1
|
Zhang F, Shen Z, Sui K, Liu M. Disassembly of spherical structures into nanohelices by good solvent dilution. J Colloid Interface Sci 2024; 657:853-857. [PMID: 38091908 DOI: 10.1016/j.jcis.2023.12.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/02/2024]
Abstract
Supramolecular self-assembly of low molecular weight molecules into various organic nanostructures has attracted considerable research interest. However, preparing organic nanostructures through a top-down method, such as the disassembly of one large structure into many smaller nanoscale nanostructures, still remains a big challenge. Here, we make use of anti-solvent method to regulate the hierarchical self-assembly of an achiral C3-symmetric molecule in THF/water to prepare various nanostructures, including spherical structures, nanofibers, nanoribbons and nanotwists. Interestingly, the spherical structures could disassemble into nanohelices through good solvent dilution, providing a nanoscale top-down method to prepare organic nanostructures.
Collapse
Affiliation(s)
- Fang Zhang
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China
| | - Zhaocun Shen
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Kunyan Sui
- College of Materials Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
2
|
Romo-Islas G, Gil-Moles M, Saxena A, Frontera A, Gimeno MC, Rodríguez L. Effect of substituents on the 1O 2 production and biological activity of (N^N^N)Pt(py) complexes. Dalton Trans 2024; 53:2475-2486. [PMID: 38174938 DOI: 10.1039/d3dt04050j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Twelve (N^N^N)platinum pyridyl complexes, (N^N^N)Pt(pyF), were synthesised and investigated for their singlet oxygen generation and potential biological activities. They exhibited 1IL and 1MLCT absorption transitions at approximately 325 and 360 nm, identified through TD-DFT calculations. Luminescence was observed only in the L1-derived compounds in solution, with a dual emission with the main contribution of phosphorescence under deaerated conditions. Room temperature phosphorescence was detected in all solid-state cases. Electron-withdrawing substituents at specific positions (R1 and X) and the number of fluorine atoms in R2 were found to enhance the photosensitizing capabilities of these compounds. Biological assessments, including cytotoxicity and photocytotoxicity, were conducted to evaluate their potential as chemotherapeutic agents and photosensitizers. Complexes with chloro substitution in the N^N^N tridentate ligand of the central pyridine ring exhibited promising chemotherapeutic properties. Ancillary pyridine ring substitution became significant under irradiation conditions, with fluoromethylated substituents enhancing cytotoxicity. Complex 2-CF3 was the most efficient singlet oxygen producer and a highly effective photosensitizer. CHF2-substituted complexes also showed improved photosensitizing activity. DNA binding studies indicated moderate interactions with DNA, offering insights into potential biological applications.
Collapse
Affiliation(s)
- Guillermo Romo-Islas
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - María Gil-Moles
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
- Departamento de Química, Centro de Investigación de Síntesis Química (CISQ), Universidad de la Rioja. Complejo Científico-Tecnológico, 26004, Logroño, Spain
| | - Arnav Saxena
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
| | - M Concepción Gimeno
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Romo-Islas G, Burguera S, Frontera A, Rodríguez L. Investigating the Impact of Packing and Environmental Factors on the Luminescence of Pt(N^N^N) Chromophores. Inorg Chem 2024; 63:2821-2832. [PMID: 38259118 PMCID: PMC10848268 DOI: 10.1021/acs.inorgchem.3c04562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Four Pt(II)(N^N^N) compounds featuring DMSO coordination at the fourth position were synthesized. Ligands varied in terms of pyridyl central ring (hydrogen/chlorine substituent) and lateral rings (triazoles with CF3 substitution or tetrazoles). Coordination to pyridine yielded tetra-nitrogen coordinated Pt(II) complexes or Pt-functionalized polymers using commercial 4-pyridyl polyvinyl (PV) or dimethylaminopyridine. Luminescence behaviors exhibited remarkable environmental dependence. While some of the molecular compounds (tetrazole derivatives) in solid state displayed quenched luminescence, all the polymers exhibited 3MMLCT emission around 600 nm. Conversely, monomer emission was evident on poly(methyl methacrylate) or polystyrene matrices. DFT calculations were used to analyze the aggregation of the complexes both at the molecular level and coordinated to the PV polymer and their influence on the HOMO-LUMO gaps.
Collapse
Affiliation(s)
- Guillermo Romo-Islas
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica., Institut
de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, Martí i Franquès 1-11, Barcelona E-08028, Spain
| | - Sergi Burguera
- Departament
de Química, Universitat de les Illes
Balears, Palma
de Mallorca 07122, Spain
| | - Antonio Frontera
- Departament
de Química, Universitat de les Illes
Balears, Palma
de Mallorca 07122, Spain
| | - Laura Rodríguez
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica., Institut
de Nanociència i Nanotecnologia (IN2UB). Universitat de Barcelona, Martí i Franquès 1-11, Barcelona E-08028, Spain
| |
Collapse
|
4
|
Ren J, Jiang S, Han T, Wu S, Tian Y, Wang F. Dual supramolecular chirogenesis based on platinum(II) metallotweezers. Chem Commun (Camb) 2023; 59:744-747. [PMID: 36541365 DOI: 10.1039/d2cc05787e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Optically active platinum(II) metallotweezers demonstrate both self-complexation and host-guest complexation capabilities, leading to two distinct supramolecular chirogenic signals in the visible region.
Collapse
Affiliation(s)
- Jie Ren
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.
| | - Sixun Jiang
- Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Tingting Han
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.
| | - Shuai Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.
| | - Yukui Tian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China. .,School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Feng Wang
- Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
5
|
Alessandri R, Grünewald F, Marrink SJ. The Martini Model in Materials Science. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008635. [PMID: 33956373 PMCID: PMC11468591 DOI: 10.1002/adma.202008635] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The Martini model, a coarse-grained force field initially developed with biomolecular simulations in mind, has found an increasing number of applications in the field of soft materials science. The model's underlying building block principle does not pose restrictions on its application beyond biomolecular systems. Here, the main applications to date of the Martini model in materials science are highlighted, and a perspective for the future developments in this field is given, particularly in light of recent developments such as the new version of the model, Martini 3.
Collapse
Affiliation(s)
- Riccardo Alessandri
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
- Present address:
Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Fabian Grünewald
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
| | - Siewert J. Marrink
- Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 4Groningen9747AGThe Netherlands
| |
Collapse
|