1
|
Gao G, Zhang X, Wang Z, Xu J, Wang J, Liu T, Xie Z. Multiscale insights into cornuside's effects on NAFLD: A cross-disciplinary integrating bioinformatics, computational chemistry, and machine learning. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156809. [PMID: 40344848 DOI: 10.1016/j.phymed.2025.156809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/07/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a complex metabolic disorder involving intertwined signaling pathways, posing challenges for targeted therapeutic interventions. Cornus Fructus (CF), a traditional medicinal herb, holds potential for NAFLD treatment, with cornuside (COR) identified as its primary active component. METHODS This study employed a cross-disciplinary approach, integrating bioinformatics, computational chemistry, and machine learning to uncover COR's therapeutic mechanisms with precision and depth. RESULTS Using bioinformatics-driven analysis, 27 core targets were identified, revealing that COR modulated critical metabolic and inflammatory pathways. COR mitigated insulin resistance by regulating the AKT/GSK3β axis, enhanced cholesterol metabolism through LXR signaling, promoted fatty acid oxidation via PPARα activation, and suppressed inflammation by inhibiting NF-κB signaling. These results highlighted COR's ability to orchestrate multi-pathway regulation essential for restoring metabolic homeostasis in NAFLD. Molecular docking and molecular dynamics (MD) simulations provided atomistic insights, demonstrating COR's stable and high-affinity interactions with key targets. Additionally, machine learning algorithms enhanced target identification and pathway prediction, improving the precision and efficiency of the discovery process. CONCLUSION This study offered multi-scale mechanistic insights into COR's therapeutic effects on NAFLD, bridging experimental pharmacology and computational methods. The integration of bioinformatics, molecular simulation, and machine learning established a comprehensive framework for drug discovery, positioning COR as a promising candidate for NAFLD therapy and guiding future development of precision interventions.
Collapse
Affiliation(s)
- Gai Gao
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Xiaowei Zhang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenzhen Wang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiangyan Xu
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Beijing 100081, China.
| | - Zhishen Xie
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Xue S, Yang L, Xu M, Zhang Y, Liu H. The screening of α-glucosidase inhibitory peptides from β-conglycinin and hypoglycemic mechanism in HepG2 cells and zebrafish larvae. Int J Biol Macromol 2024; 278:134678. [PMID: 39137852 DOI: 10.1016/j.ijbiomac.2024.134678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
Inhibition of carbohydrate digestive enzymes is a key focus across diverse fields, given the prominence of α-glucosidase inhibitors as preferred oral hypoglycaemic drugs for diabetes treatment. β-conglycinin is the most abundant functional protein in soy; however, it is unclear whether the peptides produced after its gastrointestinal digestion exhibit α-glucosidase inhibitory properties. Therefore, we examined the α-glucosidase inhibitory potential of soy peptides. Specifically, β-conglycinin was subjected to simulated gastrointestinal digestion by enzymatically cleaving it into 95 peptides with gastric, pancreatic and chymotrypsin enzymes. Eight soybean peptides were selected based on their predicted activity; absorption, distribution, metabolism, excretion and toxicity score; and molecular docking analysis. The results indicated that hydrogen bonding and electrostatic interactions play important roles in inhibiting α-glucosidase, with the tripeptide SGR exhibiting the greatest inhibitory effect (IC50 = 10.57 μg/mL). In vitro studies revealed that SGR markedly improved glucose metabolism disorders in insulin-resistant HepG2 cells without affecting cell viability. Animal experiments revealed that SGR significantly improved blood glucose and decreased maltase activity in type 2 diabetic zebrafish larvae, but it did not result in the death of zebrafish larvae. Transcriptomic analysis revealed that SGR exerts its anti-diabetic and hypoglycaemic effects by attenuating the expression of several genes, including Slc2a1, Hsp70, Cpt2, Serpinf1, Sfrp2 and Ggt1a. These results suggest that SGR is a potential food-borne bioactive peptide for managing diabetes.
Collapse
Affiliation(s)
- Sen Xue
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Lina Yang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China.
| | - Mengnan Xu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Yangyang Zhang
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| |
Collapse
|
3
|
Wu L, Liu C, Yao T, Shi Y, Shen J, Gao X, Qin K. Structural and Compositional Changes in Two Marine Shell Traditional Chinese Medicines: A Comparative Analysis Pre- and Post-Calcination. J AOAC Int 2024; 107:704-713. [PMID: 38492563 DOI: 10.1093/jaoacint/qsae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Arcae concha and Meretricis concha cyclinae concha are two marine shellfish herbs with similar composition and efficacy, which are usually calcined and used clinically. OBJECTIVE This study investigated variations in the inorganic and organic components of Arcae concha and Meretricis concha cyclinae concha from different production regions, both Arcae concha and Meretricis concha cyclinae concha. The aim was to enhance the understanding of these two types of marine shell traditional Chinese medicine (msTCM) and provide a foundation for their future development and application. METHOD Spectroscopic techniques, including infrared spectroscopy, X-ray spectroscopy, and X-ray fluorescence spectroscopy, were used to analyze the calcium carbonate (CaCO3) crystal and trace elements. Thermogravimetric analysis was used to investigate the decomposition process during heating. The proteins were quantified using the BCA protein assay kit. Principal component analysis (PCA) was used to classify inorganic elements in the two marine shellfish traditional Chinese medicines. RESULTS No significant differences were found among the various production regions. The crystal structure of CaCO3 in the raw products was aragonite, but it transformed into calcite after calcination. The contents of Ca, Na, Sr, and other inorganic elements were highest. The protein content was significantly reduced after calcination. Therefore, these factors cannot accurately reflect the internal quality of TCM, rendering qualitative identification challenging. CaCO3 dissolution in the decoction of Arcae concha and Meretricis concha cyclinae concha increased after calcination, aligning with the clinical application of calcined shell TCM. PCA revealed the inorganic elements in them, indicating that the variation in trace element composition among different drugs leads to differences in their therapeutic focus, which should be considered during usage. CONCLUSIONS This study clarifies the composition and structure changes of corrugated and clam shell before and after calcining, and it lays the foundation for the comprehensive utilization of marine traditional Chinese medicine. HIGHLIGHTS These technical representations reveal the differences between raw materials and processed products, which will provide support for the quality control of other shellfish TCM.
