1
|
Dare ES, Newman RH, Conway ME, Dong M. Crystal structures of the phosphorylation mimics of human cytosolic branched chain aminotransferase. Arch Biochem Biophys 2025; 770:110479. [PMID: 40414328 DOI: 10.1016/j.abb.2025.110479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/20/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
The phosphorylation sites of the human cytosolic Branched Chain Aminotransferase (hBCATc) mediated by mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated-kinase 2 (ERK2, also known as MAPK1) were mapped. The crystal structures of the phosphorylation mimics at T33 and T36 were determined. The modified transaminase activity of these variants was analyzed. Although there were no major conformational changes in the phosphorylation mimics of hBCAT, a regional conformational change at the interdomain loop was observed mainly in mutant T33E. Consistently, when the catalytic turnovers of the T33E and T36E mutants were comparable to the wild type of hBCATc, the KM dropped significantly compared to the wild type, indicating a shift of the substrate binding affinity in the mutants. Taken together, this indicated the phosphorylation of hBCATc by ERK2 is affecting the hBCATc's transaminase activity.
Collapse
Affiliation(s)
- Elizabeth S Dare
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Robert H Newman
- Department of Biology, North Carolina A&T State University, Greensboro, NC, USA
| | - Myra E Conway
- College of Health, Psychology and Social Care, University of Derby, Derby, UK
| | - Ming Dong
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, USA.
| |
Collapse
|
2
|
Zhang PP, Tang JN, Xiang BY, Li L, Xie MZ, Qu HY. Unlocking the potential of Radix Astragali and its active ingredients in gastric ulcer therapy. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-15. [PMID: 40111320 DOI: 10.1080/10286020.2025.2475475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
We studied the protective effects of Radix Astragali (RA) on gastric ulcer (GU). A literature search was conducted using databases from Web of Science, PubMed, Springer, ScienceDirect, Science Direct Chinese National Knowledge Infrastructure (CNKI), and Wanfang. The inclusion criteria for this study were limited to reports on the effects of RA, AS-IV, cycloastragenol, astragalus polysaccharide (APS), and astragalosides (AST) in the treatment of gastric ulcers. Any studies involving gastric lesions that were precancerous or cancerous were eliminated. The search period was from database inception through June 2024. The results suggested RA hold promiseas potential novel therapeutics for the therapy of GU.
Collapse
Affiliation(s)
- Pei-Pei Zhang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha410208, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha410208, China
- Provincial Key Laboratory for TCM Diagnostics of Hunan, Hunan University of Chinese Medicine, Changsha410208, China
| | - Jing-Ni Tang
- Medical School, Hunan University of Traditional Chinese Medicine, Changsha410208, China
| | - Bo-Yu Xiang
- Medical School, Hunan University of Traditional Chinese Medicine, Changsha410208, China
| | - Liang Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha410208, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha410208, China
- Provincial Key Laboratory for TCM Diagnostics of Hunan, Hunan University of Chinese Medicine, Changsha410208, China
| | - Meng-Zhou Xie
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha410208, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha410208, China
- Provincial Key Laboratory for TCM Diagnostics of Hunan, Hunan University of Chinese Medicine, Changsha410208, China
| | - Hao-Yu Qu
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha410208, China
- School of informatics, Hunan University of Traditional Chinese Medicine, Changsha410208, China
| |
Collapse
|
3
|
Wang X, Liu R, Liu D. The Role of the MAPK Signaling Pathway in Cardiovascular Disease: Pathophysiological Mechanisms and Clinical Therapy. Int J Mol Sci 2025; 26:2667. [PMID: 40141309 PMCID: PMC11942496 DOI: 10.3390/ijms26062667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Cardiovascular disease (CVD) is a serious global health issue with high mortality rates worldwide. Despite the numerous advancements in the study of CVD pathogenesis in recent years, further summarization and elaboration of specific molecular pathways are required. An extensive body of research has been conducted to elucidate the association between the MAPK signaling pathway, which is present in all eukaryotic organisms, and the pathogenesis of cardiovascular disease. This review aims to provide a comprehensive summary of the research conducted on MAPK and CVD over the past five years. The primary focus is on four specific diseases: heart failure, atherosclerosis, myocardial ischemia-reperfusion injury, and cardiac hypertrophy. The review will also address the pathophysiological mechanisms of MAPK in cardiovascular diseases, with the objective of proposing novel clinical treatment strategies for CVD.
Collapse
Affiliation(s)
- Xueyang Wang
- Queen Mary College, Nanchang University, Nanchang 330001, China; (X.W.); (R.L.)
| | - Ruiqi Liu
- Queen Mary College, Nanchang University, Nanchang 330001, China; (X.W.); (R.L.)
| | - Dan Liu
- Queen Mary College, Nanchang University, Nanchang 330001, China; (X.W.); (R.L.)
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
4
|
Zhong XS, Lopez KM, Krishnachaitanya SS, Liu M, Xiao Y, Ou R, Nagy HI, Kochkarian T, Powell DW, Fujise K, Li Q. Fecal microbiota transplantation mitigates cardiac remodeling and functional impairment in mice with chronic colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643179. [PMID: 40161578 PMCID: PMC11952542 DOI: 10.1101/2025.03.13.643179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Inflammatory bowel disease (IBD) is a chronic inflammatory disorder with significant extraintestinal manifestations, including cardiovascular derangements. However, the molecular mechanisms underlying the cardiac remodeling and dysfunction remain unclear. Methods We investigated the effects of chronic colitis on the heart using two mouse models: DSS-induced colitis and Il10 -/- spontaneous colitis. Echocardiography was employed to assess heart function and molecular characterization was performed using bulk RNA-sequencing, RT-qPCR, and western blot. Results Both models exhibited significant cardiac impairment, including reduced ejection fraction and fractional shortening as well as increased collagen deposition, inflammation, and myofibril reorganization. Molecular analyses revealed upregulation of fibrosis markers (i.e. COL1A1, COL3A1, Fibronectin) and β-catenin reactivation, indicating a pro-fibrotic cardiac environment. Each model yielded common upregulation of eicosanoid-associated and inflammatory genes ( Cyp2e1 , Map3k6 , Pck1 , Cfd ), and model-specific alterations in pathways regulating cAMP- and cGMP-signaling, arachidonic and linoleic acid metabolism, Cushing syndrome-related genes, and immune cell responses. DSS colitis caused differential regulation of 232 cardiac genes, while Il10 -/- colitis yielded 105 dysregulated genes, revealing distinct molecular pathways driving cardiac dysfunction. Importantly, therapeutic fecal microbiota transplantation (FMT) restored heart function in both models, characterized by reduced fibrosis markers and downregulated pro-inflammatory genes ( Lbp and Cdkn1a in Il10 -/- mice and Fos in DSS mice), while also mitigating intestinal inflammation. Post-FMT cardiac RNA-sequencing revealed significant gene expression changes, with three altered genes in DSS mice and 67 genes in Il10 -/- mice. Notably, Il10 -/- mice showed relatively less cardiac recovery following FMT, highlighting IL-10's cardioprotective and anti-inflammatory contribution. Conclusions Our findings elucidate novel insights into colitis-induced cardiac remodeling and dysfunction and suggest that FMT mitigates cardiac dysfunction by attenuating systemic inflammation and correcting gut dysbiosis. This study underscores the need for further evaluation of gut-heart interactions and microbiome-based therapies to improve cardiovascular health in IBD patients.
