of UGT91H_A1. Transferring this RTAS loop to the corresponding position of UGT91H enzymes successfully expanded their substrate spectra. The functional role of RTAS loop was further elucidated by molecular dynamics simulation and quantum mechanical computation. UGT91H_A1 was applied to the low-cost synthesis of terpenoid rhamnosides with a linear trisaccharide in combining with a self-sufficient UDP-rhamnose regeneration system. Finally, we developed a phylogeny-based platform to efficiently mining new UGT91Hs from plant genomic data. This study provided robust biocatalysts for synthesizing various triterpenoid glycosides with a linear trisaccharide and demonstrated ASR as an efficient tool in engineering the function of UDP-glycosyltransferases.
Collapse
Affiliation(s)
- Xing Jian
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Qiuyan Sun
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Wentao Xu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Haobo Qu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
3
|
Karwowska K, Gniadek M, Urbaniak W, Petelska AD. Physicochemical and electrical properties of DPPC bilayer membranes in the presence of oleanolic or asiatic acid. Sci Rep 2024; 14:27282. [PMID: 39516535 PMCID: PMC11549409 DOI: 10.1038/s41598-024-79234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to investigate the effect of selected compounds from the group of triterpene sapogenins on model phosphatidylcholine membranes. Two types of biological membrane model systems were used in the work, i.e., liposomes (microelectrophoresis method) and spherical bilayers (interfacial tension method). Each model was modified with the tested sapogenin compounds, and the change in their physicochemical and electrical parameters was analyzed. Parameters characterizing the equilibrium in the membrane of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)-oleanolic acid (OA) and DPPC-asiatic acid (AA) were determined). Based on the Young-Laplace equation, the interfacial tensions of spherical lipid bilayers were measured. The formation of 1:1 complexes was assumed in the DPPC-OA and DPPC-AA membrane systems, and the parameters characterizing the interactions in the formed complexes were calculated. Microelectrophoresis was used to study the surface charge density of lipid membranes. These values were obtained from electrophoretic mobility data using Smoluchowsky's equation. The influence of pH on the electrolyte solution and the composition of the membranes was investigated. The results indicate that modifying DPPC membranes with selected triterpene sapogenins, both OA and AA, causes changes in the surface charge density and shifts of the isoelectric point. Data presented in this work, obtained through mathematical derivation and confirmed experimentally, are of great importance for interpreting phenomena occurring in lipid membranes. A quantitative description of equilibria between phosphatidylcholine and sapogenins lets us understand the processes on the membrane surface. The equilibria are particularly significant from the standpoint of cell functioning. Phosphatidylcholine-sapogenin interactions modulate a range of physicochemical properties of membranes, and they are important in the course of the multiple processes involving membranes in the living cell (e.g., transport mechanism).
Collapse
Affiliation(s)
- Katarzyna Karwowska
- Faculty of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Maciej Gniadek
- Faculty of Mechatronics, Kazimierz Wielki University, Chodkiewicz 30, 85-867, Bydgoszcz, Poland
| | - Wiesław Urbaniak
- Faculty of Mechatronics, Kazimierz Wielki University, Chodkiewicz 30, 85-867, Bydgoszcz, Poland
| | - Aneta D Petelska
- Faculty of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
4
|
Liu B, Bi S, Wang J, Xu P, Yu B. Synthesis of Acovenosides: Cardiac Glycosides with Potent Antitumor Activities. Org Lett 2024; 26:8725-8729. [PMID: 39420814 DOI: 10.1021/acs.orglett.4c03048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Acovenoside A (1), a cardiac glycoside featuring a unique l-acovenose at C-3 and a 1β,3β,14β-trihydroxy aglycone (namely, acovenosigenin A), shows promising antiproliferative activities. Herein, we report the synthesis of acovenoside A (1) together with a panel of its congeners. The synthesis features the stereoselective introduction of the 1β,14β-OH and C17-butenolide moieties starting from androstenedione (7) and gold(I)-catalyzed glycosylation with superarmed glycosyl ortho-alkynylbenzoates as donors.
Collapse
Affiliation(s)
- Benzhang Liu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shuyang Bi
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jing Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Peng Xu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
5
|
Chen Y, Fan W, Zhao Y, Liu M, Hu L, Zhang W. Progress in the Regulation of Immune Cells in the Tumor Microenvironment by Bioactive Compounds of Traditional Chinese Medicine. Molecules 2024; 29:2374. [PMID: 38792234 PMCID: PMC11124165 DOI: 10.3390/molecules29102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The tumor microenvironment (TME) can aid tumor cells in evading surveillance and clearance by immune cells, creating an internal environment conducive to tumor cell growth. Consequently, there is a growing focus on researching anti-tumor immunity through the regulation of immune cells within the TME. Various bioactive compounds in traditional Chinese medicine (TCM) are known to alter the immune balance by modulating the activity of immune cells in the TME. In turn, this enhances the body's immune response, thus promoting the effective elimination of tumor cells. This study aims to consolidate recent findings on the regulatory effects of bioactive compounds from TCM on immune cells within the TME. The bioactive compounds of TCM regulate the TME by modulating macrophages, dendritic cells, natural killer cells and T lymphocytes and their immune checkpoints. TCM has a long history of having been used in clinical practice in China. Chinese medicine contains various chemical constituents, including alkaloids, polysaccharides, saponins and flavonoids. These components activate various immune cells, thereby improving systemic functions and maintaining overall health. In this review, recent progress in relation to bioactive compounds derived from TCM will be covered, including TCM alkaloids, polysaccharides, saponins and flavonoids. This study provides a basis for further in-depth research and development in the field of anti-tumor immunomodulation using bioactive compounds from TCM.
Collapse
Affiliation(s)
- Yuqian Chen
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Wenshuang Fan
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
| | - Yanyan Zhao
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Meijun Liu
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Linlin Hu
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| | - Weifen Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (Y.C.); (W.F.); (Y.Z.); (M.L.)
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang 261053, China
| |
Collapse
|
6
|
Ma Y, Zhao Y, Luo M, Jiang Q, Liu S, Jia Q, Bai Z, Wu F, Xie J. Advancements and challenges in pharmacokinetic and pharmacodynamic research on the traditional Chinese medicine saponins: a comprehensive review. Front Pharmacol 2024; 15:1393409. [PMID: 38774213 PMCID: PMC11106373 DOI: 10.3389/fphar.2024.1393409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Recent research on traditional Chinese medicine (TCM) saponin pharmacokinetics has revealed transformative breakthroughs and challenges. The multicomponent nature of TCM makes it difficult to select representative indicators for pharmacokinetic studies. The clinical application of saponins is limited by their low bioavailability and short half-life, resulting in fluctuating plasma concentrations. Future directions should focus on novel saponin compounds utilizing colon-specific delivery and osmotic pump systems to enhance oral bioavailability. Optimizing drug combinations, such as ginsenosides with aspirin, shows therapeutic potential. Rigorous clinical validation is essential for practical applications. This review emphasizes a transformative era in saponin research, highlighting the need for clinical validation. TCM saponin pharmacokinetics, guided by traditional principles, are in development, utilizing multidisciplinary approaches for a comprehensive understanding. This research provides a theoretical basis for new clinical drugs and supports rational clinical medication.
