1
|
Bloino J, Jähnigen S, Merten C. After 50 Years of Vibrational Circular Dichroism Spectroscopy: Challenges and Opportunities of Increasingly Accurate and Complex Experiments and Computations. J Phys Chem Lett 2024; 15:8813-8828. [PMID: 39167088 DOI: 10.1021/acs.jpclett.4c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
VCD research continues to thrive, driven by ongoing experimental and theoretical advances. Modern studies deal with increasingly complex samples featuring weak intermolecular interactions and shallow potential energy surfaces. Likewise, the combination of VCD measurements with, for instance, cryo-spectroscopic techniques has significantly increased their sensitivity. The extent to which such modern measurements enhance the informative value of VCD depends significantly on the quality of the theoretical models, which must adequately account for anharmonicity, solvation and molecular dynamics. We herein discuss how experimental advancements engage in a stimulating interplay with recent theoretical developments, pursuing either the static or the dynamic computational route. Both paths have their own strengths and limitations, each addressing fundamentally different problems. We give an outlook on future challenges of VCD research, including the possibility to combine static and dynamic approaches to obtain a full picture of the sample.
Collapse
Affiliation(s)
- Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sascha Jähnigen
- Freie Universität Berlin, Institut für Chemie und Biochemie, Arnimallee 22, 14195 Berlin, Germany
| | - Christian Merten
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
2
|
Bowles J, Jähnigen S, Agostini F, Vuilleumier R, Zehnacker A, Calvo F, Clavaguéra C. Vibrational Circular Dichroism Spectroscopy with a Classical Polarizable Force Field: Alanine in the Gas and Condensed Phases. Chemphyschem 2024; 25:e202300982. [PMID: 38318765 DOI: 10.1002/cphc.202300982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
Polarizable force fields are an essential component for the chemically accurate modeling of complex molecular systems with a significant degree of fluxionality, beyond harmonic or perturbative approximations. In this contribution we examine the performance of such an approach for the vibrational spectroscopy of the alanine amino acid, in the gas and condensed phases, from the Fourier transform of appropriate time correlation functions generated along molecular dynamics (MD) trajectories. While the infrared (IR) spectrum only requires the electric dipole moment, the vibrational circular dichroism (VCD) spectrum further requires knowledge of the magnetic dipole moment, for which we provide relevant expressions to be used with polarizable force fields. The AMOEBA force field was employed here to model alanine in the neutral and zwitterionic isolated forms, solvated by water or nitrogen, and as a crystal. Within this framework, comparison of the electric and magnetic dipole moments to those obtained with nuclear velocity perturbation theory based on density-functional theory for the same MD trajectories are found to agree well with one another. The statistical convergence of the IR and VCD spectra is examined and found to be more demanding in the latter case. Comparisons with experimental frequencies are also provided for the condensed phases.
Collapse
Affiliation(s)
- Jessica Bowles
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| | - Sascha Jähnigen
- PASTEUR Laboratory, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| | - Rodolphe Vuilleumier
- PASTEUR Laboratory, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Anne Zehnacker
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay UMR8214, 91405, Orsay, France
| | - Florent Calvo
- Université Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France
| | - Carine Clavaguéra
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| |
Collapse
|
3
|
Dong W, Alizadeh V, Blasius J, Wylie L, Dick L, Fan Z, Kirchner B. Locality in amino-acid based imidazolium ionic liquids. Phys Chem Chem Phys 2023; 25:24678-24685. [PMID: 37667665 DOI: 10.1039/d3cp02671j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Several amino-acid based imidazolium ILs are investigated through the use of ab initio molecular dynamics (AIMD), which includes full polarization. The electric dipole moment distribution and polarization is used as a means of characterizing and understanding these complex systems. Various charge scheme methods were analyzed (Wannier function, Blöchl, Löwdin and Mulliken charge schemes and Voronoi tessellation) to determine their ability to predict dipole moments. These results and the following comparison of methods further deepen the knowledge of polarization by highlighting the importance of the anion and cation separately on polarizability contribution and the need to select a suitable method to predict these. The angular probability distribution is utilized to measure the degree of locality in monopole-dipole electrostatic interactions, which showed no preferential alignment over 700 pm. In addition, the IR and Raman spectra from Voronoi tessellation of [C2C1Im][ala] were analyzed. In these, the strongest signalling peaks showed consistency with experiment and the ability to differentiate between anion and cation components of the IL.
