1
|
Zahirović A, Fetahović S, Feizi-Dehnayebi M, Višnjevac A, Bešta-Gajević R, Kozarić A, Martić L, Topčagić A, Roca S. Dual Antimicrobial-Anticancer Potential, Hydrolysis, and DNA/BSA Binding Affinity of a Novel Water-Soluble Ruthenium-Arene Ethylenediamine Schiff base (RAES) Organometallic. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124528. [PMID: 38801789 DOI: 10.1016/j.saa.2024.124528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The need for a systematic approach in developing new metal-based drugs with dual anticancer-antimicrobial properties is emphasized by the vulnerability of cancer patients to bacterial infections. In this context, a novel organometallic assembly was designed, featuring ruthenium(II) coordination with p-cymene, one chlorido ligand, and a bidentate neutral Schiff base derived from 4-methoxybenzaldehyde and N,N-dimethylethylenediamine. The compound was extensively characterized in both solid-state and solution, employing single crystal X-ray diffraction, nuclear magnetic resonance, infrared, ultraviolet-visible spectroscopy, and density functional theory, alongside Hirshfeld surface analysis. The hydrolysis kinetic was thoroughly investigated, revealing the important role of the chloro-aqua equilibrium in the dynamics of binding with deoxyribonucleic acid and bovine serum albumin. Notably, the aqua species exhibited a pronounced affinity for deoxyribonucleic acid, engaging through electrostatic and hydrogen bonding interactions, while the chloro species demonstrated groove-binding properties. Interaction with albumin revealed distinct binding mechanisms. The aqua species displayed covalent binding, contrasting with the ligand-like van der Waals interactions and hydrogen bonding observed with the chloro specie. Molecular docking studies highlighted site-specific interactions with biomolecular targets. Remarkably, the compound exhibited wide spectrum moderate antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, coupled with low micromolar cytotoxic activity against human colorectal adenocarcinoma cells and significant activity against human leukemic monocyte lymphoma cells. The presented findings encourage further development of this compound, promising avenues for its evolution into a versatile therapeutic agent targeting both infectious diseases and cancer.
Collapse
Affiliation(s)
- Adnan Zahirović
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Selma Fetahović
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Aleksandar Višnjevac
- Laboratory for Chemical and Biological Crystallography, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Renata Bešta-Gajević
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Amina Kozarić
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | - Lora Martić
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | - Anela Topčagić
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Sunčica Roca
- NMR Centre, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
2
|
Sial NT, Malik A, Iqbal U, Mehmood MH, Rehman MFU. Novel antiarthritic mechanisms of Azelaic acid against CFA-induced arthritis in rats by modulating pro- and anti-inflammatory cytokines network. Inflammopharmacology 2024; 32:2445-2462. [PMID: 38916711 DOI: 10.1007/s10787-024-01512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
An immunologic system attacking the body's own tissues is a hallmark of autoimmune disorders, which encompass a wide range of unique conditions. Numerous essential biologic functions, including the regulation of the immune system, inflammation, cell division, and tissue repair, are carried out by cytokines. Natural compounds are an effective treatment for autoimmune illnesses by modulation of inflammatory cytokines and infiltration of leukocytes into the inflamed tissue. Here, anti-arthritic study was carried out using oral administration of Azelaic acid (AzA) for 28 days with doses (20, 40, and 80 mg/kg) in Complete Freund's Adjuvant (CFA) induced arthritis model. AzA ameliorated the adjuvant-induced arthritis by decreasing arthritic score, paw volume, improved body-weight alterations and serum levels of PGE2, 5-LOX and anti-ccp. AzA showed significant down regulation of NF-κB, COX-II, TNF-α, IL-17, IL-1β, IL-6, and up regulation of IL4 and IL10. Hemoglobin and RBCs count remarkably increased and ESR, CRP, platelets, WBCs levels markedly reduced in post treatment. In addition, the weakened SOD (superoxide dismutase), Catalase (CAT), Glutathione (GSH) activity and the increased levels of malondialdehyde (MDA) were all reversed by AzA treatment. And showed improved radiographical and histologic alterations in the structure of the joints. Molecular docking studies targeting COX-II, iNOS, TNF-α, 5-LOX, IL4, IL10, IL-6, and IL-17 establish a correlation between theoretical and experimental results. Results showed that AzA inhibit pro-inflammatory cytokines (COX-II, TNF-α, 5-LOX, IL-17, NF-κB, IL-1β, and IL-6) and increase anti-inflammatory cytokines, which supported the anti-arthritic and immunomodulatory potential of AzA.