Collapse
Affiliation(s)
- Yuhan Ma
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yongxia Zhao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Mingxia Luo
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qin Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Sha Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qi Jia
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Zhixun Bai
- Organ Transplant Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Faming Wu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jian Xie
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
7
|
Li K, Liu B, Wang X, Xiao G. Highly Stereoselective Synthesis of Branched Fructooligosaccharides ABW90-1 and ABW50-1 from Achyranthes bidentata with Potent Antiosteoporosis Activities. Org Lett 2024; 26:1468-1471. [PMID: 38329784 DOI: 10.1021/acs.orglett.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The branched fructooligosaccharides ABW90-1 and ABW50-1 from Achyranthes bidentata with potent antiosteoporosis activities have been synthesized for the first time. The synthetic approach highlights the following features: (1) 6-O-picoloyl-directed β-d-fructofuranosylation via a hydrogen-bond-mediated aglycone delivery strategy for the highly stereoselective constructions of β-(2 → 6)-d-fructofuranosidic linkages and β-(2 → 1)-d-fructofuranosidic linkages in the internal positions under the reaction conditions (DBDMH, -20 °C, CH2Cl2) and (2) the reaction conditions (DBDMH, -78 °C to -35 °C, toluene) for highly stereoselective formations of β-(2 → 1)-d-fructofuranosidic linkages in the terminal positions.
Collapse
Affiliation(s)
- Kaifeng Li
- Department of Chemistry, Kunming University, Kunming, Yunnan 650214, China
| | - Bin Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiufang Wang
- Department of Chemistry, Kunming University, Kunming, Yunnan 650214, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
8
|
Wang X, Xiao G. Recent Advances in Chemical Synthesis of Structural Domains of Lipopolysaccharides from the Commensal Gut-Associated Microbiota. Chembiochem 2023; 24:e202300552. [PMID: 37731010 DOI: 10.1002/cbic.202300552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
Lipopolysaccharides from the commensal gut-associated microbiota are interesting biomolecules for the treatment of various inflammatory diseases. Different from pathogenic lipopolysaccharides, commensal lipopolysaccharides have distinct chemical structures and mediate beneficial homeostasis with the immune system of the host. However, the accessibility issues of homogenous and pure commensal lipopolysaccharides hampered the in-depth studies of their functions. In this concept article, we highlight the recent synthesis of lipopolysaccharides from gut-associated lymphoid-tissue-resident Alcaligenes faecalis and Bacteroides vulgatus, which hopes to inspire the more efforts devoting to these fantastic biomolecules.
Collapse
Affiliation(s)
- Xiufang Wang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming, 650214, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
9
|
Jian X, Li C, Feng X. Strategies for modulating transglycosylation activity, substrate specificity, and product polymerization degree of engineered transglycosylases. Crit Rev Biotechnol 2023; 43:1284-1298. [PMID: 36154438 DOI: 10.1080/07388551.2022.2105687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/21/2022] [Indexed: 01/18/2023]
Abstract
Glycosides are widely used in many fields due to their favorable biological activity. The traditional plant extractions and chemical methods for glycosides production are limited by environmentally unfriendly, laborious protecting group strategies and low yields. Alternatively, enzymatic glycosylation has drawn special attention due to its mild reaction conditions, high catalytic efficiency, and specific stereo-/regioselectivity. Glycosyltransferases (GTs) and retaining glycoside hydrolases (rGHs) are two major enzymes for the formation of glycosidic linkages. Therein GTs generally use nucleotide phosphate activated donors. In contrast, GHs can use broader simple and affordable glycosyl donors, showing great potential in industrial applications. However, most rGHs mainly show hydrolysis activity and only a few rGHs, namely non-Leloir transglycosylases (TGs), innately present strong transglycosylation activities. To address this problem, various strategies have recently been developed to successfully tailor rGHs to alleviate their hydrolysis activity and obtain the engineered TGs. This review summarizes the current modification strategies in TGs engineering, with a special focus on transglycosylation activity enhancement, substrate specificity modulation, and product polymerization degree distribution, which provides a reference for exploiting the transglycosylation potentials of rGHs.
Collapse
Affiliation(s)
- Xing Jian
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
10
|
Chen Z, Xiao G. One-Pot Assembly of the Highly Branched Tetradecasaccharide from Ganoderma lucidum Glycan GLSWA-1 with Immune-Enhancing Activities. Org Lett 2023; 25:7395-7399. [PMID: 37787430 DOI: 10.1021/acs.orglett.3c02898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The highly branched tetradecasaccharide repeating unit and shorter sequences of GLSWA-1 with immune-enhancing activities from Ganoderma lucidum have been prepared via a one-pot glycan assembly strategy. The synthetic route features (1) orthogonal one-pot glycosylation on the basis of PVB glycosylation to streamline glycan synthesis avoiding such issues as aglycone transfer, (2) one-pot assembly of oligosaccharides with up to four different glycosyl linkages, and (3) modular and convergent [4+5+5] one-pot assembly of the highly branched tetradecasaccharide.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, Yunnan 650091, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
11
|
Wu J, Jia P, Kuniyil R, Liu P, Tang W. Dynamic Kinetic Stereoselective Glycosylation via Rh II and Chiral Phosphoric Acid-Cocatalyzed Carbenoid Insertion to the Anomeric OH Bond for the Synthesis of Glycoconjugates. Angew Chem Int Ed Engl 2023; 62:e202307144. [PMID: 37532672 PMCID: PMC10530496 DOI: 10.1002/anie.202307144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
Chemical synthesis of glycoconjugates is essential for studying the biological functions of carbohydrates. We herein report an efficient approach for the stereoselective synthesis of challenging α-linked glycoconjugates via a RhII /chiral phosphoric acid (CPA)-cocatalyzed dynamic kinetic anomeric O-alkylation of sugar-derived lactols via carbenoid insertion to the anomeric OH bond. Notably, we observed excellent anomeric selectivity, excellent diastereoselectivity, broad substrate scope, and high efficiency for this glycosylation reaction by exploring various parameters of the cocatalytic system. DFT calculations suggested that the anomeric selectivity was mainly determined by steric interactions between the C2-carbon of the carbohydrate and the phenyl group of the metal carbenoid, while π/π interactions with the C2-OBn substituent on the carbohydrate substrate play a significant role for diastereoselectivity at the newly generated stereogenic center.