Collapse
Affiliation(s)
- Wenbo Dong
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany.
| | - Vahideh Alizadeh
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany.
| | - Jan Blasius
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany.
| | - Luke Wylie
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany.
| | - Leonard Dick
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany.
| | - Zhijie Fan
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany.
| |
Collapse
|
4
|
Blasius J, Kirchner B. Selective Chirality Transfer to the Bis(trifluoromethylsulfonyl)imide Anion of an Ionic Liquid. Chemistry 2023; 29:e202301239. [PMID: 37341169 DOI: 10.1002/chem.202301239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
Chirality transfer from the chiral molecule (R)-1,2-propylene oxide to the achiral anion of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid is observed. The chiral probe selectively affects one part of the binary ionic liquid, i. e., it has previously been shown experimentally and theoretically that this particular imidazolium cation can be affected by chirality transfer, but in the present system chirality is almost exclusively transferred to the anion and not to both parts of the solvent (anion and cation). This observation is of high relevance because of its selectivity and because anion effects are usually much more important in ionic liquid research than cation effects. From ab initio molecular dynamics simulations, a conformational analysis and dissected vibrational circular dichroism spectra are obtained to study the chirality transfer. While in the neat ionic liquid two mirror imaged trans conformers of the anion occur almost equally, we observe an excess of one of these conformers in the presence of the chiral solute, causing optical activity of the anion. Although the cis conformers are not tremendously affected by the chirality transfer, they gain in total population when (R)-1,2-propylene oxide is dissolved in the ionic liquid.
Collapse
Affiliation(s)
- Jan Blasius
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115, Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115, Bonn, Germany
| |
Collapse
|
5
|
Roos E, Sebastiani D, Brehm M. A force field for bio-polymers in ionic liquids (BILFF) - part 2: cellulose in [EMIm][OAc]/water mixtures. Phys Chem Chem Phys 2023; 25:8755-8766. [PMID: 36897117 DOI: 10.1039/d2cp05636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
We present the extension of our force field BILFF (Bio-Polymers in Ionic Liquids Force Field) to the bio-polymer cellulose. We already published BILFF parameters for mixtures of ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIm][OAc]) with water. Our all-atom force field focuses on a quantitative reproduction of the hydrogen bonds in the complex mixture of cellulose, [EMIm]+, [OAc]- and water when compared to reference ab initio molecular dynamics (AIMD) simulations. To enhance the sampling, 50 individual AIMD simulations starting from different initial configurations were performed for cellulose in solvent instead of one long simulation, and the resulting averages were used for force field optimization. All cellulose force field parameters were iteratively adjusted starting from the literature force field of W. Damm et al. We were able to obtain a very good agreement with respect to both the microstructure of the reference AIMD simulations and experimental results such as the system density (even at higher temperatures) and the crystal structure. Our new force field allows performing very long simulations of large systems containing cellulose solvated in (aqueous) [EMIm][OAc] with almost ab initio accuracy.
Collapse
Affiliation(s)
- Eliane Roos
- Institut für Chemie - Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Daniel Sebastiani
- Institut für Chemie - Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Martin Brehm
- Institut für Chemie - Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
6
|
Radicke J, Roos E, Sebastiani D, Brehm M, Kressler J. Lactate‐based ionic liquids as chiral solvents for cellulose. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Julian Radicke
- Department of Chemistry Martin Luther University Halle–Wittenberg Halle (Saale) Germany
| | - Eliane Roos
- Department of Chemistry Martin Luther University Halle–Wittenberg Halle (Saale) Germany
| | - Daniel Sebastiani
- Department of Chemistry Martin Luther University Halle–Wittenberg Halle (Saale) Germany
| | - Martin Brehm
- Department of Chemistry Martin Luther University Halle–Wittenberg Halle (Saale) Germany
| | - Jörg Kressler
- Department of Chemistry Martin Luther University Halle–Wittenberg Halle (Saale) Germany
| |
Collapse
|
7
|
Kirchner B, Blasius J, Alizadeh V, Gansäuer A, Hollóczki O. Chemistry Dissolved in Ionic Liquids. A Theoretical Perspective. J Phys Chem B 2022; 126:766-777. [PMID: 35034453 DOI: 10.1021/acs.jpcb.1c09092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The theoretical treatment of ionic liquids must focus now on more realistic models while at the same time keeping an accurate methodology when following recent ionic liquids research trends or allowing predictability to come to the foreground. In this Perspective, we summarize in three cases of advanced ionic liquid research what methodological progress has been made and point out difficulties that need to be overcome. As particular examples to discuss we choose reactions, chirality, and radicals in ionic liquids. All these topics have in common that an explicit or accurate treatment of the electronic structure and/or intermolecular interactions is required (accurate methodology), while at the same time system size and complexity as well as simulation time (realistic model) play an important role and must be covered as well.
Collapse
Affiliation(s)
- Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany
| | - Jan Blasius
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany
| | - Vahideh Alizadeh
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany.,Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4010 Debrecen, Hungary
| |
Collapse
|
8
|
Studies on thermodynamics of micellization of imidazolium-based surface-active ionic liquid [C15mim][Br] in aqueous media: Effect of D(+)-Xylose and D(+)-Glucose. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Szabadi A, Elfgen R, Macchieraldo R, Kearns FL, Lee Woodcock H, Kirchner B, Schröder C. Comparison between ab initio and polarizable molecular dynamics simulations of 1-butyl-3-methylimidazolium tetrafluoroborate and chloride in water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Alizadeh V, Kirchner B. Molecular level insight into the solvation of cellulose in deep eutectic solvents. J Chem Phys 2021; 155:084501. [PMID: 34470350 DOI: 10.1063/5.0058333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Deep eutectic solvents as sustainable and new-generation solvents show potential in the field of cellulose dissolution. Although these novel materials are tested for numerous industrial, environmental, and medical applications, little is known about the structural features of cellulose interacting with deep eutectic solvents. In this work, the interplay of cellulose is studied in two deep eutectic solvents: choline acetate mixed with urea and choline chloride mixed with urea using classical molecular dynamics simulations. Dissolution of cellulose in the studied liquids was not observed to be in agreement with experimental work from the literature. However, a slight swelling in the chloride, as compared to the acetate-based solvent, is apparent. A possible rationale might be found in the stronger hydrogen bonding of the chloride anion compared to the acetate anion with the hydrogen atoms of the cellulose. Moreover, chloride approaches the outer glucose units comparatively more, which could be interpreted as the onset of entering and thus dissolving the cellulose as was previously observed. Specific hydrogen bonds between all units are analyzed and discussed in detail.