Collapse
Affiliation(s)
- Nabeela Tabassum Sial
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Abdul Malik
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan.
| | - Urooj Iqbal
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan
| | - Malik Hassan Mehmood
- Department of Pharmaceutical Sciences, Government College University, Lahore, Pakistan
| | | |
Collapse
|
3
|
Iqbal U, Malik A, Sial NT, Uttra AM, Rehman MFU, Mehmood MH. Molecular insights of Eucalyptol (1,8-Cineole) as an anti-arthritic agent: in vivo and in silico analysis of IL-17, IL-10, NF-κB, 5-LOX and COX-2. Inflammopharmacology 2024; 32:1941-1959. [PMID: 38649658 DOI: 10.1007/s10787-024-01465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/17/2024] [Indexed: 04/25/2024]
Abstract
The monoterpene oxide, Eucalyptol (1,8-Cineole), a primary component of eucalyptus oil, has been evaluated pharmacologically for anti-inflammatory and analgesic activity. Current research aimed to evaluate Eucalyptol's anti-arthritic potential in a Complete Freund's adjuvant induced arthritis that resembles human rheumatoid arthritis. Polyarthritis developed after 0.1 mL CFA injection into the left hind footpad in rats. Oral administration of Eucalyptol at various doses (100, 200 and 400 mg/kg) significantly reduced paw edema, body weight loss, 5-LOX, PGE2 and Anti-CCP levels. Real-time PCR investigation showed significant downregulation of COX-2, TNF-α, NF-κB, IL-17, IL-6, IL-1β and upregulation of IL-4 and IL-10 in Eucalyptol treated groups. Hemoglobin and RBCs counts significantly increased post-treatment with Eucalyptol while ESR, CRP, WBCs and platelets count significantly decreased. Eucalyptol significantly increased Superoxide Dismutase, Catalase and Glutathione levels compared to CFA-induced arthritic control however, MDA significantly decreased post-treatment. Further, radiographic and histopathological examination of the ankle joints of rodents administered Eucalyptol revealed an improvement in the structure of the joints. Piroxicam was taken as standard. Furthermore, molecular docking findings supported the anti-arthritic efficacy of Eucalyptol exhibited high binding interaction against IL-17, TNF-α, IL-4, IL-10, iNOS NF-κB, 5-LOX, and COX-2. Eucalyptol has reduced the severity of CFA induced arthritis by promoting anti-inflammatory cytokines for example IL-4, IL-10 and by inhibiting pro-inflammatory cytokines such as 5-LOX, COX-2, IL-17, NF-κB, TNF-α, IL-6 and IL-1β. Therefore, Eucalyptol might be as a potential therapeutic agent because of its pronounced anti-oxidant and anti-arthritic activity.
Collapse
Affiliation(s)
- Urooj Iqbal
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Abdul Malik
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan.