Collapse
Affiliation(s)
- Jicheng Wu
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, United States
| | - Peijing Jia
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, United States
| | - Rositha Kuniyil
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Weiping Tang
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, United States
- Department of Chemistry, 1101 University Ave, University of Wisconsin-Madison, Madison, WI 53706, United States
| |
Collapse
|
12
|
Ma Y, Jiang Q, Wang X, Xiao G. Total Synthesis of Cordyceps militaris Glycans via Stereoselective Orthogonal One-Pot Glycosylation and α-Glycosylation Strategies. Org Lett 2022; 24:7950-7954. [DOI: 10.1021/acs.orglett.2c03081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuxin Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Qiong Jiang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Xiufang Wang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
13
|
Yang L, Zhao Z, Luo D, Liang M, Zhang Q. Global Metabolomics of Fireflies (Coleoptera: Lampyridae) Explore Metabolic Adaptation to Fresh Water in Insects. INSECTS 2022; 13:823. [PMID: 36135524 PMCID: PMC9503472 DOI: 10.3390/insects13090823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Aquatic insects are well-adapted to freshwater environments, but metabolic mechanisms of such adaptations, particularly to primary environmental factors (e.g., hypoxia, water pressure, dark light, and abundant microbes), are poorly known. Most firefly species (Coleoptera: Lampyridae) are terrestrial, but the larvae of a few species are aquatic. We generated 24 global metabolomic profiles of larvae and adults of Aquatica leii (freshwater) and Lychnuris praetexta (terrestrial) to identify freshwater adaptation-related metabolites (AARMs). We identified 110 differentially abundant metabolites (DAMs) in A. leii (adults vs. aquatic larvae) and 183 DAMs in L. praetexta (adults vs. terrestrial larvae). Furthermore, 100 DAMs specific to aquatic A. leii larvae were screened as AARMs via interspecific comparisons (A. leii vs. L. praetexta), which were primarily involved in antioxidant activity, immune response, energy production and metabolism, and chitin biosynthesis. They were assigned to six categories/superclasses (e.g., lipids and lipid-like molecules, organic acids and derivatives, and organoheterocyclic compound). Finally, ten metabolic pathways shared between KEGG terms specific to aquatic fireflies and enriched by AARMs were screened as aquatic adaptation-related pathways (AARPs). These AARPs were primarily involved in energy metabolism, xenobiotic biodegradation, protection of oxidative/immune damage, oxidative stress response, and sense function (e.g., glycine, serine and threonine metabolism, drug metabolism-cytochrome P450, and taste transduction), and certain aspects of morphology (e.g., steroid hormone biosynthesis). These results provide evidence suggesting that abundance changes in metabolomes contribute to freshwater adaptation of fireflies. The metabolites identified here may be vital targets for future work to determine the mechanism of freshwater adaptation in insects.
Collapse
Affiliation(s)
- Linyu Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zishun Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dan Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- YEN, Chuxiong People’s Hospital, Chuxiong 675000, China
| | - Mingzhong Liang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Qilin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
14
|
Jiang P, Gao S, Chen Z, Sun H, Li P, Yue D, Pan Y, Wang X, Mi R, Dong Y, Jiang J, Zhou Z. Cloning and characterization of a phosphomevalonate kinase gene that is involved in saponin biosynthesis in the sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 128:67-73. [PMID: 35921931 DOI: 10.1016/j.fsi.2022.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The sea cucumber Apostichopus japonicus is one of the most dominant and economically important aquaculture species in China. Saponin, which possesses notable biological and pharmacological properties, is a key determinant of the nutritional and health value of A. japonicus. In the present study, we amplified the full-length cDNA of a phosphomevalonate kinase (PMK) gene (named AjPMK) using rapid amplification of cDNA ends (RACE). Subsequently, we engineered a recombinant AjPMK (rAjPMK) protein and assessed its enzymatic activity by enzyme-linked immunosorbent assay (ELISA). Proteins that interact with rAjPMK were screened and identified via pull-down assay combined with liquid chromatography with tandem mass spectrometry (LC-MS/MS). We found that the full-length cDNA of AjPMK contained 1354 bp and an open reading frame (ORF) of 612 bp. The AjPMK protein was predicted not to contain a signal peptide but to contain a phosphonolate kinase domain seen in higher eukaryotes and a P-loop with a relatively conserved nucleoside triphosphate hydrolase domain. The molecular weight of the AjPMK protein was estimated to be 23.81 kDa, and its isoelectric point was predicted to be 8.72. Phylogenetic analysis showed that AjPMK had a closer evolutionary relationship with genes from starfish than with those of other selected species. Besides, we found that rAjPMK synthesized mevalonate-5-diphosphate, interacted either directly or indirectly with crucial pattern recognition receptors (PRRs) and was regulated by immune-related processes, including antioxidative reactions, stress resistance responses and enzyme hydrolysis. Moreover, AjPMK also interacted with farnesyl pyrophosphate synthase, an enzyme reported to be involved in saponin biosynthesis. Together, our findings implied that AjPMK may be directly involved in saponin biosynthesis and the regulation of various innate immune processes.
Collapse
Affiliation(s)
- Pingzhe Jiang
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Shan Gao
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Zhong Chen
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Hongjuan Sun
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Peipei Li
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Dongmei Yue
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Yongjia Pan
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Xuda Wang
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Rui Mi
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Ying Dong
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Jingwei Jiang
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| | - Zunchun Zhou
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| |
Collapse
|
15
|
Yang R, Sun X, Zhang Y, Xiao G. The total synthesis of rhynchosporosides via orthogonal one-pot glycosylation and stereoselective α-glycosylation strategies. Org Biomol Chem 2022; 20:6755-6758. [PMID: 35971976 DOI: 10.1039/d2ob01243j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The efficient and collective synthesis of rhynchosporosides causing scald diseases has been achieved, which features orthogonal one-pot glycosylation on the basis of PTFAI glycosylation, Yu glycosylation, and PVB glycosylation and merging reagent modulation and remote anchimeric assistance (RMRAA) α-glucosylation strategies. The issues inherent to the thioglycoside-based orthogonal one-pot glycosylation strategy, such as aglycone transfer, have been precluded by this orthogonal one-pot glycosylation strategy, which can streamline glycan chemical synthesis.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.
| | - Xingchun Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China. .,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.