Collapse
|
5
|
Du G, Zheng K, Sun C, Sun M, Pan J, Meng D, Guan W, Zhao H. The relationship mammalian p38 with human health and its homolog Hog1 in response to environmental stresses in Saccharomyces cerevisiae. Front Cell Dev Biol 2025; 13:1522294. [PMID: 40129568 PMCID: PMC11931143 DOI: 10.3389/fcell.2025.1522294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/13/2025] [Indexed: 03/26/2025] Open
Abstract
The mammalian p38 MAPK pathway plays a vital role in transducing extracellular environmental stresses into numerous intracellular biological processes. The p38 MAPK have been linked to a variety of cellular processes including inflammation, cell cycle, apoptosis, development and tumorigenesis in specific cell types. The p38 MAPK pathway has been implicated in the development of many human diseases and become a target for treatment of cancer. Although MAPK p38 pathway has been extensively studied, many questions still await clarification. More comprehensive understanding of the MAPK p38 pathway will provide new possibilities for the treatment of human diseases. Hog1 in S. cerevisiae is the conserved homolog of p38 in mammalian cells and the HOG MAPK signaling pathway in S. cerevisiae has been extensively studied. The deep understanding of HOG MAPK signaling pathway will help provide clues for clarifying the p38 signaling pathway, thereby furthering our understanding of the relationship between p38 and disease. In this review, we elaborate the functions of p38 and the relationship between p38 and human disease. while also analyzing how Hog1 regulates cellular processes in response to environmental stresses. 1, p38 in response to various stresses in mammalian cells.2, The functions of mammalian p38 in human health.3, Hog1 as conserved homolog of p38 in response to environmental stresses in Saccharomyces cerevisiae. 1, p38 in response to various stresses in mammalian cells. 2, The functions of mammalian p38 in human health. 3, Hog1 as conserved homolog of p38 in response to environmental stresses in S. cerevisiae.
Collapse
Affiliation(s)
- Gang Du
- *Correspondence: Gang Du, ; Wenqiang Guan, ; Hui Zhao,
| | | | | | | | | | | | - Wenqiang Guan
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
6
|
Akter R, Noor F, Tonmoy HS, Ahmed A. Potential of SIRT6 modulators in targeting molecular pathways involved in cardiovascular diseases and their treatment-A comprehensive review. Biochem Pharmacol 2025; 233:116787. [PMID: 39894306 DOI: 10.1016/j.bcp.2025.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/09/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality and morbidity, accounting for major public health concerns worldwide. CVD poses an immense burden on the global healthcare system and economy. Ischemic heart disease, stroke, heart failure, atherosclerosis, and hypertension are the major diseases belonging to CVDs and ischemic heart diseases and stroke contribute to most CVD-induced deaths. Previously published review articles focused on the role of SIRT6 in CVDs but did not focus on the important role of SIRT6 in modulating the signaling pathways involved in CVDs and targeting them to treat CVDs. Thus, this review aims to identify and delineate the major signaling pathways that are involved in CVDs and whether SIRT6 can modulate those pathways to improve and treat CVDs. Alongside possible applications of small molecule modulators of SIRT6 in cardiovascular disease treatment have been comprehensively analyzed.
Collapse
Affiliation(s)
- Raushanara Akter
- School of Pharmacy, KHA 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, BRAC University, Dhaka 1212, Bangladesh.
| | - Fouzia Noor
- School of Pharmacy, KHA 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, BRAC University, Dhaka 1212, Bangladesh
| | - Hasan Shahriyer Tonmoy
- School of Pharmacy, KHA 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, BRAC University, Dhaka 1212, Bangladesh
| | - Ashfaq Ahmed
- School of Pharmacy, KHA 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, BRAC University, Dhaka 1212, Bangladesh
| |
Collapse
|
7
|
DiGregorio H, Mansoorshahi S, Carlisle SG, Tovar Pensa C, Watts A, McNeely C, Sabate-Rotes A, Yetman A, Michelena HI, De Backer JFA, Mosquera LM, Bissell MM, Andreassi MG, Foffa I, Hui DS, Caffarelli A, Kim YY, Citro R, De Marco M, Tretter JT, McBride KL, Body SC, Milewicz DM, Prakash SK. Contribution of rare chromosome 22q11.2 copy number variants to non-syndromic bicuspid aortic valve. Heart 2025; 111:221-229. [PMID: 39658198 PMCID: PMC11821425 DOI: 10.1136/heartjnl-2024-324669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Bicuspid aortic valve (BAV) is the most common congenital heart defect in adults, often leading to complications such as thoracic aortic aneurysms and aortic stenosis. While BAV is frequently associated with 22q11.2 deletion syndrome (22q11.2DS), the contribution of rare copy number variants (CNVs) in this region to non-syndromic BAV is less clear. This study is aimed to assess the role of rare 22q11.2 CNVs in patients with early-onset BAV (EBAV) and to determine whether these variants are linked to an increased risk of complications. METHODS Whole genome microarray genotyping was conducted on 272 patients with BAV with early onset valve or aortic disease (EBAV) and 272 biological relatives. CNVs were detected using three independent algorithms, focusing on the 22q11.2 region (18-24 Mb). CNV burden in the EBAV cohort was compared with unselected European ancestry controls. RESULTS Rare duplications and deletions within the 22q11.2 region, particularly involving genes associated with cardiac development, were identified in 7.4% of EBAV probands. These CNVs were significantly enriched compared with the general population and segregated with BAV in families. Individuals carrying rare 22q11.2 CNVs had a higher prevalence of psychiatric diagnoses and learning difficulties, although they did not exhibit the typical features of 22q11.2DS. Importantly, these CNVs were associated with early onset or complex BAV cases, underscoring their potential clinical relevance. CONCLUSIONS Rare 22q11.2 CNVs play a role in non-syndromic BAV, particularly in cases with early onset or complex presentations. CNV screening could be considered as part of risk stratification for patients with BAV, helping to predict complications and guide management. TRIAL REGISTRATION NUMBER NCT01823432.