Collapse
Affiliation(s)
- Vahideh Alizadeh
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany
| |
Collapse
|
11
|
Blasius J, Zaby P, Hollóczki O, Kirchner B. Recognition in Chiral Ionic Liquids: The Achiral Cation Makes the Difference! J Org Chem 2021; 87:1867-1873. [PMID: 34319732 DOI: 10.1021/acs.joc.1c00939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
By simulating butan-2-ol dissolved in the chiral ionic liquid 1-ethyl-3-methylimidazolium (S)-alaninate, we investigate the chiral recognition of butan-2-ol in the ionic liquid. The hydrogen bonding between the chiral anion and both enantiomers of butan-2-ol is similar; however, both chiral molecules (anion and alcohol) induce an asymmetry in the achiral cation which leads to a more favorable environment for the alcohol in the heterochiral system as compared to the homochiral system and hence provides an energetic stabilization of the former.
Collapse
Affiliation(s)
- Jan Blasius
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - Paul Zaby
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| |
Collapse
|
12
|
Gehrke S, Hollóczki O. N-Heterocyclic Carbene Organocatalysis: With or Without Carbenes? Chemistry 2020; 26:10140-10151. [PMID: 32608090 PMCID: PMC7496998 DOI: 10.1002/chem.202002656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Indexed: 11/18/2022]
Abstract
In this work the mechanism of the aldehyde umpolung reactions, catalyzed by azolium cations in the presence of bases, was studied through computational methods. Next to the mechanism established by Breslow in the 1950s that takes effect through the formation of a free carbene, we have suggested that these processes can follow a concerted asynchronous path, in which the azolium cation directly reacts with the substrate, avoiding the formation of the carbene intermediate. We hereby show that substituting the azolium cation, and varying the base or the substrate do not affect the preference for the concerted reaction mechanism. The concerted path was found to exhibit low barriers also for the reactions of thiamine with model substrates, showing that this path might have biological relevance. The dominance of the concerted mechanism can be explained through the specific structure of the key transition state, avoiding the liberation of the highly reactive, and thus unstable carbene lone pair, whereas activating the substrate through hydrogen-bonding interactions. Polar and hydrogen-bonding solvents, as well as the presence of the counterions of the azolium salts facilitate the reaction through carbenes, bringing the barriers of the two reaction mechanisms closer, in many cases making the concerted path less favorable. Thus, our data show that by choosing the exact components in a reaction, the mechanism can be switched to occur with or without carbenes.
Collapse
Affiliation(s)
- Sascha Gehrke
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstr. 4+653115BonnGermany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstr. 4+653115BonnGermany
| |
Collapse
|
13
|
Brehm M, Radicke J, Pulst M, Shaabani F, Sebastiani D, Kressler J. Dissolving Cellulose in 1,2,3-Triazolium- and Imidazolium-Based Ionic Liquids with Aromatic Anions. Molecules 2020; 25:E3539. [PMID: 32748878 PMCID: PMC7435399 DOI: 10.3390/molecules25153539] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
We present 1,2,3-triazolium- and imidazolium-based ionic liquids (ILs) with aromatic anions as a new class of cellulose solvents. The two anions in our study, benzoate and salicylate, possess a lower basicity when compared to acetate and therefore should lead to a lower amount of N-heterocyclic carbenes (NHCs) in the ILs. We characterize their physicochemical properties and find that all of them are liquids at room temperature. By applying force field molecular dynamics (MD) simulations, we investigate the structure and dynamics of the liquids and find strong and long-lived hydrogen bonds, as well as significant π-π stacking between the aromatic anion and cation. Our ILs dissolve up to 8.5 wt.-% cellulose. Via NMR spectroscopy of the solution, we rule out chain degradation or derivatization, even after several weeks at elevated temperature. Based on our MD simulations, we estimate the enthalpy of solvation and derive a simple model for semi-quantitative prediction of cellulose solubility in ILs. With the help of Sankey diagrams, we illustrate the hydrogen bond network topology of the solutions, which is characterized by competing hydrogen bond donors and acceptors. The hydrogen bonds between cellulose and the anions possess average lifetimes in the nanosecond range, which is longer than found in common pure ILs.
Collapse
Affiliation(s)
- Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Julian Radicke
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Martin Pulst
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Farzaneh Shaabani
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Daniel Sebastiani
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Jörg Kressler
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| |
Collapse
|