1
|
Song M, Tang Y, Cao K, Qi L, Xie K. Unveiling the role of interleukin-6 in pancreatic cancer occurrence and progression. Front Endocrinol (Lausanne) 2024; 15:1408312. [PMID: 38828409 PMCID: PMC11140100 DOI: 10.3389/fendo.2024.1408312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Pancreatic cancer is difficult to diagnose early and progresses rapidly. Researchers have found that a cytokine called Interleukin-6 (IL-6) is involved in the entire course of pancreatic cancer, promoting its occurrence and development. From the earliest stages of pancreatic intraepithelial neoplasia to the invasion and metastasis of pancreatic cancer cells and the appearance of tumor cachexia, IL-6 drives oncogenic signal transduction pathways and immune escape that accelerate disease progression. IL-6 is considered a biomarker for pancreatic cancer diagnosis and prognosis, as well as a potential target for treatment. IL-6 antibodies are currently being explored as a hot topic in oncology. This article aims to systematically explain how IL-6 induces the deterioration of normal pancreatic cells, with the goal of finding a breakthrough in pancreatic cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Meihui Song
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People’s Hospital, The Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Ying Tang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Kaimei Cao
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People’s Hospital, The Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
- School of Pharmaceutical Sciences, Dali University, Dali, Yunnan, China
| | - Ling Qi
- Division of Gastroenterology, Institute of Digestive Disease, Qingyuan People’s Hospital, The Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Keping Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Ito K, Harada I, Martinez C, Sato K, Lee E, Port E, Byerly JH, Nayak A, Tripathi E, Zhu J, Irie HY. MARCH2, a Novel Oncogene-regulated SNAIL E3 Ligase, Suppresses Triple-negative Breast Cancer Metastases. CANCER RESEARCH COMMUNICATIONS 2024; 4:946-957. [PMID: 38457262 PMCID: PMC10977041 DOI: 10.1158/2767-9764.crc-23-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Epithelial-mesenchymal transition (EMT) in cancer promotes metastasis and chemotherapy resistance. A subset of triple-negative breast cancer (TNBC) exhibits a mesenchymal gene signature that is associated with poor patient outcomes. We previously identified PTK6 tyrosine kinase as an oncogenic driver of EMT in a subset of TNBC. PTK6 induces EMT by stabilizing SNAIL, a key EMT-initiating transcriptional factor. Inhibition of PTK6 activity reverses mesenchymal features of TNBC cells and suppresses their metastases by promoting SNAIL degradation via a novel mechanism. In the current study, we identify membrane-associated RING-CH2 (MARCH2) as a novel PTK6-regulated E3 ligase that promotes the ubiquitination and degradation of SNAIL protein. The MARCH2 RING domain is critical for SNAIL ubiquitination and subsequent degradation. PTK6 inhibition promotes the interaction of MARCH2 with SNAIL. Overexpression of MARCH2 exhibits tumor suppressive properties and phenocopies the effects of SNAIL downregulation and PTK6 inhibition in TNBC cells, such as inhibition of migration, anoikis resistance, and metastasis. Consistent with this, higher levels of MARCH2 expression in breast and other cancers are associated with better prognosis. We have identified MARCH2 as a novel SNAIL E3 ligase that regulates EMT and metastases of mesenchymal TNBC. SIGNIFICANCE EMT is a process directly linked to drug resistance and metastasis of cancer cells. We identified MARCH2 as a novel regulator of SNAIL, a key EMT driver, that promotes SNAIL ubiquitination and degradation in TNBC cells. MARCH2 is oncogene regulated and inhibits growth and metastasis of TNBC. These insights could contribute to novel strategies to therapeutically target TNBC.