Collapse
Affiliation(s)
- Helene DiGregorio
- John P and Kathrine G McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sara Mansoorshahi
- John P and Kathrine G McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Steven G Carlisle
- John P and Kathrine G McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Catherina Tovar Pensa
- John P and Kathrine G McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Abi Watts
- John P and Kathrine G McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Courtney McNeely
- John P and Kathrine G McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Anji Yetman
- Pediatric Cardiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Hector I Michelena
- Cardiovascular Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Julie F A De Backer
- Cardiology and Medical Genetics, University Hospital Ghent, Gent, Oost-Vlaanderen, Belgium
| | | | | | | | - Ilenia Foffa
- Istituto di Fisiologia Clinica Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Dawn S Hui
- Department of Cardiothoracic Surgery, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | - Yuli Y Kim
- Division of Cardiovascular Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rodolfo Citro
- Cardiovascular, University Hospital 'San Giovanni di Dio e Ruggi d'Aragona', Salerno, Campania, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Fisciano, Italy
| | | | - Kim L McBride
- Department of Medical Genetics, University of Calgary, Calgary, Ottawa, Canada
| | - Simon C Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Dianna M Milewicz
- John P and Kathrine G McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Siddharth K Prakash
- John P and Kathrine G McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
8
|
Shahrokhi H, Asili J, Tayarani-Najaran Z, Boozari M. Signaling pathways behind the biological effects of tanshinone IIA for the prevention of cancer and cardiovascular diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03857-x. [PMID: 39937254 DOI: 10.1007/s00210-025-03857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
Tanshinone IIA (Tan IIA) is a well-known fat-soluble diterpenoid found in Salvia miltiorrhiza, recognized for its various biological effects. The molecular signaling pathways of Tan IIA have been investigated in different diseases, including the anti-inflammatory, hepatoprotective, renoprotective, neuroprotective effects, and fibrosis prevention. This article provides a brief overview of the signaling pathways related to anti-cancer and cardioprotective effects of Tan IIA. It shows that Tan IIAs anti-cancer ability has good expectation through multiplicity mechanisms affecting various aspects' tumor biology. The major pathways involved in its anti-cancer effects include inhibition of PI3/Akt, MAPK, and p53/p21 signaling which leads to enhancement of immune responses and increased radiation sensitivity. Some essential pathways responsible for cardioprotective effects induced by Tan IIA are PI3/AKT activation, MAPK, and SIRT1 promoting protection against ischemia/reperfusion injury in myocardial cells as well as inhibiting pathological remodeling processes. Finally, the article underscores the complex and specific signaling pathways influenced by Tan IIA. The PI3/Akt and MAPK pathways play critical roles in the anti-cancer and cardioprotective effects of Tan IIA. Particularly, Tan IIA suppresses the proliferation of malignancies in cancerous cells but stimulates protective mechanisms in normal cardiovascular cells. These findings highlight the importance of investigating molecular signaling pathways in evaluating the therapeutic potential of natural products. Studying about signaling pathways is vital in understanding the therapeutic aspects of Tan IIA and its derivatives as anti-cancer and cardio-protective agents. Further research is necessary to understand these complex mechanisms.
Collapse
Affiliation(s)
- Homa Shahrokhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Askarizadeh F, Karav S, Jamialahmadi T, Sahebkar A. Impact of statin therapy on CD40:CD40L signaling: mechanistic insights and therapeutic opportunities. Pharmacol Rep 2025; 77:43-71. [PMID: 39680334 DOI: 10.1007/s43440-024-00678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024]
Abstract
Statins are widely utilized to reduce cholesterol levels, particularly in cardiovascular diseases. They interface with cholesterol synthesis by inhibiting the 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase enzyme. Besides their primary effect, statins demonstrate anti-inflammatory and immune-modulating properties in various diseases, highlighting the pleiotropic effect of these drugs. The CD40:CD40L signaling pathway is considered a prominent inflammatory pathway in multiple diseases, including autoimmune, inflammatory, and cardiovascular diseases. The findings from clinical trials and in vitro and in vivo studies suggest the potential anti-inflammatory effect of statins in modulating the CD40 signaling pathway and downstream inflammatory mediator. Accordingly, as its classic ligand, statins can suppress immune responses in autoimmune diseases by inhibiting CD40 expression and blocking its interaction with CD40L. Additionally, statins affect intracellular signaling and inhibit inflammatory mediator secretion in chronic inflammatory diseases like asthma and autoimmune disorders such as myasthenia gravis, multiple sclerosis, systemic lupus erymanthus, and cardiovascular diseases like atherosclerosis. However, it is essential to note that the anti-inflammatory effect of statins may vary depending on the specific type of statin used. In this study, we aim to explore the potential anti-inflammatory effects of statins in treating inflammatory diseases by examining their role in regulating immune responses, particularly their impact on the CD40:CD40L signaling pathway, through a comprehensive review of existing literature.
Collapse
Affiliation(s)
- Fatemeh Askarizadeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Hua S, Zhang H, Li J, Zhou X, Zhang S, Zhu Y, Yan X, Gu P, Huang Z, Jiang W. Astragaloside IV ameliorates atherosclerosis by targeting TAK1 to suppress endothelial cell proinflammatory activation. Int Immunopharmacol 2025; 146:113842. [PMID: 39706043 DOI: 10.1016/j.intimp.2024.113842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease mainly characterized by the activation of endothelial cells and recruitment of macrophages, leading to plaque formation. Astragaloside IV (AS-IV), a natural saponin derived from Astragalus mongholicus Bunge, has been shown to confer protective effects against cardiovascular diseases. PURPOSE The purpose of this study is to explore the role of AS-IV on atherosclerosis and the underlying mechanism. METHODS Mice with atherosclerosis were administered with AS-IV by oral gavage. Atherosclerotic plaques and blood lipid profiles of these mice were assessed. Endothelial cell activation and macrophage infiltration were examined by immunofluorescent or immunohistochemical staining. The effects of AS-IV on endothelial cell activation, macrophage migration and adhesion were determined by transwell experiments, RT-qPCR, and Western blot. RESULTS Mice treated with AS-IV exhibited a dose-dependent reduction in atherosclerotic plaque size, with no concomitant change in blood lipid levels. It significantly suppressed endothelial cell activation and macrophage infiltration in the vasculature. AS-IV inhibited TNF-α-induced endothelial cell activation and macrophage migration and adhesion in vitro. Furthermore, AS-IV reduced the phosphorylation of key kinases in the MAPK pathways and their upstream regulator TAK1 in endothelial cells. The inhibitory effects of AS-IV on MAPK pathways and endothelial cell activation were counteracted by TAK1 deficiency or overexpression of TAK1. Molecular docking analysis suggested AS-IV binds to TAK1 with high affinity. CONCLUSION AS-IV exhibits anti-atherosclerotic effects by targeting TAK1 in endothelial cells, thereby inhibiting endothelial cell activation, and the subsequent adhesion and migration of macrophages, providing a prospective therapeutic strategy for the management of atherosclerosis.