Collapse
Affiliation(s)
- Lizhu Wu
- Jiangsu Ocean University, School of Pharmacy, Lianyungang 222005, PR China
| | - Chenlu Liu
- Jiangsu Ocean University, School of Pharmacy, Lianyungang 222005, PR China
| | - Tao Yao
- Qinghai Xinda Biological Technology Co, Ltd, Xining 810100, PR China
| | - Yun Shi
- Jiangsu Ocean University, School of Pharmacy, Lianyungang 222005, PR China
| | - Jinyang Shen
- Jiangsu Ocean University, School of Pharmacy, Lianyungang 222005, PR China
| | - Xun Gao
- Jiangsu Ocean University, School of Pharmacy, Lianyungang 222005, PR China
| | - Kunming Qin
- Jiangsu Ocean University, School of Pharmacy, Lianyungang 222005, PR China
| |
Collapse
|
4
|
Zhang J, Niu P, Li M, Wang Y, Ma Y, Wang P. Phytochemical Profiling and Biological Activities of Pericarps and Seeds Reveal the Controversy on "Enucleation" or "Nucleus-Retaining" of Cornus officinalis Fruits. Molecules 2024; 29:1473. [PMID: 38611753 PMCID: PMC11012811 DOI: 10.3390/molecules29071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The fruits of Cornus officinalis are used not only as a popular health food to tonify the liver and kidney, but also as staple materials to treat dementia and other age-related diseases. The pharmacological function of C. officinalis fruits with or without seeds is controversial for treating some symptoms in a few herbal prescriptions. However, the related metabolite and pharmacological information between its pericarps and seeds are largely deficient. Here, comparative metabolomics analysis between C. officinalis pericarps and seeds were conducted using an ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry, and therapeutic effects were also evaluated using several in vitro bioactivity arrays (antioxidant activity, α-glucosidase and cholinesterase inhibitory activities, and cell inhibitory properties). A total of 499 secondary metabolites were identified. Thereinto, 77 metabolites were determined as key differential metabolites between C. officinalis pericarps and seeds, and the flavonoid biosynthesis pathway was identified as the most significantly different pathway. Further, 47 metabolites were determined as potential bioactive constituents. In summary, C. officinalis seeds, which demonstrated higher contents in total phenolics, stronger in vitro antioxidant activities, better α-glucosidase and butyrylcholinesterase inhibitory activities, and stronger anticancer activities, exhibited considerable potential for food and health fields. This work provided insight into the metabolites and bioactivities of C. officinalis pericarps and seeds, contributing to their precise development and utilization.
Collapse
Affiliation(s)
- Jinyi Zhang
- School of Mechanical Engineering, Chongqing Three Gorges University, Chongqing 404100, China;
| | - Po Niu
- School of Mechanical Engineering, Chongqing Three Gorges University, Chongqing 404100, China;
| | - Mingjie Li
- Biological Laboratory, HBN Research Institute, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, China;
| | - Yuan Wang
- Biological Laboratory, HBN Research Institute, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, China;
| | - Yao Ma
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
- Henan Funiu Mountain Biological and Ecological Environment Observatory, Nanyang 474550, China
| | - Pan Wang
- Sichuan Academy of Agricultural Machinery Science, Chengdu 610066, China;
| |
Collapse
|
5
|
Xie L, Huang J, Xiong T, Ma Y. Secondary Metabolomic Analysis and In Vitro Bioactivity Evaluation of Stems Provide a Comprehensive Comparison between Dendrobium chrysotoxum and Dendrobium thyrsiflorum. Molecules 2023; 28:6039. [PMID: 37630293 PMCID: PMC10458425 DOI: 10.3390/molecules28166039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The stems of Dendrobium chrysotoxum (DC) are commonly used as health-promoting foods due to their excellent biological activities. However, the stems of D. thyrsiflorum (DT) are often used to meet the scarcity of DC in production because of their highly similar morphology. However, the related metabolomic and bioactive information on the stems of DC and DT are largely deficient. Here, secondary metabolites of DC and DT stems were identified using an ultra-performance liquid chromatography-electrospray ionization-mass spectrometry, and their health-promoting functions were evaluated using several in vitro arrays. A total of 490 metabolites were identified in two stems, and 274 were significantly different. We screened out 10 key metabolites to discriminate the two species, and 36 metabolites were determined as health-promoting constituents. In summary, DT stems with higher extract yield, higher total phenolics and flavonoids, and stronger in vitro antioxidant activities demonstrated considerable potential in food and health fields.
Collapse
Affiliation(s)
- Lihang Xie
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; (L.X.); (T.X.)
| | - Jinyong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China;
- Henan Funiu Mountain Biological and Ecological Environment Observatory, Nanyang 473000, China
| | - Tingjian Xiong
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; (L.X.); (T.X.)
| | - Yao Ma
- Henan Funiu Mountain Biological and Ecological Environment Observatory, Nanyang 473000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|