| |
Collapse
|
16
|
Zhang Y, Hu Y, Liu S, He H, Sun R, Lu G, Xiao G. Total synthesis of Lentinus giganteus glycans with antitumor activities via stereoselective α-glycosylation and orthogonal one-pot glycosylation strategies. Chem Sci 2022; 13:7755-7764. [PMID: 35865907 PMCID: PMC9258330 DOI: 10.1039/d2sc02176e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
The accessibility to long, branched and complex glycans containing many 1,2-cis glycosidic linkages with precise structures remains a challenging task in chemical synthesis. Reported here is an efficient, stereoselective and orthogonal one-pot synthesis of a tetradecasaccharide and shorter sequences from Lentinus giganteus polysaccharides with antitumor activities. The synthetic strategy consists of: (1) newly developed merging reagent modulation and remote anchimeric assistance (RMRAA) α-(1→6)-galactosylation in a highly stereoselective manner, (2) DMF-modulated stereoselective α-(1→3)-glucosylation, (3) RMRAA stereoselective α-(1→6)-glucosylation, (4) several orthogonal one-pot glycosylations on the basis of N-phenyltrifluoroacetimidate (PTFAI) glycosylation, Yu glycosylation and ortho-(1-phenylvinyl)benzoate (PVB) glycosylation to streamline oligosaccharide synthesis, and (5) convergent [7 + 7] glycosylation for the final assembly of the target tetradecasaccharide. In particular, this new RMRAA α-galactosylation method has mild reaction conditions, broad substrate scopes and significantly shortened step counts for the heptasaccharide synthesis in comparison with 4,6-di-tert-butylsilyene (DTBS) directed α-galactosylation. Furthermore, DFT calculations shed light on the origins of remote anchimeric assistance effects (3,4-OBz > 3,4-OAc > 4-OBz > 3-OBz) of acyl groups.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Yanlei Hu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan Shandong 250100 China
| | - Shanshan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Roujing Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Gang Lu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan Shandong 250100 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| |
Collapse
|
17
|
Zhu D, Geng M, Yu B. Total Synthesis of Starfish Cyclic Steroid Glycosides. Angew Chem Int Ed Engl 2022; 61:e202203239. [PMID: 35383396 DOI: 10.1002/anie.202203239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 12/15/2022]
Abstract
Starfishes have evolved with a special type of secondary metabolites, namely starfish saponins, to ward off various predators and parasites; among them, the starfish cyclic steroid glycosides stand out structurally, featuring a unique 16-membered ring formed by bridging the steroidal C3 and C6 with a trisaccharide. The rigid cyclic scaffold and the congested and vulnerable steroid-sugar etherate linkage present an unprecedented synthetic challenge. Here we report a collective total synthesis of the major starfish cyclic steroid glycosides, namely luzonicosides A (1) and D (2) and sepositoside A (3), with an innovative approach, which entails a de novo construction of the ether-linked hexopyranosyl units, use of olefinic pyranoses as sugar precursors, and a decisive ring-closing glycosylation under the mild gold(I)-catalyzed conditions.
Collapse
Affiliation(s)
- Dapeng Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mingyu Geng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
18
|
Javed, Khanam A, Mandal PK. Glycosyl 3-Phenyl-4-pentenoates as Versatile Glycosyl Donors: Reactivity and Their Application in One-Pot Oligosaccharide Assemblies. J Org Chem 2022; 87:6710-6729. [PMID: 35522927 DOI: 10.1021/acs.joc.2c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both glycoconjugates and oligosaccharides are important biomolecules having significant roles in several biological processes, and a new strategy for their synthesis is crucial. Here, we report a versatile N-iodosuccinimide/trimethylsilyl triflate (NIS/TMSOTf) promoted glycosidation approach with shelf-stable 3-phenyl-4-pentenoate glycosyl as a donor for the efficient synthesis of O/C-glycosides with free alcohols, silylated alcohols, and C-type nucleophile acceptors in good to excellent yields. The mild activation conditions and outstanding reactivity of phenyl substituted pentenoate donors analogous to 4-pentenoate glycosyl donors enhance their applicability to various one-pot strategies for the synthesis of oligosaccharides, such as single-catalyst one-pot and acceptor reactivity-controlled one-pot strategies.
Collapse
Affiliation(s)
- Javed
- Medicinal and Process Chemistry Division, CSIR─Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Ariza Khanam
- Medicinal and Process Chemistry Division, CSIR─Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR─Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
19
|
Total Synthesis of Starfish Cyclic Steroid Glycosides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Savić MP, Sakač MN, Kuzminac IZ, Ajduković JJ. Structural diversity of bioactive steroid compounds isolated from soft corals in the period 2015-2020. J Steroid Biochem Mol Biol 2022; 218:106061. [PMID: 35031429 DOI: 10.1016/j.jsbmb.2022.106061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
Marine soft corals are known as a good source of biologically active compounds, among which a large number of steroid compounds are identified. Structures and activities of these compounds have been used in drug discovery and development. From 2015 to 2020, 179 new steroid compounds were isolated from soft corals and structurally characterized. In this review, we report the structural classification and bioactivities of these compounds. The largest group of steroids from soft corals are hydroxysteroids, while the most common biological activity is anticancer. Besides, anticancer hydroxysteroids from soft corals exhibit anti-inflammatory and antibacterial activity. Unlike anticancer and antibacterial activity that can be observed in a number of steroid classes, antioxidant activity and antileishmanial effect were observed only in 19-oxygenated steroids, antiviral activity in pregnane-type steroids and spirosteroids, immunosuppressive activity in epoxy- and epidioxysteroids, and antibacterial activity in two steroid classes, hydroxysteroids and ketosteroids. This systematically analyzed link between the structure and activity of natural marine steroids is a good starting point for future drug design.
Collapse
Affiliation(s)
- Marina P Savić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Marija N Sakač
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Ivana Z Kuzminac
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| | - Jovana J Ajduković
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| |
Collapse
|
21
|
Romano G, Almeida M, Varela Coelho A, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH, Sugni M, Ballarin L, Genevière AM. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar Drugs 2022; 20:md20040219. [PMID: 35447892 PMCID: PMC9027906 DOI: 10.3390/md20040219] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010–2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.
