1
|
Baachaoui S, Hajlaoui R, Aoun SB, Fortunelli A, Sementa L, Raouafi N. Covalent surface modification of single-layer graphene-like BC 6N nanosheets with reactive nitrenes for selective ammonia sensing via DFT modeling. NANOTECHNOLOGY 2024; 35:425501. [PMID: 39025079 DOI: 10.1088/1361-6528/ad64da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Novel graphene-like nanomaterials with a non-zero bandgap are important for the design of gas sensors. The selectivity toward specific targets can be tuned by introducing appropriate functional groups on their surfaces. In this study, we use first-principles simulations, in the form of density functional theory (DFT), to investigate the covalent functionalization of a single-layer graphitized BC6N with azides to yield aziridine-functionalized adducts and explore their possible use to realize ammonia sensors. First, we determine the most favorable sites for physical adsorption and chemical reaction of methylnitrene, arising from the decomposition of methylazide, onto a BC6N monolayer. Then, we examine the thermodynamics of the [1 + 2]-cycloaddition reaction of various phenylnitrenes and perfluorinated phenylnitrenes para-substituted with (R = CO2H, SO3H) groups, demonstrating favorable energetics. We also monitor the effect of the functionalization on the electronic properties of the nanosheets via density of states and band structure analyses. Finally, we test four dBC6N to gBC6N substrates in the sensing of ammonia. We show that, thanks to their hydrogen bonding capabilities, the functionalized BC6N can selectively detect ammonia, with interaction energies varying from -0.54 eV to -1.37 eV, even in presence of competing gas such as CO2and H2O, as also confirmed by analyzing the change in the electronic properties and the values of recovery times near ambient temperature. Importantly, we model the conductance of a selected substrate alone and in presence of NH3to determine its effect on the integrated current, showing that humidity and coverage conditions should be properly tuned to use HO2C-functionalized BC6N-based nanomaterials to develop selective gas sensors for ammonia.
Collapse
Affiliation(s)
- Sabrine Baachaoui
- Sensors and Biosensors Group, Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), Chemistry Department, Faculty of Science of Tunis, University of Tunis El Manar, Tunis El Manar 2092, Tunisia
| | - Rabiaa Hajlaoui
- Advanced Materials and Quantum Phenomena Laboratory, Physics Department, Faculty of Science of Tunis, University of Tunis El Manar, Tunis El Manar 2092, Tunisia
| | - Sami Ben Aoun
- Department of Chemistry, Faculty of Science, Taibah University, PO Box 30002, Al-Madinah Al-Munawwarah, Saudi Arabia
| | | | - Luca Sementa
- Consiglio Nazionale delle Ricerche, CNR-ICCOM & IPCF, 56124 Pisa, Italy
| | - Noureddine Raouafi
- Sensors and Biosensors Group, Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15), Chemistry Department, Faculty of Science of Tunis, University of Tunis El Manar, Tunis El Manar 2092, Tunisia
| |
Collapse
|
2
|
Shu S, Song T, Wang C, Dai H, Duan L. [2+1] Cycloadditions Modulate the Hydrophobicity of Ni-N 4 Single-Atom Catalysts for Efficient CO 2 Electroreduction. Angew Chem Int Ed Engl 2024; 63:e202405650. [PMID: 38695268 DOI: 10.1002/anie.202405650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Indexed: 06/11/2024]
Abstract
Microenvironment regulation of M-N4 single-atom catalysts (SACs) is a promising way to tune their catalytic properties toward the electrochemical CO2 reduction reaction. However, strategies that can effectively introduce functional groups around the M-N4 sites through strong covalent bonding and under mild reaction conditions are highly desired. Taking the hydrophilic Ni-N4 SAC as a representative, we report herein a [2+1] cycloaddition reaction between Ni-N4 and in situ generated difluorocarbene (F2C:), and enable the surface fluorocarbonation of Ni-N4, resulting in the formation of a super-hydrophobic Ni-N4-CF2 catalyst. Meanwhile, the mild reaction conditions allow Ni-N4-CF2 to inherit both the electronic and structural configuration of the Ni-N4 sites from Ni-N4. Enhanced electrochemical CO2-to-CO Faradaic efficiency above 98 % is achieved in a wide operating potential window from -0.7 V to -1.3 V over Ni-N4-CF2. In situ spectroelectrochemical studies reveal that a highly hydrophobic microenvironment formed by the -CF2- group repels asymmetric H-bonded water at the electrified interface, inhibiting the hydrogen evolution reaction and promoting CO production. This work highlights the advantages of [2+1] cycloaddition reactions on the covalent modification of N-doped carbon-supported catalysts.
