1
|
Auclair N, Sané AT, Delvin E, Spahis S, Levy E. Phospholipase D as a Potential Modulator of Metabolic Syndrome: Impact of Functional Foods. Antioxid Redox Signal 2021; 34:252-278. [PMID: 32586106 DOI: 10.1089/ars.2020.8081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Cardiometabolic disorders (CMD) are composed of a plethora of metabolic dysfunctions such as dyslipidemia, nonalcoholic fatty liver disease, insulin resistance, and hypertension. The development of these disorders is highly linked to inflammation and oxidative stress (OxS), two metabolic states closely related to physiological and pathological conditions. Given the drastically rising CMD prevalence, the discovery of new therapeutic targets/novel nutritional approaches is of utmost importance. Recent Advances: The tremendous progress in methods/technologies and animal modeling has allowed the clarification of phospholipase D (PLD) critical roles in multiple cellular processes, whether directly or indirectly via phosphatidic acid, the lipid product mediating signaling functions. In view of its multiple features and implications in various diseases, PLD has emerged as a drug target. Critical Issues: Although insulin stimulates PLD activity and, in turn, PLD regulates insulin signaling, the impact of the two important PLD isoforms on the metabolic syndrome components remains vague. Therefore, after outlining PLD1/PLD2 characteristics and functions, their role in inflammation, OxS, and CMD has been analyzed and critically reported in the present exhaustive review. The influence of functional foods and nutrients in the regulation of PLD has also been examined. Future Directions: Available evidence supports the implication of PLD in CMD, but only few studies emphasize its mechanisms of action and specific regulation by nutraceutical compounds. Therefore, additional investigations are first needed to clarify the functional role of nutraceutics and, second, to elucidate whether targeting PLDs with food compounds represents an appropriate therapeutic strategy to treat CMD. Antioxid. Redox Signal. 34, 252-278.
Collapse
Affiliation(s)
- Nickolas Auclair
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada
| | - Alain T Sané
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Edgard Delvin
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Schohraya Spahis
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Hao ZY, Wang JQ, Luo YL, Liu X, Li SB, Zhao ML, Jin XY, Shen JY, Ke N, Song YZ, Qiao LR. Deep small RNA-Seq reveals microRNAs expression profiles in lactating mammary gland of 2 sheep breeds with different milk performance. Domest Anim Endocrinol 2021; 74:106561. [PMID: 33035848 DOI: 10.1016/j.domaniend.2020.106561] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023]
Abstract
Micro ribonucleic acid (miRNA) is a type of noncoding RNA, and it has been revealed to play important roles in the activity of the mammary gland (MG) in some species. However, the function of miRNAs in MG of sheep is poorly understood. In the study, Gansu Alpine Merino (GAM; n = 9) and Small-tailed Han sheep (STH; n = 9) with different milk production traits were investigated. Microstructures and the expression profile of miRNAs of MG tissues at peak lactation were studied. Mature alveolar lumens of MG in appearance were larger in STH than GAM. The expression levels of CSN2 and the content of rough endoplasmic reticulum were also higher in STH ewes than GAM ewes. A total of 124 mature miRNAs were expressed, and 18 of these were differentially expressed between the 2 breeds. The KEGG analysis results showed that the targeted genes of differentially expressed miRNAs were mainly involved in some metabolic pathways and signaling pathways related to MG development, milk protein, and fat synthesis. The findings in the study can improve our understanding of the roles of miRNAs in the development and lactation of MG in sheep.