| | - Nabeela Tabassum Sial
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Ambreen Malik Uttra
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | | | - Malik Hassan Mehmood
- Department of Pharmaceutical Sciences, Government College University, Lahore, Pakistan
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
4
|
Akhter S, Arjmand F, Pettinari C, Tabassum S. Ru(II)( ƞ6- p-cymene) Conjugates Loaded onto Graphene Oxide: An Effective pH-Responsive Anticancer Drug Delivery System. Molecules 2022; 27:7592. [PMID: 36364418 PMCID: PMC9655566 DOI: 10.3390/molecules27217592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/04/2023] Open
Abstract
Graphene oxide-based nanodrug delivery systems are considered one of the most promising platforms to deliver therapeutic drugs at the target site. In this study, Ru(II)(ƞ6-p-cymene) complexes containing the benzothiazole ligand were covalently anchored on graphene oxide using the ultrasonication method. The nanoconjugates GO-NCD-1 and GO-NCD-2 were characterized by FT-IR, UV-visible, 1H NMR, TGA, SEM, and TEM techniques, which confirmed the successful loading of both the complexes (NCD 1 and NCD 2) on the carrier with average particle diameter sizes of 17 ± 6.9 nm and 25 ± 6.5 nm. In vitro DNA binding studies of the nanoconjugates were carried out by employing various biophysical methods to investigate the binding interaction with the therapeutic target biomolecule and to quantify the intrinsic binding constant values useful to understand their binding affinity. Our results suggest (i) high Kb and Ksv values of the graphene-loaded conjugates (ii) effective cleavage of plasmid DNA at a lower concentration of 7.5 µM and 10 µM via an oxidative pathway, and (iii) fast release of NCD 2 at an acidic pH that could have a good impact on the controlled delivery of drug. It was found that 90% of the drug was released in an acidic pH (5.8 pH) environment in 48 h, therefore suggesting pH-responsive behavior of the drug delivery system. Molecular docking, DFT studies, and cytotoxicity activity against three cancer cell lines by SRB assay were also performed.
Collapse
Affiliation(s)
- Suffora Akhter
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Claudio Pettinari
- School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, MC, Italy
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
5
|
Synthesis and Structural investigation of o-Vanillin scaffold Schiff base metal complexes: Biomolecular interaction and molecular docking studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
6
|
Khursheed S, Siddique HR, Tabassum S, Arjmand F. Water soluble transition metal [Ni(II), Cu(II) and Zn(II)] complexes of N-phthaloylglycinate bis(1,2-diaminocyclohexane). DNA binding, pBR322 cleavage and cytotoxicity. Dalton Trans 2022; 51:11713-11729. [PMID: 35852297 DOI: 10.1039/d2dt01312f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To validate the effect of metal ions in analogous ligand scaffolds on DNA binding and cytotoxic response, we have synthesized a series of water-soluble ionic N-phthaloylglycinate conjugated bis(diaminocyclohexane)M2+ complexes where M = Ni(II), Cu(II) and Zn(II) (1-3). The structural characterization of the complexes (1-3) was achieved by spectroscopic {FT-IR, EPR, UV-vis absorption data, 1H NMR, ESI-MS and elemental analysis} and single crystal X-ray diffraction studies, which revealed different topologies for the late 3d-transition metals. The Ni(II) and Zn(II) complexes exhibited an octahedral geometry with coordinated labile water molecules in the P1̄ space group while the Cu(II) complex revealed a square planar geometry with the P21/c space lattice. In vitro DNA-complexation studies were performed employing various complementary biophysical methods to quantify the intrinsic binding constant Kb and Ksv values and to envisage the binding modes and binding affinity of (1-3) at the therapeutic targets. The corroborative results of these experiments revealed a substantial geometric and electronic effect of (1-3) on DNA binding and the following inferences were observed, (i) high Kb and Ksv values, (ii) remarkable cleavage efficiency via an oxidative pathway, (iii) condensation behavior and (iv) good cytotoxic response to HepG2 and PTEN-caP8 cancer cell lines, with copper(II) complex 2 outperforming the other two complexes as a most promising anticancer drug candidate. Copper(II) complexes have been proven in the literature to be good anticancer drug entities, displaying inhibition of uncontrolled-cell growth by multiple pathways viz., anti-angiogenesis, inducing apoptosis and reactive oxygen species mediated cell death phenomena. Nickel(II) and zinc(II) ionic complexes 1 and 3 have also demonstrated good chemotherapeutic potential in vitro and the bioactive 1,2-diaminocyclohexane fragment in these complexes plays an instrumental role in anticancer activity.
Collapse
Affiliation(s)
- Salman Khursheed
- Department of Chemistry, Aligarh Muslim University, Aligarh, India.
| | - Hifzur R Siddique
- Cytogenetics and Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh, India.
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|