1
|
Xu F, Dong R, Cui J, Zhang Y, Ren W, Song K, Meng S, Zhang R, Li K, Bai J, Qin Z. Transformation of crystal structure induced by the temperatures in carbon dots (CDs)-based composites with multicolor fluorescence for white Light-Emitting-Diode (WLED). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123958. [PMID: 38281462 DOI: 10.1016/j.saa.2024.123958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/29/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Regulation of the fluorescence through crystalizing from the matrix in the Carbon dots (CDs)-based solid-state materials has been verified to be one of the effective methods, yet there are not only challenges in preparing such materials efficiently, but also insufficient insight into their regulation mechanisms. Here, a one-pot solvothermal route to synthesize a series of CDs-based composites with crystalline matrix is reported. These crystals exhibited multicolor fluorescence with the feature of multi-peaks emissions with increasing temperatures from 140 ℃ to 220 ℃, in which the orange emitting O-CDs@PA and the yellow emitting Y-CDs@PA crystals obtained the FLQYs of 22% and 68% respectively due to relatively stable crystalline structures. After comparative analysis to both crystals in detail, the core and the groups associated with them on the interface between CDs and matrix were adjusted in size and species during structural transformation of the crystal matrix, which changes radically the energy band structures to influence fluorescent emitting of both crystals ultimately. In addition, the reasons resulting in higher FLQY for Y-CDs@PA were provided leveraging the schematic illustration presumed based on the PL properties of both crystals. Because of the optimal optical performances, these fluorescent materials promised to fabricate WLED devices and obtained a number of photometric parameters endowed these WLED devices with the feature of warm-white light.
Collapse
Affiliation(s)
- Fengli Xu
- Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, the People's Republic of China
| | - Ruoyu Dong
- Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, the People's Republic of China
| | - Junchao Cui
- Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, the People's Republic of China
| | - Yufei Zhang
- Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, the People's Republic of China
| | - Weijie Ren
- Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, the People's Republic of China.
| | - Kai Song
- Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, the People's Republic of China
| | - Shuai Meng
- Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, the People's Republic of China
| | - Rui Zhang
- Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, the People's Republic of China
| | - Kun Li
- Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, the People's Republic of China
| | - Jingjing Bai
- Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, the People's Republic of China
| | - Zhenxing Qin
- Shanxi Center of Technology Innovation for Light Manipulations and Applications, School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, the People's Republic of China.
| |
Collapse
|
2
|
Li J, Gong X. The Emerging Development of Multicolor Carbon Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205099. [PMID: 36328736 DOI: 10.1002/smll.202205099] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Indexed: 06/16/2023]
Abstract
As a relatively new type of fluorescent carbon-based nanomaterials, multicolor carbon dots (MCDs) have attracted much attention because of their excellent biocompatibility, tunable photoluminescence (PL), high quantum yield, and unique electronic and physicochemical properties. The multicolor emission characteristics of carbon dots (CDs) obviously depend on the carbon source precursor, reaction conditions, and reaction environment, which directly or indirectly determines the multicolor emission characteristics of CDs. Therefore, this review is the first systematic classification and summary of multiple regulation methods of synthetic MCDs and reviews the recent research progress in the synthesis of MCDs from a variety of precursor materials such as aromatic molecules, small organic molecules, and natural biomass, focusing on how different regulation methods produce corresponding MCDs. This review also introduces the innovative applications of MCDs in the fields of biological imaging, light-emitting diodes (LEDs), sensing, and anti-counterfeiting due to their excellent PL properties. It is hoped that by selecting appropriate adjustment methods, this review can inspire and guide the future research on the design of tailored MCDs, and provide corresponding help for the development of multifunctional MCDs.
Collapse
Affiliation(s)
- Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
3
|
Zang Y, Xu J, Lu Z, Yi C, Yan F. Self-quenching-resistant fluorescent tunable sulfur quantum dots. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|