1
|
Wang J, Li J, Lu Y, Zhang X, Dou H, Liu Y. Assembling metal nanoclusters with high luminescence performance and anti-interference ability for sensing p-nitrophenol. Anal Chim Acta 2025; 1354:344009. [PMID: 40253063 DOI: 10.1016/j.aca.2025.344009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND The fluorescence quantum yield (QY) of water-soluble gold nanoclusters (AuNCs) can be prominently improved by adding l-arginine (Arg) owing to rigidifying ligands. However, these fluorescence systems exhibit poor anti-interference ability in sensing application due to exposure guanidine, amino, and carboxyl groups of Arg. RESULTS We have developed the encapsulation of AuNCs into zeolitic imidazolate framework-8 (ZIF-8) to improve the anti-interference property due to the protection of Arg functional groups. The ligand of 6-aza-2-thiothymine (ATT)-decorated AuNCs (ATT-AuNCs) is rigidified after introducing Arg (referred as Arg/ATT-AuNCs), yielding higher QY of 59.31 % compared to ATT-AuNCs with QY of 1.18 %. Subsequently, the shell of Arg/ATT-AuNCs encapsulated into ZIF-8 (Arg/ATT-AuNCs@ZIF-8) does not only tremendously increase green fluorescence emission, but also enhance the anti-interference capability (high salt concentration, pH change, metal ions coordination, and solution dilution) due to the structural confinement effect and protection of ligand functional groups. Interestingly, Arg/ATT-AuNCs@ZIF-8 fluorescence can be quenched by p-nitrophenol (PNP) through an internal filtration effect (IFE). Thus, a fluorescence method is established for PNP analysis. The linear detection range for PNP is 0.1-80 μM with limit of detection (LOD) at 0.033 μM, which is much lower than the maximum allowable value (0.43 μM) in drinking water by EPA. This approach has been successfully applied to the detection of PNP spiked into the real samples with excellent recovery rates. This platform opens a broad avenue for metal nanocluster-based materials in the sensing application.
Collapse
Affiliation(s)
- Jiaxi Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Jiaqing Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yuexiang Lu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Xiwen Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Huashuo Dou
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yueying Liu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
2
|
Gaddala R, Chelluboyina AK, Kumar S. Engineering RAFT Polymers to the Protein-capped Gold Nanoclusters for Developing Fluorescent Polymeric Nanoconjugates. Macromol Biosci 2025; 25:e2400451. [PMID: 39660397 DOI: 10.1002/mabi.202400451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/18/2024] [Indexed: 12/12/2024]
Abstract
The synthesis of fluorescent hybrid nanomaterials engineered via the chain-end modification of reversible addition-fragmentation chain-transfer (RAFT) polymers on the surface of bovine serum albumin (BSA) protein-stabilized gold nanoclusters (AuNCs@BSA) is described. Based on the "grafting-to" approach the core-shell structured nanoconjugates AuNCs@BSA/polymer are generated via effective ligation of hydrophilic, and stimuli-responsive polymers. Such nanomaterials are characterized via various microscopic and spectroscopic studies and exhibit their size as ≈5 nm and emission peak at ≈650 nm. Interestingly, the conjugation of thermoresponsive polymer poly(diethylene glycol monomethyl ether methacrylate) (PDEGMA) transformed the nanoconjugates AuNCs@BSA/PDEGMA as dual thermo/pH-responsive nanomaterials.
Collapse
Affiliation(s)
- Raviteja Gaddala
- Department of Chemistry, École Centrale School of Engineering, Mahindra University, Hyderabad, 500043, India
| | | | - Sonu Kumar
- Department of Chemistry, École Centrale School of Engineering, Mahindra University, Hyderabad, 500043, India
| |
Collapse
|
3
|
Wang R, Xue J, Wei G, Zhang Y, Wang C, Li J, Geng X, Ostovan A, Chen L, Song Z. Fast and Sensitive Detection of Anti-SARS-CoV-2 IgG Using SiO 2@Au@CDs Nanoparticle-Based Lateral Flow Immunoassay Strip Coupled with Miniaturized Fluorimeter. Biomolecules 2024; 14:1568. [PMID: 39766275 PMCID: PMC11673715 DOI: 10.3390/biom14121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
The development of a novel strategy for the measurement of SARS-CoV-2 IgG antibodies is of vital significance for COVID-19 diagnosis and effect of vaccination evaluation. In this investigation, an SiO2@Au@CDs nanoparticle (NP)-based lateral flow immunoassay (LFIA) strip was fabricated and coupled with a miniaturized fluorimeter. The morphology features and particle sizes of the SiO2@Au@CDs NPs were characterized carefully, and the results indicated that the materials possess monodisperse, uniform, and spherical structures. Finally, this system was employed for SARS-CoV-2 IgG antibody test. In this work, the strategy for the SARS-CoV-2 IgG antibody test possesses several merits, such as speed (less than 15 min), high sensitivity (1.2 × 10-7 mg/mL), broad linearity range (7.4 × 10-7~7.4 × 10-4 mg/mL), accurate results, high selectivity, good stability, and low cost. Additionally, future trends in LFAs using quantum dot-based diagnostics are envisioned.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China; (R.W.); (J.X.); (G.W.); (Y.Z.)