Collapse
Affiliation(s)
- Koichi Ito
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ibuki Harada
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Criseyda Martinez
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katsutoshi Sato
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Elisa Port
- Department of Surgery, Mount Sinai Hospital, New York, New York
| | - Jessica H. Byerly
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ekta Tripathi
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Zhu
- Sema4, Stamford, Connecticut
| | - Hanna Y. Irie
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
3
|
Targeting epiregulin in the treatment-damaged tumor microenvironment restrains therapeutic resistance. Oncogene 2022; 41:4941-4959. [PMID: 36202915 DOI: 10.1038/s41388-022-02476-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023]
Abstract
The tumor microenvironment (TME) represents a milieu enabling cancer cells to develop malignant properties, while concerted interactions between cancer and stromal cells frequently shape an "activated/reprogramed" niche to accelerate pathological progression. Here we report that a soluble factor epiregulin (EREG) is produced by senescent stromal cells, which non-cell-autonomously develop the senescence-associated secretory phenotype (SASP) upon DNA damage. Genotoxicity triggers EREG expression by engaging NF-κB and C/EBP, a process supported by elevated chromatin accessibility and increased histone acetylation. Stromal EREG reprograms the expression profile of recipient neoplastic cells in a paracrine manner, causing upregulation of MARCHF4, a membrane-bound E3 ubiquitin ligase involved in malignant progression, specifically drug resistance. A combinational strategy that empowers EREG-specific targeting in treatment-damaged TME significantly promotes cancer therapeutic efficacy in preclinical trials, achieving response indices superior to those of solely targeting cancer cells. In clinical oncology, EREG is expressed in tumor stroma and handily measurable in circulating blood of cancer patients post-chemotherapy. This study establishes EREG as both a targetable SASP factor and a new noninvasive biomarker of treatment-damaged TME, thus disclosing its substantial value in translational medicine.
Collapse
|
4
|
Lin H, Feng L, Cui KS, Zeng LW, Gao D, Zhang LX, Xu WH, Sun YH, Shu HB, Li S. The membrane-associated E3 ubiquitin ligase MARCH3 downregulates the IL-6 receptor and suppresses colitis-associated carcinogenesis. Cell Mol Immunol 2021; 18:2648-2659. [PMID: 34785732 DOI: 10.1038/s41423-021-00799-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023] Open
Abstract
The IL-6-STAT3 axis is critically involved in inflammation-associated carcinogenesis (IAC). How this axis is regulated to modulate IAC remains unknown. Here, we show that the plasma membrane-associated E3 ubiquitin ligase MARCH3 negatively regulates STAT3 activation triggered by IL-6, as well as another IL-6 subfamily member, Oncostatin M (OSM). MARCH3 is associated with the IL-6 receptor α-chain (IL-6Rα) and its coreceptor gp130. Biochemical experiments indicated that MARCH3 mediates the polyubiquitination of IL-6Rα at K401 and gp130 at K849 following IL-6 stimulation, leading to their translocation to and degradation in lysosomes. MARCH3 deficiency increases IL-6- and OSM-triggered activation of STAT3 and induction of downstream effector genes in various cell types. MARCH3 deficiency enhances dextran sulfate sodium (DSS)-induced STAT3 activation, increases the expression of inflammatory cytokines, and exacerbates colitis, as well as azoxymethane (AOM)/DSS-induced colitis-associated cancer in mice. In addition, MARCH3 is downregulated in human colorectal cancer tissues and associated with poor survival across different cancer types. Our findings suggest that MARCH3 is a pivotal negative regulator of IL-6-induced STAT3 activation, inflammation, and inflammation-associated carcinogenesis.
Collapse
Affiliation(s)
- Heng Lin
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Medical Research Institute; Frontier Science Center for Immunology and Metabolism; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences; Wuhan University, Wuhan, 430071, China
| | - Lu Feng
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Medical Research Institute; Frontier Science Center for Immunology and Metabolism; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences; Wuhan University, Wuhan, 430071, China
| | - Kai-Sa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Lin-Wen Zeng
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Medical Research Institute; Frontier Science Center for Immunology and Metabolism; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences; Wuhan University, Wuhan, 430071, China
| | - Deng Gao
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Medical Research Institute; Frontier Science Center for Immunology and Metabolism; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences; Wuhan University, Wuhan, 430071, China
| | - Long-Xiang Zhang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Medical Research Institute; Frontier Science Center for Immunology and Metabolism; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences; Wuhan University, Wuhan, 430071, China
| | - Wen-Hua Xu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Medical Research Institute; Frontier Science Center for Immunology and Metabolism; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences; Wuhan University, Wuhan, 430071, China
| | - Yu-Hao Sun
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Medical Research Institute; Frontier Science Center for Immunology and Metabolism; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences; Wuhan University, Wuhan, 430071, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Medical Research Institute; Frontier Science Center for Immunology and Metabolism; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences; Wuhan University, Wuhan, 430071, China.