Collapse
Affiliation(s)
- Giovanna Romano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- Correspondence: (G.R.); (L.B.)
| | - Mariana Almeida
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Varela Coelho
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Adele Cutignano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Luis G Gonçalves
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Espen Hansen
- Marbio, UiT-The Arctic University of Norway, 9037 Tromso, Norway;
| | - Denis Khnykin
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Department of Pathology, Oslo University Hospital-Rikshospitalet, 0450 Oslo, Norway;
| | - Tali Mass
- Faculty of Natural Science, Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, SI-6330 Piran, Slovenia;
| | - Miguel S. Rocha
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100 Padova, Italy
- Correspondence: (G.R.); (L.B.)
| | - Anne-Marie Genevière
- Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, CNRS, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| |
Collapse
|
22
|
Javed, Tiwari A, Azeem Z, Mandal PK. 4,5-Dioxo-imidazolinium Cation-Promoted α-Selective Dehydrative Glycosylation of 2-Deoxy- and 2,6-Dideoxy Sugars. J Org Chem 2022; 87:3718-3729. [DOI: 10.1021/acs.joc.1c02650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Javed
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
| | - Ashwani Tiwari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
| | - Zanjila Azeem
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
23
|
Abstract
Saponins, as secondary metabolites in terrestrial plants and marine invertebrate, constitute one of the largest families of natural products. The long history of folk medicinal applications of saponins makes them attractive candidates for innovative drug design and development. Chemical synthesis has become a practical alternative to the availability of the natural saponins and their modified analogs, so as to facilitate SAR studies and the discovery of optimal structures for clinical applications. The recent achievements in the synthesis of these complex saponins reflect the advancements of both steroid/triterpene chemistry and carbohydrate chemistry. This chapter provides an updated review on the chemical synthesis of natural saponins, covering the literature from 2014 to 2020.
Collapse
Affiliation(s)
- Peng Xu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
24
|
Yang R, He H, Chen Z, Huang Y, Xiao G. A One-Pot Synthesis of Glycans and Nucleosides Based on ortho-(1-Phenylvinyl)benzyl Glycosides. Org Lett 2021; 23:8257-8261. [PMID: 34676757 DOI: 10.1021/acs.orglett.1c02998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
One-pot synthesis of both glycans and nucleosides remains rare and challenging. Herein, we report a one-pot glycosylation strategy for glycans and nucleosides synthesis based on ortho-(1-phenylvinyl)benzyl glycosides, which has several advantages, including no aglycon transfers, no undesired interference of departing species, no unpleasant odor, and up to the construction of four different glycosidic linkages.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
25
|
Nishimura S. Marine natural products targeting the eukaryotic cell membrane. J Antibiot (Tokyo) 2021; 74:769-785. [PMID: 34493848 DOI: 10.1038/s41429-021-00468-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
The cell membrane, with high fluidity and alternative curvatures, maintains the robust integrity to distinguish inner and outer space of cells or organelles. Lipids are the main components of the cell membrane, but their functions are largely unknown. Even the visualization of lipids is not straightforward since modification of lipids often hampers its correct physical properties. Many natural products target cell membranes, some of which are used as pharmaceuticals and/or research tools. They show specific recognition on lipids, and thus exhibit desired pharmacological effects and unique biological phenotypes. This review is a catalog of marine natural products that target eukaryotic cell membranes. Chemical structures, biological activities, and molecular mechanisms are summarized. I hope that this review will be helpful for readers to notice the potential of marine natural products in the exploration of the function of lipids and the druggability of eukaryotic cell membranes.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Department of Biotechnology, Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
26
|
Konishi N, Shirahata T, Yoshida Y, Sato N, Kaji E, Kobayashi Y. Efficient synthesis of diverse C-3 monodesmosidic saponins by a continuous microfluidic glycosylation/batch deprotection method. Carbohydr Res 2021; 510:108437. [PMID: 34597978 DOI: 10.1016/j.carres.2021.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022]
Abstract
Triterpene and steroid saponins have various pharmacological activities but the synthesis of C-3 monodesmosidic saponins remains challenging. Herein, a series of C-3 glycosyl monodesmosidic saponins was synthesized via the microfluidic glycosylation of triterpenoids or steroids at the C-3 position, without the formation of orthoester byproducts, and subsequent deprotection of the benzoyl (Bz) group. This microfluidic glycosylation/batch deprotection sequence enabled the efficient synthesis of C-3 saponins with fewer purification steps and a shorter reaction time than conventional batch synthesis and stepwise microfluidic glycosylation. Furthermore, this system minimized the consumption of the imidate donor. Using this reaction system, 18 different C-3 saponins and 13 different C-28-benzyl-C-3 saponins, including 8 new compounds, were synthesized from various sugars and triterpenes or steroids. Our synthetic approach is expected to be suitable for further expanding the C-3 saponin library for pharmacological studies.
Collapse
Affiliation(s)
- Naruki Konishi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tatsuya Shirahata
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Yuki Yoshida
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Noriko Sato
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Eisuke Kaji
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
27
|
Zhang Y, He H, Chen Z, Huang Y, Xiang G, Li P, Yang X, Lu G, Xiao G. Merging Reagent Modulation and Remote Anchimeric Assistance for Glycosylation: Highly Stereoselective Synthesis of α‐Glycans up to a 30‐mer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Guisheng Xiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Xingkuan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Gang Lu
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Jinan Shandong 250100 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| |
Collapse
|
28
|
Zhang Y, He H, Chen Z, Huang Y, Xiang G, Li P, Yang X, Lu G, Xiao G. Merging Reagent Modulation and Remote Anchimeric Assistance for Glycosylation: Highly Stereoselective Synthesis of α-Glycans up to a 30-mer. Angew Chem Int Ed Engl 2021; 60:12597-12606. [PMID: 33763930 DOI: 10.1002/anie.202103826] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/12/2022]
Abstract
The efficient synthesis of long, branched, and complex carbohydrates containing multiple 1,2-cis glycosidic linkages is a long-standing challenge. Here, we report a merging reagent modulation and 6-O-levulinoyl remote anchimeric assistance glycosylation strategy, which is successfully applied to the first highly stereoselective synthesis of the branched Dendrobium Huoshanense glycans and the linear Longan glycans containing up to 30 contiguous 1,2-cis glucosidic bonds. DFT calculations shed light on the origin of the much higher stereoselectivities of 1,2-cis glucosylation with 6-O-levulinoyl group than 6-O-acetyl or 6-O-benzoyl groups. Orthogonal one-pot glycosylation strategy based on glycosyl ortho-alkynylbenzoates and ortho-(1-phenylvinyl)benzoates has been demonstrated in the efficient synthesis of complex glycans, precluding such issues as aglycon transfer inherent to orthogonal one-pot synthesis based on thioglycosides.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Guisheng Xiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Xingkuan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Gang Lu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
29
|
He H, Xu L, Sun R, Zhang Y, Huang Y, Chen Z, Li P, Yang R, Xiao G. An orthogonal and reactivity-based one-pot glycosylation strategy for both glycan and nucleoside synthesis: access to TMG-chitotriomycin, lipochitooligosaccharides and capuramycin. Chem Sci 2021; 12:5143-5151. [PMID: 34163751 PMCID: PMC8179548 DOI: 10.1039/d0sc06815b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
Both glycans (O-glycosides) and nucleosides (N-glycosides) play important roles in numerous biological processes. Chemical synthesis is a reliable and effective means to solve the attainability issues of these essential biomolecules. However, due to the stereo- and regiochemical issues during glycan assembly, together with problems including the poor solubility and nucleophilicity of nucleobases in nucleoside synthesis, the development of one-pot glycosylation strategies toward efficient synthesis of both glycans and nucleosides remains poor and challenging. Here, we report the first orthogonal and reactivity-based one-pot glycosylation strategy suitable for both glycan and nucleoside synthesis on the basis of glycosyl ortho-(1-phenylvinyl)benzoates. This one-pot glycosylation strategy not only inherits the advantages including no aglycon transfers, no undesired interference of departing species, and no unpleasant odors associated with the previously developed orthogonal one-pot glycosylation strategy based on glycosyl ortho-alkynylbenzoates, but also highly expands the scope (glycans and nucleosides) and increases the number of leaving groups that could be employed for the multistep one-pot synthesis (up to the formation of four different glycosidic bonds). In particular, the current one-pot glycosylation strategy is successfully applied to the total synthesis of a promising tuberculosis drug lead capuramycin and the divergent and formal synthesis of TMG-chitotriomycin with potent and specific inhibition activities toward β-N-acetylglucosaminidases and important endosymbiotic lipochitooligosaccharides including the Nod factor and the Myc factor, which represents one of the most efficient and straightforward synthetic routes toward these biologically salient molecules.