Collapse
Affiliation(s)
- Shuang Hua
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Zhang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jixu Li
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaonian Zhou
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shujie Zhang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao Zhu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingqun Yan
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Gu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China; Southeast University, School of Medicine, Nanjing, China.
| | - Zhe Huang
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Department of Cardiology, Shanghai Pudong New Area People's Hospital, Shanghai, China.
| | - Weimin Jiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
11
|
Zhang PP, Li L, Qu HY, Chen GY, Xie MZ, Chen YK. Traditional Chinese medicine in the treatment of Helicobacter pylori-related gastritis: The mechanisms of signalling pathway regulations. World J Gastroenterol 2025; 31:96582. [PMID: 39839895 PMCID: PMC11684169 DOI: 10.3748/wjg.v31.i3.96582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/29/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Helicobacter pylori-associated gastritis (HPAG) is a common condition of the gastrointestinal tract. However, extensive and long-term antibiotic use has resulted in numerous adverse effects, including increased resistance, gastrointestinal dysfunction, and increased recurrence rates. When these concerns develop, traditional Chinese medicine (TCM) may have advantages. TCM is based on the concept of completeness and aims to eliminate pathogens and strengthen the body. It has the potential to prevent this condition while also boosting the rate of Helicobacter pylori eradication. This review elaborates on the mechanism of TCM treatment for HPAG based on cellular signalling pathways, which reflects the flexibility of TCM in treating diseases and the advantages of multi-level, multi-pathway, and multi-target treatments for HPAG.
Collapse
Affiliation(s)
- Pei-Pei Zhang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Liang Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Hao-Yu Qu
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- School of Informatics, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Guang-Yu Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Meng-Zhou Xie
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of Traditional Chinese Medicine Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Yan-Kun Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Precision Medicine Research and Development Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, Guangdong Province, China
| |
Collapse
|
12
|
Papaetis GS, Sacharidou A, Michaelides IC, Mikellidis KC, Karvounaris SA. Insulin Resistance, Hyperinsulinemia and Atherosclerosis: Insights into Pathophysiological Aspects and Future Therapeutic Prospects. Curr Cardiol Rev 2025; 21:e1573403X314035. [PMID: 39415589 PMCID: PMC12060932 DOI: 10.2174/011573403x314035241006185109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Insulin resistance describes the lack of activity of a known quantity of insulin (exogenous or endogenous) to promote the uptake of glucose and its utilization in an individual, as much as it does in metabolically normal individuals. On the cellular level, it suggests insufficient power of the insulin pathway (from the insulin receptor downstream to its final substrates) that is essential for multiple mitogenic and metabolic aspects of cellular homeostasis. Atherosclerosis is a slow, complex, and multifactorial pathobiological process in medium to large arteries and involves several tissues and cell types (immune, vascular, and metabolic cells). Inflammatory responses and immunoregulation are key players in its development and progression. This paper examines the possible pathophysiological mechanisms that govern the connection of insulin resistance, hyperinsulinemia, and the closely associated cardiometabolic syndrome with atherosclerosis, after exploring thoroughly both in vitro and in vivo (preclinical and clinical) evidence. It also discusses the importance of visualizing and developing novel therapeutic strategies and targets for treatment, to face this metabolic state through its genesis.
Collapse
Affiliation(s)
- Georgios S. Papaetis
- K.M.P Therapis Paphos Medical Center, Internal Medicine and Diabetes Clinic, 14 Vasileos Georgiou B Street, Office 201, 8010, Paphos, Cyprus
- CDA College, 73 Democratias Avenue, Paphos, Cyprus
| | - Anastasia Sacharidou
- K.M.P Therapis Paphos Medical Center, Internal Medicine and Diabetes Clinic, 14 Vasileos Georgiou B Street, Office 201, 8010, Paphos, Cyprus
| | - Ioannis C. Michaelides
- K.M.P Therapis Paphos Medical Center, Cardiology Clinic, 14 Vasileos Georgiou B Street, Office 201, 8010, Paphos, Cyprus
| | - Konstantinos C. Mikellidis
- K.M.P Therapis Paphos Medical Center, Obstetrics and Gynecology Clinic, 14 Vasileos Georgiou B Street, Office 201, 8010, Paphos, Cyprus
| | - Stylianos A. Karvounaris
- K.M.P Therapis Paphos Medical Center, Cardiology Clinic, 14 Vasileos Georgiou B Street, Office 201, 8010, Paphos, Cyprus
| |
Collapse
|
13
|
Zhang Z, Guo J. Deciphering Oxidative Stress in Cardiovascular Disease Progression: A Blueprint for Mechanistic Understanding and Therapeutic Innovation. Antioxidants (Basel) 2024; 14:38. [PMID: 39857372 PMCID: PMC11759168 DOI: 10.3390/antiox14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress plays a pivotal role in the pathogenesis and progression of cardiovascular diseases (CVDs). This review focuses on the signaling pathways of oxidative stress during the development of CVDs, delving into the molecular regulatory networks underlying oxidative stress in various disease stages, particularly apoptosis, inflammation, fibrosis, and metabolic imbalance. By examining the dual roles of oxidative stress and the influences of sex differences on oxidative stress levels and cardiovascular disease susceptibility, this study offers a comprehensive understanding of the pathogenesis of cardiovascular diseases. The study integrates key findings from current research in three comprehensive ways. First, it outlines the major CVDs associated with oxidative stress and their respective signaling pathways, emphasizing oxidative stress's central role in cardiovascular pathology. Second, it summarizes the cardiovascular protective effects, mechanisms of action, and animal models of various antioxidants, offering insights into future drug development. Third, it discusses the applications, advantages, limitations, and potential molecular targets of gene therapy in CVDs, providing a foundation for novel therapeutic strategies. These tables underscore the systematic and integrative nature of this study while offering a theoretical basis for precision treatment for CVDs. A major contribution of this study is the systematic review of the differential effects of oxidative stress across different stages of CVDs, in addition to the proposal of innovative, multi-level intervention strategies, which open new avenues for precision treatment of the cardiovascular system.