Collapse
Affiliation(s)
- Z Y Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - J Q Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Y L Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - X Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - S B Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - M L Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - X Y Jin
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - J Y Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - N Ke
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Y Z Song
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - L R Qiao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Borel M, Cuvillier O, Magne D, Mebarek S, Brizuela L. Increased phospholipase D activity contributes to tumorigenesis in prostate cancer cell models. Mol Cell Biochem 2020; 473:263-279. [PMID: 32661773 DOI: 10.1007/s11010-020-03827-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 07/04/2020] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCa) is the most frequent cancer among men and the first cause of death over 65. Approximately 90% of patients with advanced disease will develop bone metastasis, which dramatically reduces long-term survival. Therefore, effective therapies need to be developed, especially when disease is still well-localized. Phospholipase D (PLD), an enzyme that hydrolyzes phosphatidylcholine to yield phosphatidic acid, regulates several cellular functions as proliferation, survival, migration or vesicular trafficking. PLD is implicated in numerous diseases such as neurodegenerative, cardiovascular, autoimmune disorders or cancer. Indeed, PLD controls different aspects of oncogenesis including tumor progression and resistance to targeted therapies such as radiotherapy. PLD1 and PLD2 are the only isoforms with catalytic activity involved in cancer. Surprisingly, studies deciphering the role of PLD in the pathophysiology of PCa are scarce. Here we describe the correlation between PLD activity and PLD1 and PLD2 expression in PCa bone metastasis-derived cell lines C4-2B and PC-3. Next, by using PLD pharmacological inhibitors and RNA interference strategy, we validate the implication of PLD1 and PLD2 in cell viability, clonogenicity and proliferation of C4-2B and PC-3 cells and in migration capacity of PC-3 cells. Last, we show an increase in PLD activity as well as PLD2 protein expression during controlled starvation of PC-3 cells, concomitant with an augmentation of its migration capacity. Specifically, upregulation of PLD activity appears to be PKC-independent. Taken together, our results indicate that PLD, and in particular PLD2, could be considered as a potential therapeutic target for the treatment of PCa-derived bone metastasis.
Collapse
Affiliation(s)
- Mathieu Borel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, 69622, Lyon, France
| | - Olivier Cuvillier
- Université de Toulouse, UPS, CNRS UMR 5089, Institut de Pharmacologie et de Biologie Structurale, IPBS, 31077, Toulouse Cedex, France
| | - David Magne
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, 69622, Lyon, France
| | - Saida Mebarek
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, 69622, Lyon, France
| | - Leyre Brizuela
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, 69622, Lyon, France.
| |
Collapse
|
4
|
Metrick CM, Peterson EA, Santoro JC, Enyedy IJ, Murugan P, Chen T, Michelsen K, Cullivan M, Spilker KA, Kumar PR, May-Dracka TL, Chodaparambil JV. Human PLD structures enable drug design and characterization of isoenzyme selectivity. Nat Chem Biol 2020; 16:391-399. [PMID: 32042197 DOI: 10.1038/s41589-019-0458-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
Phospholipase D enzymes (PLDs) are ubiquitous phosphodiesterases that produce phosphatidic acid (PA), a key second messenger and biosynthetic building block. Although an orthologous bacterial Streptomyces sp. strain PMF PLD structure was solved two decades ago, the molecular basis underlying the functions of the human PLD enzymes (hPLD) remained unclear based on this structure due to the low homology between these sequences. Here, we describe the first crystal structures of hPLD1 and hPLD2 catalytic domains and identify novel structural elements and functional differences between the prokaryotic and eukaryotic enzymes. Furthermore, structure-based mutation studies and structures of inhibitor-hPLD complexes allowed us to elucidate the binding modes of dual and isoform-selective inhibitors, highlight key determinants of isoenzyme selectivity and provide a basis for further structure-based drug discovery and functional characterization of this therapeutically important superfamily of enzymes.