Collapse
Affiliation(s)
- Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Lili Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Roujing Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences Kunming 650201 China
| |
Collapse
|
30
|
Varenikov A, Shapiro E, Gandelman M. Decarboxylative Halogenation of Organic Compounds. Chem Rev 2021; 121:412-484. [PMID: 33200917 PMCID: PMC7884003 DOI: 10.1021/acs.chemrev.0c00813] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Decarboxylative halogenation, or halodecarboxylation, represents one of the fundamental key methods for the synthesis of ubiquitous organic halides. The method is based on conversion of carboxylic acids to the corresponding organic halides via selective cleavage of a carbon-carbon bond between the skeleton of the molecule and the carboxylic group and the liberation of carbon dioxide. In this review, we discuss and analyze major approaches for the conversion of alkanoic, alkenoic, acetylenic, and (hetero)aromatic acids to the corresponding alkyl, alkenyl, alkynyl, and (hetero)aryl halides. These methods include the preparation of families of valuable organic iodides, bromides, chlorides, and fluorides. The historic and modern methods for halodecarboxylation reactions are broadly discussed, including analysis of their advantages and drawbacks. We critically address the features, reaction selectivity, substrate scopes, and limitations of the approaches. In the available cases, mechanistic details of the reactions are presented, and the generality and uniqueness of the different mechanistic pathways are highlighted. The challenges, opportunities, and future directions in the field of decarboxylative halogenation are provided.
Collapse
Affiliation(s)
- Andrii Varenikov
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Evgeny Shapiro
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Mark Gandelman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| |
Collapse
|
31
|
Olas B, Urbańska K, Bryś M. Saponins as Modulators of the Blood Coagulation System and Perspectives Regarding Their Use in the Prevention of Venous Thromboembolic Incidents. Molecules 2020; 25:molecules25215171. [PMID: 33172028 PMCID: PMC7664220 DOI: 10.3390/molecules25215171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023] Open
Abstract
Saponins comprise a heterogenous group of chemical compounds containing a triterpene or steroid aglycone group and at least one sugar chain. They exist as secondary metabolites, occurring frequently in dicotyledonous plants and lower marine animals. Plant saponin extracts or single saponins have indicated antiplatelet and anticoagulant activity. Venous thromboembolism (VTE), including deep venous thrombosis and pulmonary embolism, is a multifactorial disease influenced by various patient characteristics such as age, immobility, previous thromboembolism and inherited thrombophilia. This mini-review (1) evaluates the current literature on saponins as modulators of the coagulation system, (2) discusses the impact of chemical structure on the modulation of the coagulation system, which may further provide a basis for drug or supplement design, (3) examines perspectives of their use in the prevention of VTE. It also describes the molecular mechanisms of action of the saponins involved in the prevention of VTE.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
- Correspondence: ; Tel./Fax: +48-42-6354485
| | - Karina Urbańska
- Faculty of Medicine, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland;
| |
Collapse
|
32
|
Song Z, Li H, Wen J, Zeng Y, Ye X, Zhao W, Xu T, Xu N, Zhang D. Consumers' attention on identification, nutritional compounds, and safety in heavy metals of Canadian sea cucumber in Chinese food market. Food Sci Nutr 2020; 8:5962-5975. [PMID: 33282248 PMCID: PMC7684582 DOI: 10.1002/fsn3.1882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Based on the consumers' attention issues of sea cucumbers, we aimed to complete comprehensive information of commercial Canadian sea cucumbers (CCSC), which sprang up extensively in Chinese food market. RESULTS CCSC were identified as Cucumaria frondosa and characterized based on the characteristics, nutritional compositions, and heavy metals. The abdomen and five internal tendons of Cucumaria frondosa were special orange. The average of soaking degree and water content, which consumers paid great attention to, was 2.8 ± 0.3 and 0.46 ± 0.09%, respectively. Proteins (56.4 ± 9.1%) and polysaccharides (12.2 ± 14.7%) were the principal nutrient component. In addition, there was a variety of free amino acids, in which arginine (70.1 ± 50.0 mg/100 g), glutamate (42.6 ± 23.9 mg/100 g), and alanine (32.2 ± 21.0 mg/100 g) were the main components. Phosphorus (P, 0.26 ± 0.05%), magnesium (Mg, 0.19 ± 0.07%), and kalium (K, 0.17 ± 0.08%) were the major mineral elements. Amount of heavy metal was within the safety limitation (5.5 ± 1.4 mg/kg). Furthermore, the active ingredients were positively correlated with size. CONCLUSION The overall findings enriched the information of Cucumaria frondosa for consumers and suggested that the quality of Cucumaria frondosa was varied following commercial classification and size.