Collapse
Affiliation(s)
- Zhaoshan Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiawei Guo
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
14
|
Xu Z, Li C, Chi S, Yang T, Wei P. Speeding up interval estimation for R2-based mediation effect of high-dimensional mediators via cross-fitting. Biostatistics 2024; 26:kxae037. [PMID: 39412139 PMCID: PMC11823199 DOI: 10.1093/biostatistics/kxae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 10/30/2024] Open
Abstract
Mediation analysis is a useful tool in investigating how molecular phenotypes such as gene expression mediate the effect of exposure on health outcomes. However, commonly used mean-based total mediation effect measures may suffer from cancellation of component-wise mediation effects in opposite directions in the presence of high-dimensional omics mediators. To overcome this limitation, we recently proposed a variance-based R-squared total mediation effect measure that relies on the computationally intensive nonparametric bootstrap for confidence interval estimation. In the work described herein, we formulated a more efficient two-stage, cross-fitted estimation procedure for the R2 measure. To avoid potential bias, we performed iterative Sure Independence Screening (iSIS) in two subsamples to exclude the non-mediators, followed by ordinary least squares regressions for the variance estimation. We then constructed confidence intervals based on the newly derived closed-form asymptotic distribution of the R2 measure. Extensive simulation studies demonstrated that this proposed procedure is much more computationally efficient than the resampling-based method, with comparable coverage probability. Furthermore, when applied to the Framingham Heart Study, the proposed method replicated the established finding of gene expression mediating age-related variation in systolic blood pressure and identified the role of gene expression profiles in the relationship between sex and high-density lipoprotein cholesterol level. The proposed estimation procedure is implemented in R package CFR2M.
Collapse
Affiliation(s)
- Zhichao Xu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 7007 Bertner Avenue, Houston, TX 77030, United States
| | - Chunlin Li
- Department of Statistics, Iowa State University, 2438 Osborn Dr, Ames, IA 50011, United States
| | - Sunyi Chi
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 7007 Bertner Avenue, Houston, TX 77030, United States
| | - Tianzhong Yang
- Division of Biostatistics and Health Data Science, University of Minnesota, 2221 University Ave SE, Minneapolis, MN 55455, United States
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 7007 Bertner Avenue, Houston, TX 77030, United States
| |
Collapse
|
15
|
Zhang L, Tian L, Liang B, Wang L, Huang S, Zhou Y, Ni M, Zhang L, Li Y, Chen J, Li X. Construction of an adverse outcome pathway for the cardiac toxicity of bisphenol a by using bioinformatics analysis. Toxicology 2024; 509:153955. [PMID: 39303899 DOI: 10.1016/j.tox.2024.153955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Bisphenol A (BPA), a common endocrine disruptor, has shown cardiovascular toxicity in several epidemiological studies, as well as in vivo and in vitro experimental studies. However, the related adverse outcome pathway (AOP) of BPA toxicity remains unraveled. This study aimed to develop an AOP for the cardiac toxicity of BPA through bioinformatics analysis. The interactions among BPA, genes, phenotypes, and cardiac toxicity were retrieved from several databases, including the Comparative Toxicogenomics Database, Computational Toxicology, DisGeNet, and MalaCards. The target genes and part of target phenotypes were obtained by Venn analysis and literature screening. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed for target genes by using the DAVID online analysis tool to obtain other target phenotypes. AOP hypotheses from BPA exposure to heart disease were established and evaluated comprehensively by a quantitative weight of evidence (QWOE) method. The target genes included ESR2, MAPK1, TGFB1, and ESR1, and the target phenotypes included heart contraction, cardiac muscle contraction, cellular Ca2+ homeostasis, cellular metabolic process, heart development, etc. Overall, the AOP of BPA cardiac toxicity was deduced to be as follows. Initially, BPA bound with ERα/β and then activated the MAPK, AKT, and IL-17 signaling pathways, leading to Ca2+ homeostasis disorder and increased inflammatory response. Subsequently, cardiac function was impaired, causing coronary heart disease, arrhythmia, cardiac dysplasia, and other heart diseases. According to the Bradford-Hill causal considerations, the score of AOP by QWOE was 69, demonstrating a moderate confidence and providing clues on cardiotoxicity-assessment procedure and further studies on BPA.
Collapse
Affiliation(s)
- Leyan Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Baofang Liang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Liang Wang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Shuzhen Huang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongru Zhou
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Mengmei Ni
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yun Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
16
|
Mosalmanzadeh N, Pence BD. Oxidized Low-Density Lipoprotein and Its Role in Immunometabolism. Int J Mol Sci 2024; 25:11386. [PMID: 39518939 PMCID: PMC11545486 DOI: 10.3390/ijms252111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Modified cholesterols such as oxidized low-density lipoprotein (OxLDL) contribute to atherosclerosis and other disorders through the promotion of foam cell formation and inflammation. In recent years, it has become evident that immune cell responses to inflammatory molecules such as OxLDLs depend on cellular metabolic functions. This review examines the known effects of OxLDL on immunometabolism and immune cell responses in atherosclerosis and several other diseases. We additionally provide context on the relationship between OxLDL and aging/senescence and identify gaps in the literature and our current understanding in these areas.
Collapse
Affiliation(s)
| | - Brandt D. Pence
- College of Health Sciences and Center for Nutraceutical and Dietary Supplement Research, University of Memphis, Memphis, TN 38111, USA
| |
Collapse
|
17
|
Jiang H, Lai F, Wang X, Meng F, Zhu W, Huang S. Overexpression of zinc-finger protein 418 inhibits pathological cardiac remodelling after acute myocardial infarction. ESC Heart Fail 2024; 11:2869-2880. [PMID: 38714309 PMCID: PMC11424367 DOI: 10.1002/ehf2.14823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024] Open
Abstract
AIMS Zinc-finger protein 418 (ZNF418) has been confirmed to be expressed in myocardial tissue. However, the role and mechanism of ZNF418 in pathological myocardial remodelling after myocardial infarction (MI) have not been reported. This study was to elucidate the effect and mechanism of ZNF418 on ventricular remodelling after MI in mice. METHODS AND RESULTS MI mice and H9c2 cardiomyocytes were used to conduct in vivo and in vitro experiments, respectively. ZNF418 expression was regulated by adeno-associated virus 9 and adenovirus vectors. Pathological analysis, echocardiography, and molecular analysis were performed. ZNF418 was down-regulated in the left ventricular tissues of post-MI mice. In contrast, ZNF418 overexpression decreased mortality and improved cardiac function in MI mice. The MI mice exhibited a significantly increased cross-sectional area of myocardial cells and elevated protein expression levels of myocardial hypertrophy markers ANP, BNP, and β-MHC (all P < 0.05). Moreover, a significantly increased area of myocardial fibrosis and protein expression levels of myocardial fibrosis markers collagen I, collagen III, and CTGF were observed in MI mice (all P < 0.05) in MI mice. All of the above negative effects in MI mice were ameliorated in ZNF418 overexpressed mice (all P < 0.05). Mechanistically, ZNF418 overexpression inhibited the activation of the MAPK signalling pathway, as evidenced by the in vivo and in vitro experiments. CONCLUSIONS Overexpression of ZNF418 could improve cardiac function and inhibit pathological cardiac remodelling by inhibiting the MAPK signalling pathway in post-MI mice.