| | - Junping Xue
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China; (R.W.); (J.X.); (G.W.); (Y.Z.)
| | - Guo Wei
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China; (R.W.); (J.X.); (G.W.); (Y.Z.)
| | - Yimeng Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China; (R.W.); (J.X.); (G.W.); (Y.Z.)
| | - Chuanliang Wang
- Department of Instrumentation & Analytical Chemistry, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Key Laboratory of Deep-Sea Composition Detection Technology of Liaoning Province, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China; (C.W.); (X.G.)
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (J.L.); (A.O.); (L.C.)
| | - Xuhui Geng
- Department of Instrumentation & Analytical Chemistry, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Key Laboratory of Deep-Sea Composition Detection Technology of Liaoning Province, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China; (C.W.); (X.G.)
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (J.L.); (A.O.); (L.C.)
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (J.L.); (A.O.); (L.C.)
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China; (R.W.); (J.X.); (G.W.); (Y.Z.)
| |
Collapse
|
4
|
Li H, Li P, Zhang J, Lin Z, Bai L, Shen H. Applications of nanotheranostics in the second near-infrared window in bioimaging and cancer treatment. NANOSCALE 2024; 16:21697-21730. [PMID: 39508492 DOI: 10.1039/d4nr03058c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Achieving accurate and efficient tumor imaging is crucial in the field of tumor treatment, as it facilitates early detection and precise localization of tumor tissues, thereby informing therapeutic strategies and surgical interventions. The optical imaging technology within the second near-infrared (NIR-II) window has garnered significant interest for its remarkable benefits, such as enhanced tissue penetration depth, superior signal-to-background ratio (SBR), minimal tissue autofluorescence, reduced photon attenuation, and lower tissue scattering. This review explained the design and optimization strategies of nano-agents responsive to the NIR-II window, such as single-walled carbon nanotubes, quantum dots, lanthanum-based nanomaterials, and noble metal nanomaterials. These nano-agents enable non-invasive, deep-tissue imaging with high spatial resolution in the NIR-II window, and their superior optical properties significantly improve the accuracy, efficiency, and versatility of imaging-guided tumor treatments. And we discussed the characteristics and advantages of fluorescence imaging (FL)/photoacoustic imaging (PA) in NIR-II window, providing a comprehensive overview of the latest research progress of different nano-agents in FL/PA imaging-guided tumor therapy. Furthermore, we exhaustively reviewed the latest applications of multifunctional nano-phototherapy technologies carried out by NIR-II light including photothermal therapy (PTT), photodynamic therapy (PDT), and combined modalities like photothermal-chemodynamic therapy (PTT-CDT), photothermal-chemotherapy (PTT-CT), and photothermal- immunotherapy (PTT-IO). These imaging-guided integrated tumor therapy approaches within the NIR-II window have gradually matured over the past decade and are expected to become a safe and effective non-invasive tumor treatment. Finally, we outlined the prospects and challenges of development and innovation of the NIR-II integrated diagnosis and therapy nanoplatform. This review aims to provide insightful perspectives for future advancements in NIR-II optical tumor diagnosis and integrated treatment platforms.