Collapse
Affiliation(s)
- Zhuoyue Song
- Clinical Medical College of Acupuncture Moxibustion and RehabilitationSchool of Pharmaceutical ScienceGuangzhou University of Chinese MedicineGuangzhouChina
| | - Hailun Li
- Department of NephrologyAffiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Jing Wen
- Department of BiologyLingnan Normal UniversityZhanjiangChina
| | - Yeda Zeng
- Clinical Medical College of Acupuncture Moxibustion and RehabilitationSchool of Pharmaceutical ScienceGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xianying Ye
- Clinical Medical College of Acupuncture Moxibustion and RehabilitationSchool of Pharmaceutical ScienceGuangzhou University of Chinese MedicineGuangzhouChina
| | - Weibo Zhao
- Clinical Medical College of Acupuncture Moxibustion and RehabilitationSchool of Pharmaceutical ScienceGuangzhou University of Chinese MedicineGuangzhouChina
| | - Tingting Xu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal ResearchHuaiyin Institute of TechnologyHuai'anChina
| | - Nenggui Xu
- Clinical Medical College of Acupuncture Moxibustion and RehabilitationSchool of Pharmaceutical ScienceGuangzhou University of Chinese MedicineGuangzhouChina
| | - Danyan Zhang
- Clinical Medical College of Acupuncture Moxibustion and RehabilitationSchool of Pharmaceutical ScienceGuangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
33
|
Li P, He H, Xu L, Huang Y, Chen Z, Zhang Y, Yang R, Xiao G. Ortho-(1-phenylvinyl)benzyl glycosides: Ether-type glycosyl donors for the efficient synthesis of both O-glycosides and nucleosides. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
34
|
Juang YP, Liang PH. Biological and Pharmacological Effects of Synthetic Saponins. Molecules 2020; 25:E4974. [PMID: 33121124 PMCID: PMC7663351 DOI: 10.3390/molecules25214974] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022] Open
Abstract
Saponins are amphiphilic molecules consisting of carbohydrate and either triterpenoid or steroid aglycone moieties and are noted for their multiple biological activities-Fungicidal, antimicrobial, antiviral, anti-inflammatory, anticancer, antioxidant and immunomodulatory effects have all been observed. Saponins from natural sources have long been used in herbal and traditional medicines; however, the isolation of complexed saponins from nature is difficult and laborious, due to the scarce amount and structure heterogeneity. Chemical synthesis is considered a powerful tool to expand the structural diversity of saponin, leading to the discovery of promising compounds. This review focuses on recent developments in the structure optimization and biological evaluation of synthetic triterpenoid and steroid saponin derivatives. By summarizing the structure-activity relationship (SAR) results, we hope to provide the direction for future development of saponin-based bioactive compounds.
Collapse
Affiliation(s)
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| |
Collapse
|
35
|
Shao X, Wang X, Zhu K, Dang Y, Yu B. Synthesis of Sea Cucumber Saponins with Antitumor Activities. J Org Chem 2020; 85:12080-12096. [PMID: 32924489 DOI: 10.1021/acs.joc.0c01191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Holostane glycosides are characteristic metabolites of sea cucumbers, which possess various biological activities. Here, we report the synthesis of two representative congeners, namely, pervicoside B and C, starting from lanosterol with the longest linear sequence of both 34 steps and in 0.3% overall yields. The flexible synthetic approach has enabled us to expeditiously prepare 16 analogues for preliminary studies on the key structural features influencing their antiproliferative activities against tumor cells. A simplified disaccharide is found to be as potent as natural tetrasaccharides, which can be used as a lead for future studies.
Collapse
Affiliation(s)
- Xiaofei Shao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaobo Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Kaidi Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
36
|
Sangwan R, Nath Mishra V, Kumar Mandal P. Synthesis of a common pentasaccharide moiety of diplasteriosides A and B belong to starfish asterosaponins isolated from the Diplasterias brucei. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Wei J, Gou Z, Wen Y, Luo Q, Huang Z. Marine compounds targeting the PI3K/Akt signaling pathway in cancer therapy. Biomed Pharmacother 2020; 129:110484. [PMID: 32768966 DOI: 10.1016/j.biopha.2020.110484] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is a disease characterized by overproliferation, including that due to transformation, apoptosis disorders, proliferation, invasion, angiogenesis and metastasis, and is one of the deadliest diseases. Currently, conservative chemotherapy is used for cancer treatment due to a lack of effective drugs. The PI3K/Akt signaling pathway plays a very essential role in the pathogenesis of many cancers, and abnormal activation of this pathway leads to abnormal expression of a series of downstream proteins, which ultimately results in the excessive proliferation of cancer cells. Therefore, the PI3K/Akt signaling pathway is a critical target in cancer treatment. Marine drugs have attracted much attention in recent years, and studies have found that many extracts from oceanic animals, plants and microorganisms or their metabolites exert antitumor effects, including antiproliferative effects or the induction of cell cycle arrest, apoptosis or autophagy. However, most anticancer targets and the mechanisms of marine compounds remain unclear. The great potential of the development of marine drugs provides a new direction for cancer treatment. This review focuses on marine compounds that target the PI3K/Akt signaling pathway for the prevention and treatment of cancer and provides comprehensive information for those interested in research on marine drugs.