Collapse
Affiliation(s)
- Claire M Metrick
- Physical Biochemistry, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA.,Biogen Postdoctoral Scientist Program, Biogen, Cambridge, MA, USA
| | - Emily A Peterson
- Medicinal Chemistry, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Joseph C Santoro
- Bioassays and High Throughput Screens, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Istvan J Enyedy
- Medicinal Chemistry, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Paramasivam Murugan
- Bioassays and High Throughput Screens, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - TeYu Chen
- Medicinal Chemistry, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Klaus Michelsen
- Physical Biochemistry, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Michael Cullivan
- Physical Biochemistry, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Kerri A Spilker
- Physical Biochemistry, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - P Rajesh Kumar
- Physical Biochemistry, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | - Tricia L May-Dracka
- Medicinal Chemistry, Biotherapeutic and Medicinal Sciences, Biogen, Cambridge, MA, USA
| | | |
Collapse
|
5
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Phosphatidic acid in membrane rearrangements. FEBS Lett 2019; 593:2428-2451. [PMID: 31365767 DOI: 10.1002/1873-3468.13563] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
Phosphatidic acid (PA) is the simplest cellular glycerophospholipid characterized by unique biophysical properties: a small headgroup; negative charge; and a phosphomonoester group. Upon interaction with lysine or arginine, PA charge increases from -1 to -2 and this change stabilizes protein-lipid interactions. The biochemical properties of PA also allow interactions with lipids in several subcellular compartments. Based on this feature, PA is involved in the regulation and amplification of many cellular signalling pathways and functions, as well as in membrane rearrangements. Thereby, PA can influence membrane fusion and fission through four main mechanisms: it is a substrate for enzymes producing lipids (lysophosphatidic acid and diacylglycerol) that are involved in fission or fusion; it contributes to membrane rearrangements by generating negative membrane curvature; it interacts with proteins required for membrane fusion and fission; and it activates enzymes whose products are involved in membrane rearrangements. Here, we discuss the biophysical properties of PA in the context of the above four roles of PA in membrane fusion and fission.
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
6
|
Phospholipases D: making sense of redundancy and duplication. Biosci Rep 2019; 39:BSR20181883. [PMID: 31189747 PMCID: PMC6597845 DOI: 10.1042/bsr20181883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 12/04/2022] Open
Abstract
Why have two genes when one would suffice? Evolutionary pressure means that biology, unlike government, is generally intolerant of wasted effort. Therefore, when multiple genes exist presumably they are there to provide some benefit to the organism even if that benefit is not immediately obvious to us scientists. A recent report from Raghu and colleagues (Biosci. Rep. (2018) 38, pii: BSR20181690) [1] sheds some light on one possible reason for the existence of two Phospholipases D genes in chordates when only one is present in invertebrates.
Collapse
|
7
|
Thakur R, Naik A, Panda A, Raghu P. Regulation of Membrane Turnover by Phosphatidic Acid: Cellular Functions and Disease Implications. Front Cell Dev Biol 2019; 7:83. [PMID: 31231646 PMCID: PMC6559011 DOI: 10.3389/fcell.2019.00083] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/03/2019] [Indexed: 01/23/2023] Open
Abstract
Phosphatidic acid (PA) is a simple glycerophospholipid with a well-established role as an intermediate in phospholipid biosynthesis. In addition to its role in lipid biosynthesis, PA has been proposed to act as a signaling molecule that modulates several aspects of cell biology including membrane transport. PA can be generated in eukaryotic cells by several enzymes whose activity is regulated in the context of signal transduction and enzymes that can metabolize PA thus terminating its signaling activity have also been described. Further, several studies have identified PA binding proteins and changes in their activity are proposed to be mediators of the signaling activity of this lipid. Together these enzymes and proteins constitute a PA signaling toolkit that mediates the signaling functions of PA in cells. Recently, a number of novel genetic models for the analysis of PA function in vivo and analytical methods to quantify PA levels in cells have been developed and promise to enhance our understanding of PA functions. Studies of several elements of the PA signaling toolkit in a single cell type have been performed and are presented to provide a perspective on our understanding of the biochemical and functional organization of pools of PA in a eukaryotic cell. Finally, we also provide a perspective on the potential role of PA in human disease, synthesizing studies from model organisms, human disease genetics and analysis using recently developed PLD inhibitors.
Collapse
Affiliation(s)
- Rajan Thakur
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Amruta Naik
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Aniruddha Panda
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| |
Collapse
|