Collapse
Affiliation(s)
- Huimin Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Pengju Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Jiarui Zhang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ziyi Lin
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Lintao Bai
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Heyun Shen
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
5
|
Zhang L, Bi X, Wang H, Li L, You T. Loading of AuNCs with AIE effect onto cerium-based MOFs to boost fluorescence for sensitive detection of Hg 2. Talanta 2024; 273:125843. [PMID: 38492285 DOI: 10.1016/j.talanta.2024.125843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
Ligand-protected gold nanoclusters (AuNCs) have become promising nanomaterials in fluorescence (FL) methods for mercury ions (Hg2+) monitoring, but low FL efficiency hinders their widespread application. Herein, AuNCs/cerium-based metal-organic frameworks (AuNCs/Ce-MOFs) were prepared by loading 6-aza-2-thiothymine-protected AuNCs (ATT-AuNCs) with aggregation-induced emission (AIE) effect on the surface of Ce-MOFs by electrostatic attraction. This strategy improved the FL intensity of AuNCs through two aspects: (i) the AIE effect of ATT-AuNCs and (ii) the confinement effect of Ce-MOFs, which improved the restriction of intramolecular motion (RIM) of ATT-AuNCs. In addition, Ce-MOFs could adsorb and aggregate Hg2+ during detection, which might increase the local concentration. Therefore, based on the high FL signal of AuNCs/Ce-MOFs and enriched Hg2+, sensitive detection of Hg2+ could be achieved. More importantly, the strong specific recognition between AuNCs and Hg2+ could guarantee selectivity. The developed FL sensor exhibited superior detection performances with a wide linear range of 0.2-500 ng mL-1 and a low detection limit of 0.067 ng mL-1. Furthermore, the FL sensor used for sensitive and selective detection of Hg2+ in real samples, and the results agreed well with the standard method. In summary, this work proposed an effective and generalized strategy for improving the FL efficiency of AuNCs, which would greatly facilitate their application in pollutant monitoring.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaoya Bi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hui Wang
- Department of Environmental Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
6
|
Zhu Y, Tang Y, Miao P. Intramolecular Charge Transfer of Gold Nanoclusters for pH Indicating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1130-1136. [PMID: 38149375 DOI: 10.1021/acs.langmuir.3c03497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The investigation of the intramolecular charge transfer (ICT) process of gold nanoclusters (AuNCs) is critical to understand the unique features of the nanomaterials, which also benefits their further applications. Herein, 6-methyl-2-thiouracil (CH3-2-TU) and polyvinylpyrrolidone (PVP)-stabilized AuNCs are prepared, and the ICT behaviors are carefully studied. Protonation or deprotonation of the ligands around AuNCs could be used to regulate the ICT state, influencing the electron distribution and band gap. Shifted fluorescence emission phenomena are thus observed, which respond to external pH stimuli. In addition, the AuNCs are developed as color-switchable indicators for the highly sensitive detection of biogenic amines. As a proof of concept, the performance of this strategy in the evaluation of food spoilage by probing pH conditions is validated with satisfactory results. The discoveries in this work offer a convenient route to regulate the optical properties of AuNCs and the design of pH-based sensing applications.
Collapse
Affiliation(s)
- Yulin Zhu
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuguo Tang
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Peng Miao
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Shandong Laboratory of Advanced Biomaterials and Medical Devices in Weihai, Weihai 264200, China
| |
Collapse
|
7
|
Tian Y, Zheng W, Zhang X, Wang Y, Xiao Y, Yao D, Zhang H. Triple Ligand Engineered Gold Nanoclusters with Enhanced Fluorescence and Device Compatibility for Efficient Electroluminescence Light-Emitting Diodes. NANO LETTERS 2023; 23:4423-4430. [PMID: 37129890 DOI: 10.1021/acs.nanolett.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Gold nanoclusters (Au NCs) are potential emitters for electroluminescent light-emitting diodes (EL-LEDs) but restricted by the limited photoluminescence quantum yield (PLQY) and poor device compatibility. Herein, triple ligand engineered Au NCs enable the fabrication of Au NC-based LEDs with improved EL efficiency. Rigidified triple ligand shells greatly reduce the nonradiative transition and thus increase the PLQY of Au NCs from 2.1 to 73.4%. Most importantly, this strategy significantly improves the compatibility between Au NCs and charge transport materials in EL-LED fabrication. As a result, the EL-LEDs reach a maximum brightness of 1104 cd/m2 and an external quantum efficiency of 5.1%, which is the highest recorded for any reported Au NC-based EL-LEDs.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Weijia Zheng
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Xiaoyu Zhang
- School of Materials Science & Engineering, Jilin University, Changchun 130012, P. R. China
| | - Yinghui Wang
- College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Yanwei Xiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Dong Yao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|