Collapse
Affiliation(s)
- Hongfei Jiang
- Department of CardiologyXiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Fei Lai
- Department of TransfusionThe Second Affiliated Hospital of Xiamen Medical CollegeXiamenChina
| | - Xixing Wang
- Department of CardiologyXiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Fanqi Meng
- Department of CardiologyXiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Weiliang Zhu
- Department of CardiologyXiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Shan Huang
- Department of CardiologyXiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
18
|
Fu K, Dai S, Ma C, Zhang Y, Zhang S, Wang C, Gong L, Zhou H, Li Y. Lignans are the main active components of
Schisandrae Chinensis Fructus for liver disease treatment: a review. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:2425-2444. [DOI: 10.26599/fshw.2022.9250200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Salah A, Bouzid F, Dhouib W, Benmarzoug R, Triki N, Rebai A, Kharrat N. Integrative Bioinformatics Approaches to Uncover Hub Genes and Pathways Involved in Cardiovascular Diseases. Cell Biochem Biophys 2024; 82:2107-2127. [PMID: 38809349 DOI: 10.1007/s12013-024-01319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
Cardiovascular diseases (CVD) represent a significant global health challenge resulting from a complex interplay of genetic, environmental, and lifestyle factors. However, the molecular pathways and genetic factors involved in the onset and progression of CVDs remain incompletely understood. Here, we performed an integrative bioinformatic analysis to highlight specific genes and signaling pathways implicated in the pathogenesis of 80 CVDs. Differentially expressed genes (DEGs) were identified through the integrated analysis of microarray and GWAS datasets. Then, hub genes were identified after gene ontology functional annotation analysis and protein-protein internet (PPI) analysis. In addition, pathways were identified through KEGG and gene ontology enrichment analyses. A total of 821 hub genes related to 80 CVDs were identified, including 135 common and frequent CVD-associated genes. TNF, IL6, VEGFA, and TGFB.1 genes were the central core genes expressed in 50% or more of CVDs, confirming that the inflammation is a key pathological feature of CVDs. Analysis of hub genes by KEGG enrichment revealed predominant enrichment in 201 KEGG pathways, of which the AGE-RAGE signaling pathway in diabetic complications was identified as the common key KEGG implicated in 62 CVDs. In addition, the outcomes showed an overrepresentation in pathways categorized under human diseases, particularly in the subcategories of infectious diseases and cancers, which may be common risk factors for CVDs. In conclusion, this powerful approach for in silico fine-mapping of genes and pathways allowed the identification of determinant hubs genes and pathways implicated in the pathogenesis of CVDs which could be employed in developing more targeted and effective interventions for preventing, diagnosing, and treating CVDs. The function of these hub genes in CVDs needs further exploration to elucidate their biological characteristics.
Collapse
Affiliation(s)
- Awatef Salah
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.
| | - Fériel Bouzid
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Wala Dhouib
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Riadh Benmarzoug
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Nesrine Triki
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Najla Kharrat
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
20
|
Grzeczka A, Graczyk S, Pasławski R, Pasławska U. Genetic Basis of Hypertrophic Cardiomyopathy in Cats. Curr Issues Mol Biol 2024; 46:8752-8766. [PMID: 39194734 DOI: 10.3390/cimb46080517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common cardiovascular condition in cats, affecting yth males and females of all ages. Some breeds, such as Ragdolls and Maine Coons, can develop HCM at a young age. The disease has a wide range of progression and severity, characterized by various pathological changes in the heart, including arteritis, fibrous tissue deposition, and myocardial cell hypertrophy. Left ventricular hypertrophy, which can restrict blood flow, is a common feature of HCM. The disease may persist into old age and eventually lead to heart failure and increased diastolic pressure. The basis of HCM in cats is thought to be genetic, although the exact mechanisms are not fully understood. Mutations in sarcomeric proteins, in particular myosin-binding protein C (MYBPC3), have been identified in cats with HCM. Two specific mutations, MYBPC3 [R818W] and MYBPC3 [A31P], have been classified as 'pathogenic'. Other variants in genes such as MYBPC3, TNNT2, ALMS1, and MYH7 are also associated with HCM. However, there are cases where cats without known genetic mutations still develop HCM, suggesting the presence of unknown genetic factors contributing to the disease. This work aims to summarise the new knowledge of HCM in cats and the alterations in cardiac tissue as a result of genetic variants.
Collapse
Affiliation(s)
- Arkadiusz Grzeczka
- Department for Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Szymon Graczyk
- Department for Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Robert Pasławski
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Urszula Pasławska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
21
|
Gong W, Sun P, Li X, Wang X, Zhang X, Cui H, Yang J. Investigating the Molecular Mechanisms of Resveratrol in Treating Cardiometabolic Multimorbidity: A Network Pharmacology and Bioinformatics Approach with Molecular Docking Validation. Nutrients 2024; 16:2488. [PMID: 39125368 PMCID: PMC11314475 DOI: 10.3390/nu16152488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Resveratrol is a potent phytochemical known for its potential in treating cardiometabolic multimorbidity. However, its underlying mechanisms remain unclear. Our study systematically investigates the effects of resveratrol on cardiometabolic multimorbidity and elucidates its mechanisms using network pharmacology and molecular docking techniques. METHODS We screened cardiometabolic multimorbidity-related targets using the OMIM, GeneCards, and DisGeNET databases, and utilized the DSigDB drug characterization database to predict resveratrol's effects on cardiometabolic multimorbidity. Target identification for resveratrol was conducted using the TCMSP, SymMap, DrugBank, Swiss Target Prediction, CTD, and UniProt databases. SwissADME and ADMETlab 2.0 simulations were used to predict drug similarity and toxicity profiles of resveratrol. Protein-protein interaction (PPI) networks were constructed using Cytoscape 3.9.1 software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed via the DAVID online platform, and target-pathway networks were established. Molecular docking validated interactions between core targets and resveratrol, followed by molecular dynamics simulations on the optimal core proteins identified through docking. Differential analysis using the GEO dataset validated resveratrol as a core target in cardiometabolic multimorbidity. RESULTS A total of 585 cardiometabolic multimorbidity target genes were identified, and the predicted results indicated that the phytochemical resveratrol could be a major therapeutic agent for cardiometabolic multimorbidity. SwissADME simulations showed that resveratrol has potential drug-like activity with minimal toxicity. Additionally, 6703 targets of resveratrol were screened. GO and KEGG analyses revealed that the main biological processes involved included positive regulation of cell proliferation, positive regulation of gene expression, and response to estradiol. Significant pathways related to MAPK and PI3K-Akt signaling pathways were also identified. Molecular docking and molecular dynamics simulations demonstrated strong interactions between resveratrol and core targets such as MAPK and EGFR. CONCLUSIONS This study predicts potential targets and pathways of resveratrol in treating cardiometabolic multimorbidity, offering a new research direction for understanding its molecular mechanisms. Additionally, it establishes a theoretical foundation for the clinical application of resveratrol.