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Medical Research Institute; Frontier Science Center for Immunology and Metabolism; Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences; Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
5
|
Sun G, Wang T, Shi M, Zhou H, Wang J, Huang Z, Zhang H, Shi J. Low expression of IL6R predicts poor prognosis for lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1057. [PMID: 34422969 PMCID: PMC8339841 DOI: 10.21037/atm-21-36] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/25/2021] [Indexed: 11/06/2022]
Abstract
Background Interleukin 6 (IL6) is both a pleiotropic cytokine and an immune-related gene. Interleukin 6 receptor (IL6R) is the receptor for IL6. It may be closely connected to the development of lung cancer. This research aims to explore the prognostic value of IL6R and prevent overtreatment of patients with lung adenocarcinoma (LUAD). Methods In this study, the expression of IL6R in tumor tissues and surrounding tissues was first analyzed by immunohistochemistry in the Affiliated Hospital of Nantong University (NTU) cohort. Secondly, we downloaded information from The Cancer Genome Atlas (TCGA) for the TCGA cohort and used this information to explore the messenger RNA (mRNA) level of IL6R. We then used Kaplan-Meier survival analyses, univariate and multivariate Cox analyses, nomogram models, and decision curve analyses to assess the prognostic value of IL6R. In addition, we also analyzed immune cell infiltration and the signaling pathways related to IL6R through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). Results Through the data analysis of the NTU cohort and the TCGA cohort, it was found that the expression of IL6R in normal tissues around the tumor was higher than that in tumor tissue, and was positively correlated with the overall survival (OS) of LUAD patients. Additionally, low expression of IL6R was found to be an independent predictor of poor prognosis among the patients in these two research cohorts. Next, using GO, KEGG, and GSEA analyses, we found that partially infiltrated tumor immune cells might be related to earlier staging and better prognosis of patients with LUAD. Finally, the study of the 3-5-year survival rate of LUAD patients through the nomogram showed that the expression of IL6R could improve the accuracy of prediction to prevent the overtreatment of some LUAD patients. Conclusions In summary, our study indicated that the low expression of IL6R was associated with poor prognosis among LUAD patients and that low expression of IL6R is a potential independent risk factor that could provide a basis for strengthening postoperative classification management of such patients.
Collapse
Affiliation(s)
- Gaofeng Sun
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Tianyi Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Muqi Shi
- Medical College of Nantong University, Nantong China
| | - Hao Zhou
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jinjie Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhanghao Huang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
6
|
Dissecting the molecular control of Interleukin 6 signaling using the M1 cell line. Cytokine 2021; 146:155624. [PMID: 34166855 DOI: 10.1016/j.cyto.2021.155624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022]
Abstract
Interleukin 6 is the classical member of the IL-6 family of cytokines which triggers activation of the JAK/STAT signaling cascade in cells. IL-6 is a pleiotropic cytokine that acts on many cell types and plays a critical role in immune responses, inflammation, and haematopoiesis. Our understanding of the molecular mechanisms governing IL-6 signaling has been aided by numerous studies of this signal transduction pathway, including those utilising the M1 cell line. Here we discuss the studies that we and others have undertaken using the M1 line to examine IL-6 inducible genes, particularly those targets that acts as negative regulators of signaling. Finally, we present a model for the current understanding of the IL-6 signaling pathway at a structural and mechanistic level.
Collapse
|
7
|
Trenker R, Wu X, Nguyen JV, Wilcox S, Rubin AF, Call ME, Call MJ. Human and viral membrane-associated E3 ubiquitin ligases MARCH1 and MIR2 recognize different features of CD86 to downregulate surface expression. J Biol Chem 2021; 297:100900. [PMID: 34157285 PMCID: PMC8319528 DOI: 10.1016/j.jbc.2021.100900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
Immune-stimulatory ligands, such as major histocompatibility complex molecules and the T-cell costimulatory ligand CD86, are central to productive immunity. Endogenous mammalian membrane-associated RING-CHs (MARCH) act on these and other targets to regulate antigen presentation and activation of adaptive immunity, whereas virus-encoded homologs target the same molecules to evade immune responses. Substrate specificity is encoded in or near the membrane-embedded domains of MARCHs and the proteins they regulate, but the exact sequences that distinguish substrates from nonsubstrates are poorly understood. Here, we examined the requirements for recognition of the costimulatory ligand CD86 by two different MARCH-family proteins, human MARCH1 and Kaposi's sarcoma herpesvirus modulator of immune recognition 2 (MIR2), using deep mutational scanning. We identified a highly specific recognition surface in the hydrophobic core of the CD86 transmembrane (TM) domain (TMD) that is required for recognition by MARCH1 and prominently features a proline at position 254. In contrast, MIR2 requires no specific sequences in the CD86 TMD but relies primarily on an aspartic acid at position 244 in the CD86 extracellular juxtamembrane region. Surprisingly, MIR2 recognized CD86 with a TMD composed entirely of valine, whereas many different single amino acid substitutions in the context of the native TM sequence conferred MIR2 resistance. These results show that the human and viral proteins evolved completely different recognition modes for the same substrate. That some TM sequences are incompatible with MIR2 activity, even when no specific recognition motif is required, suggests a more complicated mechanism of immune modulation via CD86 than was previously appreciated.