Collapse
Affiliation(s)
- Jiaen Wei
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Zhanping Gou
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Ying Wen
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Qiaohong Luo
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Zunnan Huang
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, Guangdong 523808, China; Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
38
|
Zhang Y, Chen Z, Huang Y, He S, Yang X, Wu Z, Wang X, Xiao G. Modular Synthesis of Nona-Decasaccharide Motif from Psidium guajava Polysaccharides: Orthogonal One-Pot Glycosylation Strategy. Angew Chem Int Ed Engl 2020; 59:7576-7584. [PMID: 32086860 DOI: 10.1002/anie.202000992] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Indexed: 11/10/2022]
Abstract
The synthesis of long, branched, and complex carbohydrate sequences remains a challenging task in chemical synthesis. Reported here is an efficient and modular one-pot synthesis of a nona-decasaccharide and shorter sequences from Psidium guajava polysaccharides, which have the potent α-glucosidase inhibitory activity. The synthetic strategy features: 1) several one-pot glycosylation reactions on the basis of N-phenyltrifluoroacetimidate (PTFAI) and Yu glycosylation to streamline the chemical synthesis of oligosaccharides, 2) the successful and efficient assembly sequences (first O3', second O5', final O2') toward the challenging 2,3,5-branched Araf motif, 3) the stereoselective 1,2-cis-glucosylation by reagent control, and 4) the convergent [6+6+7] one-pot coupling reaction for the final assembly of the target nona-decasaccharide. This orthogonal one-pot glycosylation strategy can streamline the chemical synthesis of long, branched, and complicated carbohydrate chains.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,Department of Chemistry, Kunming University, 2 Puxing Road, Kunming, 650214, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China.,Department of Chemistry, Kunming University, 2 Puxing Road, Kunming, 650214, China
| | - Shaojun He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Xingkuan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Zhibing Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Xiufang Wang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming, 650214, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
39
|
Zhang Y, Chen Z, Huang Y, He S, Yang X, Wu Z, Wang X, Xiao G. Modular Synthesis of Nona‐Decasaccharide Motif from
Psidium guajava
Polysaccharides: Orthogonal One‐Pot Glycosylation Strategy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- Department of ChemistryKunming University 2 Puxing Road Kunming 650214 China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
- Department of ChemistryKunming University 2 Puxing Road Kunming 650214 China
| | - Shaojun He
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Xingkuan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Zhibing Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Xiufang Wang
- Department of ChemistryKunming University 2 Puxing Road Kunming 650214 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West ChinaKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| |
Collapse
|
40
|
Xie T, Zheng C, Chen K, He H, Gao S. Asymmetric Total Synthesis of the Complex Polycyclic Xanthone FD‐594. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tao Xie
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Chaoying Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Kuanwei Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| |
Collapse
|
41
|
Nishimura S, Matsumori N. Chemical diversity and mode of action of natural products targeting lipids in the eukaryotic cell membrane. Nat Prod Rep 2020; 37:677-702. [PMID: 32022056 DOI: 10.1039/c9np00059c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: up to 2019Nature furnishes bioactive compounds (natural products) with complex chemical structures, yet with simple, sophisticated molecular mechanisms. When natural products exhibit their activities in cells or bodies, they first have to bind or react with a target molecule in/on the cell. The cell membrane is a major target for bioactive compounds. Recently, our understanding of the molecular mechanism of interactions between natural products and membrane lipids progressed with the aid of newly-developed analytical methods. New technology reconnects old compounds with membrane lipids, while new membrane-targeting molecules are being discovered through the screening for antimicrobial potential of natural products. This review article focuses on natural products that bind to eukaryotic membrane lipids, and includes clinically important molecules and key research tools. The chemical diversity of membrane-targeting natural products and the molecular basis of lipid recognition are described. The history of how their mechanism was unveiled, and how these natural products are used in research are also mentioned.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Department of Biotechnology, Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan.
| | | |
Collapse
|
42
|
Xie T, Zheng C, Chen K, He H, Gao S. Asymmetric Total Synthesis of the Complex Polycyclic Xanthone FD‐594. Angew Chem Int Ed Engl 2020; 59:4360-4364. [DOI: 10.1002/anie.201915787] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/12/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Tao Xie
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Chaoying Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Kuanwei Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| |
Collapse
|
43
|
Li P, He H, Zhang Y, Yang R, Xu L, Chen Z, Huang Y, Bao L, Xiao G. Glycosyl ortho-(1-phenylvinyl)benzoates versatile glycosyl donors for highly efficient synthesis of both O-glycosides and nucleosides. Nat Commun 2020; 11:405. [PMID: 31964883 PMCID: PMC6972911 DOI: 10.1038/s41467-020-14295-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Both of O-glycosides and nucleosides are important biomolecules with crucial rules in numerous biological processes. Chemical synthesis is an efficient and scalable method to produce well-defined and pure carbohydrate-containing molecules for deciphering their functions and developing therapeutic agents. However, the development of glycosylation methods for efficient synthesis of both O-glycosides and nucleosides is one of the long-standing challenges in chemistry. Here, we report a highly efficient and versatile glycosylation method for efficient synthesis of both O-glycosides and nucleosides, which uses glycosyl ortho-(1-phenylvinyl)benzoates as donors. This glycosylation protocol enjoys the various features, including readily prepared and stable donors, cheap and readily available promoters, mild reaction conditions, good to excellent yields, and broad substrate scopes. In particular, the applications of the current glycosylation protocol are demonstrated by one-pot synthesis of several bioactive oligosaccharides and highly efficient synthesis of nucleosides drugs capecitabine, galocitabine and doxifluridine.
Collapse
Affiliation(s)
- Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
- School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Rui Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lili Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Limei Bao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
44
|
Lazzara V, Arizza V, Luparello C, Mauro M, Vazzana M. Bright Spots in The Darkness of Cancer: A Review of Starfishes-Derived Compounds and Their Anti-Tumor Action. Mar Drugs 2019; 17:E617. [PMID: 31671922 PMCID: PMC6891385 DOI: 10.3390/md17110617] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
The fight against cancer represents a great challenge for researchers and, for this reason, the search for new promising drugs to improve cancer treatments has become inevitable. Oceans, due to their wide diversity of marine species and environmental conditions have proven to be precious sources of potential natural drugs with active properties. As an example, in this context several studies performed on sponges, tunicates, mollusks, and soft corals have brought evidence of the interesting biological activities of the molecules derived from these species. Also, echinoderms constitute an important phylum, whose members produce a huge number of compounds with diverse biological activities. In particular, this review is the first attempt to summarize the knowledge about starfishes and their secondary metabolites that exhibited a significant anticancer effect against different human tumor cell lines. For each species of starfish, the extracted molecules, their effects, and mechanisms of action are described.
Collapse
Affiliation(s)
- Valentina Lazzara
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| |
Collapse
|
45
|
Meng L, Wu P, Fang J, Xiao Y, Xiao X, Tu G, Ma X, Teng S, Zeng J, Wan Q. Glycosylation Enabled by Successive Rhodium(II) and Brønsted Acid Catalysis. J Am Chem Soc 2019; 141:11775-11780. [DOI: 10.1021/jacs.9b04619] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Peng Wu
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Jing Fang
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Ying Xiao
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xiong Xiao
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Guangsheng Tu
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xiang Ma
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Shuang Teng
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| |
Collapse
|
46
|
Zhang Y, Xiang G, He S, Hu Y, Liu Y, Xu L, Xiao G. Orthogonal One-Pot Synthesis of Oligosaccharides Based on Glycosyl ortho-Alkynylbenzoates. Org Lett 2019; 21:2335-2339. [PMID: 30869522 DOI: 10.1021/acs.orglett.9b00617] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
One of the most popular one-pot glycosylation strategies is orthogonal one-pot synthesis, which was mainly based on thioglycosides. Despite its successful application, shortcomings of thioglycosides including aglycon transfers, interference of departing species and unpleasant odor restrict its application scope. Herein, we report a new and efficient orthogonal one-pot synthesis of oligosaccahrides based on glycosyl ortho-alkynylbenzoate, which solves the issues of thioglycoside-based orthogonal one-pot synthesis. Over a dozen of oligosaccharides have been efficiently synthesized by this method.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Kunming 650201 , China
| | - Guisheng Xiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Kunming 650201 , China
| | - Shaojun He
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Kunming 650201 , China
| | - Yikao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Kunming 650201 , China
| | - Yanjun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Kunming 650201 , China
| | - Lili Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Kunming 650201 , China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Kunming 650201 , China
| |
Collapse
|