Collapse
Affiliation(s)
- Wei Gong
- Public Health School, Ningxia Medical University, Yinchuan 750004, China; (W.G.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
- School of Medical Information and Engineering, Ningxia Medical University, Yinchuan 750004, China
| | - Peng Sun
- Public Health School, Ningxia Medical University, Yinchuan 750004, China; (W.G.)
- Science and Technology Center, Ningxia Medical University, Yinchuan 750001, China
- Ningxia Hui Autonomous Region Institute of Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiujing Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xi Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xinyu Zhang
- School of Medical Information and Engineering, Ningxia Medical University, Yinchuan 750004, China
| | - Huimin Cui
- Public Health School, Ningxia Medical University, Yinchuan 750004, China; (W.G.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Jianjun Yang
- Public Health School, Ningxia Medical University, Yinchuan 750004, China; (W.G.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| |
Collapse
|
22
|
Chen J, Wei JQ, Hong MN, Zhang Z, Zhou HD, Lu YY, Zhang J, Guo YT, Chen X, Wang JG, Gao PJ, Li XD. Mitogen-Activated Protein Kinases Mediate Adventitial Fibroblast Activation and Neointima Formation via GATA4/Cyclin D1 Axis. Cardiovasc Drugs Ther 2024; 38:527-538. [PMID: 36652042 DOI: 10.1007/s10557-023-07428-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
PURPOSE Activation of mitogen-activated protein kinases (MAPKs) by pathological stimuli participates in cardiovascular diseases. Dysfunction of adventitial fibroblast has emerged as a critical regulator in vascular remodeling, while the potential mechanism remains unclear. In this study, we sought to determine the effect of different activation of MAPKs in adventitial fibroblast contributing to neointima formation. METHODS Balloon injury procedure was performed in male 12-week-old Sprague-Dawley rats. After injury, MAPK inhibitors were applied to the adventitia of injured arteries to suppress MAPK activation. Adventitial fibroblasts were stimulated by platelet-derived growth factor-BB (PDGF-BB) with or without MAPK inhibitors. RNA sequencing was performed to investigate the change of pathway and cell function. Wound healing, transwell assay, and flow cytometry were used to analyze adventitial fibroblast function. RESULTS Phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular regulated kinases 1/2 (ERK1/2) was increased in injured arteries after balloon injury. In primary culture of adventitial fibroblasts, PDGF-BB increased phosphorylation of p38, JNK, ERK1/2, and extracellular regulated kinase 5 (ERK5) in a short time, which was normalized by their inhibitors respectively. Compared with the injury group, perivascular administration of four MAPK inhibitors significantly attenuated neointima formation by quantitative analysis of neointimal area, intima to media (I/M) ratio, and lumen area. RNA sequencing of adventitial fibroblasts treated with PDGF-BB with or without four inhibitors demonstrated differentially expressed genes involved in multiple biological processes, including cell adhesion, proliferation, migration, and inflammatory response. Wound healing and transwell assays showed that four inhibitors suppressed PDGF-BB-induced adventitial fibroblast migration. Cell cycle analysis by flow cytometry demonstrated that JNK, ERK1/2, and ERK5 but not p38 inhibitor blocked PDGF-BB-induced G1 phase release associated with decrease expression of cell cycle protein Cyclin D1 and transcription factor GATA4. Moreover, four inhibitors decreased macrophage infiltration into adventitia and monocyte chemoattractant protein-1 (MCP-1) expression. CONCLUSION These results suggest that MAPKs differentially regulate activation of adventitial fibroblast through GATA4/Cyclin D1 axis that participates in neointima formation.
Collapse
Affiliation(s)
- Jing Chen
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Jin-Qiu Wei
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Mo-Na Hong
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Zhong Zhang
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Han-Dan Zhou
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Yuan-Yuan Lu
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Jia Zhang
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Yue-Tong Guo
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Xin Chen
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Ji-Guang Wang
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Xiao-Dong Li
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, China.
| |
Collapse
|
23
|
Shah PW, Reinberger T, Hashmi S, Aherrahrou Z, Erdmann J. MRAS in coronary artery disease-Unchartered territory. IUBMB Life 2024; 76:300-312. [PMID: 38251784 DOI: 10.1002/iub.2805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/03/2023] [Indexed: 01/23/2024]
Abstract
Genome-wide association studies (GWAS) have identified coronary artery disease (CAD) susceptibility locus on chromosome 3q22.3. This locus contains a cluster of several genes that includes muscle rat sarcoma virus (MRAS). Common MRAS variants are also associated with CAD causing risk factors such as hypertension, dyslipidemia, obesity, and type II diabetes. The MRAS gene is an oncogene that encodes a membrane-bound small GTPase. It is involved in a variety of signaling pathways, regulating cell differentiation and cell survival (mitogen-activated protein kinase [MAPK]/extracellular signal-regulated kinase and phosphatidylinositol 3-kinase) as well as acute phase response signaling (tumor necrosis factor [TNF] and interleukin 6 [IL6] signaling). In this review, we will summarize the role of genetic MRAS variants in the etiology of CAD and its comorbidities with the focus on tissue distribution of MRAS isoforms, cell type/tissue specificity, and mode of action of single nucleotide variants in MRAS associated complex traits. Finally, we postulate that CAD risk variants in the MRAS locus are specific to smooth muscle cells and lead to higher levels of MRAS, particularly in arterial and cardiac tissue, resulting in MAPK-dependent tissue hypertrophy or hyperplasia.