Collapse
Affiliation(s)
- Raphael Trenker
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Xinyu Wu
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Julie V Nguyen
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Stephen Wilcox
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Genomics Laboratory, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Alan F Rubin
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Matthew E Call
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| | - Melissa J Call
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
8
|
Sandow JJ, Webb AI, Stockwell D, Kershaw NJ, Tan C, Ishido S, Alexander WS, Hilton DJ, Babon JJ, Nicola NA. Proteomic analyses reveal that immune integrins are major targets for regulation by Membrane-Associated Ring-CH (MARCH) proteins MARCH2, 3, 4 and 9. Proteomics 2021; 21:e2000244. [PMID: 33945654 DOI: 10.1002/pmic.202000244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/30/2021] [Accepted: 04/23/2021] [Indexed: 11/06/2022]
Abstract
MARCH proteins are membrane-associated Ring-CH E3 ubiquitin ligases that dampen immune responses by downregulating cell surface expression of major histocompatibility complexes I and II as well as immune co-stimulatory receptors. We recently showed that MARCH2,3,4 and 9 also downregulate cell surface expression of the inflammatory cytokine receptor for interleukin-6 (IL6Rα). Here we use over-expression of these MARCH proteins in the M1 myeloid leukaemia cell line and cell surface proteomic analyses to globally analyse other potential targets of these proteins. A large range of cell surface proteins regulated by more than one MARCH protein in addition to several MARCH protein-specific cell surface targets were identified most of which were downregulated by MARCH expression. Prominent among these were several integrin complexes associated with immune cell homing, adhesion and migration. Integrin α4β1 (VLA4 or VCAM-1 receptor) was downregulated only by MARCH2 and we showed that in MARCH2 knockout mice, Integrin α4 was upregulated specifically in mature B-lymphocytes and this was accompanied by decreased numbers of B-cells in the spleen.
Collapse
Affiliation(s)
- Jarrod J Sandow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,The University of Melbourne, Parkville, Victoria, Australia
| | - Dina Stockwell
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Nadia J Kershaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,The University of Melbourne, Parkville, Victoria, Australia
| | - Cyrus Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,The University of Melbourne, Parkville, Victoria, Australia
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,The University of Melbourne, Parkville, Victoria, Australia
| | - Douglas J Hilton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,The University of Melbourne, Parkville, Victoria, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,The University of Melbourne, Parkville, Victoria, Australia
| | - Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Hu X, Hao F, Li X, Xun Z, Gao Y, Ren B, Cang M, Liang H, Liu D. Generation of VEGF knock-in Cashmere goat via the CRISPR/Cas9 system. Int J Biol Sci 2021; 17:1026-1040. [PMID: 33867826 PMCID: PMC8040296 DOI: 10.7150/ijbs.55559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Cashmere is a rare and specialised animal fibre, which grows on the outer skin of goats. Owing its low yield and soft, light, and warm properties, it has a high economic value. Here, we attempted to improve existing cashmere goat breeds by simultaneously increasing their fibre length and cashmere yield. We attempted this by knocking in the vascular endothelial growth factor (VEGF) at the fibroblast growth factor 5(FGF5) site using a gene editing technology and then studying its hair growth-promoting mechanisms. We show that a combination of RS-1 and NU7441 significantly improve the efficiency of CRISPR/Cas9-mediated, homologous-directed repair without affecting the embryo cleavage rate or the percentages of embryos at different stages. In addition, we obtained a cashmere goat, which integrated the VEGF gene at the FGF5 site, and the cashmere yield and fibre length of this gene-edited goat were improved. Through next-generation sequencing, we found that the up-regulation of VEGF and the down-regulation of FGF5 affected the cell cycle, proliferation, and vascular tone through the PI3K-AKT signalling pathway and at extracellular matrix-receptor interactions. Owing to this, the gene-edited cashmere goat showed impressive cashmere performance. Overall, in this study, we generated a gene-edited cashmere goat by integrating VEGF at the FGF5 site and provided an animal model for follow-up research on hair growth mechanisms.
Collapse
Affiliation(s)
- Xiao Hu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Fei Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Xiaocong Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Zhiyuan Xun
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Yuan Gao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Bingxu Ren
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Ming Cang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Hao Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| |
Collapse
|