Collapse
Affiliation(s)
- Siyan Shu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Tao Song
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Cheng Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Hao Dai
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Lele Duan
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, 310000, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| |
Collapse
|
3
|
Zhumadilov RY, Yerlanuly Y, Parkhomenko HP, Soltabayev B, Orazbayev SA, Bakenov Z, Ramazanov TS, Gabdullin MT, Jumabekov AN. Carbon nanowall-based gas sensors for carbon dioxide gas detection. NANOTECHNOLOGY 2024; 35:165501. [PMID: 38171320 DOI: 10.1088/1361-6528/ad1a7e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
Carbon nanowalls (CNWs) have attracted significant attention for gas sensing applications due to their exceptional material properties such as large specific surface area, electric conductivity, nano- and/or micro-porous structure, and high charge carrier mobility. In this work, CNW films were synthesized and used to fabricate gas sensors for carbon dioxide (CO2) gas sensing. The CNW films were synthesized using an inductively-coupled plasma (ICP) plasma-enhanced chemical vapor deposition (PECVD) method and their structural and morphological properties were characterized using Raman spectroscopy and electron microscopy. The obtained CNW films were used to fabricate gas sensors employing interdigitated gold (Au) microelectrodes. The gas sensors were fabricated using both direct synthesis of CNW films on interdigitated Au microelectrodes on quartz and also transferring presynthesized CNW films onto interdigitated Au microelectrodes on glass. The CO2gas-sensing properties of fabricated devices were investigated for different concentrations of CO2gas and temperature-ranges. The sensitivities of fabricated devices were found to have a linear dependence on the concentration of CO2gas and increase with temperature. It was revealed that devices, in which CNW films have a maze-like structure, perform better compared to the ones that have a petal-like structure. A sensitivity value of 1.18% was obtained at 500 ppm CO2concentration and 100 °C device temperature. The CNW-based gas sensors have the potential for the development of easy-to-manufacture and efficient gas sensors for toxic gas monitoring.
Collapse
Affiliation(s)
- Rakhymzhan Ye Zhumadilov
- Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
- Institute of Applied Science and Information Technologies, Almaty, 050038, Kazakhstan
| | - Yerassyl Yerlanuly
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
- Institute of Applied Science and Information Technologies, Almaty, 050038, Kazakhstan
- Kazakh-British Technical University, Almaty, 050000, Kazakhstan
| | - Hryhorii P Parkhomenko
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Baktiyar Soltabayev
- National Laboratory Astana, Astana, 010000, Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Sagi A Orazbayev
- Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan
- Institute of Applied Science and Information Technologies, Almaty, 050038, Kazakhstan
| | - Zhumabay Bakenov
- National Laboratory Astana, Astana, 010000, Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Tlekkabul S Ramazanov
- Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan
- Institute of Applied Science and Information Technologies, Almaty, 050038, Kazakhstan
| | - Maratbek T Gabdullin
- Institute of Applied Science and Information Technologies, Almaty, 050038, Kazakhstan
- Kazakh-British Technical University, Almaty, 050000, Kazakhstan
| | - Askhat N Jumabekov
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
4
|
Zhang H, Zhang R, Hu S, Yang K, Wang Q, Dong H, Ni Y, Feng W. BTEX sensing potential of elemental-doped graphene: a DFT study. Phys Chem Chem Phys 2023; 25:30708-30715. [PMID: 37934014 DOI: 10.1039/d3cp04206e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Elementally-doped graphene demonstrates remarkable gas sensing capabilities as a novel 2D sensor material. In this study, we employed density functional theory calculations, we investigated the impact of various dopants on the BTEX (benzene, toluene, ethylbenzene, and xylene) sensing performance of graphene. Through the systematic analysis of electronic structures and sensitivity, we observed that both the doping method and dopant type significantly influence the interactions between graphene and BTEX molecules. Out of the 22 different elemental doped graphenes studied, N-, O-, and Pd-doped graphenes emerged as promising candidates for BTEX sensor materials. Graphene with N-doping exhibited relatively higher sensitivity towards toluene, ethylbenzene, and xylene compared to O- and Pd-doped graphenes. However, it demonstrated low sensitivity towards benzene. On the other hand, O-doped graphene displayed excellent selectivity for ethylbenzene over the other three gas molecules (benzene, toluene, and xylene). Similarly, Pd-doped graphene also exhibited significant selectivity for ethylbenzene and possessed higher sensitivity than the O-doped graphene. Their distinct characteristics and sensitivities make them potential candidates for future applications in gas sensing technology.
Collapse
Affiliation(s)
- Hongping Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Sichuan 610041, China.
| | - Run Zhang
- School of Materials and Chemistry, Southwest University of Science and Technology, Sichuan 621010, China
| | - Shuchun Hu
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Kun Yang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Sichuan 610041, China.
| | - Qingyuan Wang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Sichuan 610041, China.
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
| | - Yuxiang Ni
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 600031, China
| | - Wei Feng
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Sichuan 610041, China.
| |
Collapse
|