Collapse
Affiliation(s)
- Pashmina Wiqar Shah
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| | - Tobias Reinberger
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
24
|
Samidurai A, Kukreja RC. Beyond Hepatoprotection-The Cardioprotective Effects of Bicyclol in Diabetes. Cardiovasc Drugs Ther 2024; 38:411-413. [PMID: 38055185 DOI: 10.1007/s10557-023-07536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Affiliation(s)
- Arun Samidurai
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Rakesh C Kukreja
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
25
|
Julovi SM, Trinh K, Robertson H, Xu C, Minhas N, Viswanathan S, Patrick E, Horowitz JD, Meijles DN, Rogers NM. Thrombospondin-1 Drives Cardiac Remodeling in Chronic Kidney Disease. JACC Basic Transl Sci 2024; 9:607-627. [PMID: 38984053 PMCID: PMC11228122 DOI: 10.1016/j.jacbts.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 07/11/2024]
Abstract
Patients with chronic kidney disease (CKD) face a high risk of cardiovascular disease. Previous studies reported that endogenous thrombospondin 1 (TSP1) involves right ventricular remodeling and dysfunction. Here we show that a murine model of CKD increased myocardial TSP1 expression and produced left ventricular hypertrophy, fibrosis, and dysfunction. TSP1 knockout mice were protected from these features. In vitro, indoxyl sulfate is driving deleterious changes in cardiomyocyte through the TSP1. In patients with CKD, TSP1 and aryl hydrocarbon receptor were both differentially expressed in the myocardium. Our findings summon large clinical studies to confirm the translational role of TSP1 in patients with CKD.
Collapse
Affiliation(s)
- Sohel M Julovi
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Katie Trinh
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Harry Robertson
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Precision Data Science Centre, University of Sydney, New South Wales, Australia
| | - Cuicui Xu
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Nikita Minhas
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Seethalakshmi Viswanathan
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Tissue Pathology and Diagnostic Oncology, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Ellis Patrick
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Precision Data Science Centre, University of Sydney, New South Wales, Australia
- School of Mathematics, University of Sydney, New South Wales, Australia
- Laboratory of Data Discovery for Health Limited (D24H), Science Park, Hong Kong Special Administrative Region, China
| | - John D Horowitz
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
- Cardiovascular Pathophysiology and Therapeutics Research Group, Basil Hetzel Institute, Woodville, South Australia, Australia
- Department of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Daniel N Meijles
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Natasha M Rogers
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Renal and Transplantation Unit, Westmead Hospital, New South Wales, Australia
| |
Collapse
|
26
|
Sahu R, Rawal RK. Modulation of the c-JNK/p38-MAPK signaling pathway: Investigating the therapeutic potential of natural products in hypertension. PHYTOMEDICINE PLUS 2024; 4:100564. [DOI: 10.1016/j.phyplu.2024.100564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Ray AK, Priya A, Malik MZ, Thanaraj TA, Singh AK, Mago P, Ghosh C, Shalimar, Tandon R, Chaturvedi R. A bioinformatics approach to elucidate conserved genes and pathways in C. elegans as an animal model for cardiovascular research. Sci Rep 2024; 14:7471. [PMID: 38553458 PMCID: PMC10980734 DOI: 10.1038/s41598-024-56562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Cardiovascular disease (CVD) is a collective term for disorders of the heart and blood vessels. The molecular events and biochemical pathways associated with CVD are difficult to study in clinical settings on patients and in vitro conditions. Animal models play a pivotal and indispensable role in CVD research. Caenorhabditis elegans, a nematode species, has emerged as a prominent experimental organism widely utilized in various biomedical research fields. However, the specific number of CVD-related genes and pathways within the C. elegans genome remains undisclosed to date, limiting its in-depth utilization for investigations. In the present study, we conducted a comprehensive analysis of genes and pathways related to CVD within the genomes of humans and C. elegans through a systematic bioinformatic approach. A total of 1113 genes in C. elegans orthologous to the most significant CVD-related genes in humans were identified, and the GO terms and pathways were compared to study the pathways that are conserved between the two species. In order to infer the functions of CVD-related orthologous genes in C. elegans, a PPI network was constructed. Orthologous gene PPI network analysis results reveal the hubs and important KRs: pmk-1, daf-21, gpb-1, crh-1, enpl-1, eef-1G, acdh-8, hif-1, pmk-2, and aha-1 in C. elegans. Modules were identified for determining the role of the orthologous genes at various levels in the created network. We also identified 9 commonly enriched pathways between humans and C. elegans linked with CVDs that include autophagy (animal), the ErbB signaling pathway, the FoxO signaling pathway, the MAPK signaling pathway, ABC transporters, the biosynthesis of unsaturated fatty acids, fatty acid metabolism, glutathione metabolism, and metabolic pathways. This study provides the first systematic genomic approach to explore the CVD-associated genes and pathways that are present in C. elegans, supporting the use of C. elegans as a prominent animal model organism for cardiovascular diseases.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| | - Anjali Priya
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Md Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait.
| | | | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Science for Women, University of Delhi, New Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, India
| | - Chirashree Ghosh
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
28
|
Vijayakumar A, Wang M, Kailasam S. The Senescent Heart-"Age Doth Wither Its Infinite Variety". Int J Mol Sci 2024; 25:3581. [PMID: 38612393 PMCID: PMC11011282 DOI: 10.3390/ijms25073581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases are a leading cause of morbidity and mortality world-wide. While many factors like smoking, hypertension, diabetes, dyslipidaemia, a sedentary lifestyle, and genetic factors can predispose to cardiovascular diseases, the natural process of aging is by itself a major determinant of the risk. Cardiac aging is marked by a conglomerate of cellular and molecular changes, exacerbated by age-driven decline in cardiac regeneration capacity. Although the phenotypes of cardiac aging are well characterised, the underlying molecular mechanisms are far less explored. Recent advances unequivocally link cardiovascular aging to the dysregulation of critical signalling pathways in cardiac fibroblasts, which compromises the critical role of these cells in maintaining the structural and functional integrity of the myocardium. Clearly, the identification of cardiac fibroblast-specific factors and mechanisms that regulate cardiac fibroblast function in the senescent myocardium is of immense importance. In this regard, recent studies show that Discoidin domain receptor 2 (DDR2), a collagen-activated receptor tyrosine kinase predominantly located in cardiac fibroblasts, has an obligate role in cardiac fibroblast function and cardiovascular fibrosis. Incisive studies on the molecular basis of cardiovascular aging and dysregulated fibroblast function in the senescent heart would pave the way for effective strategies to mitigate cardiovascular diseases in a rapidly growing elderly population.
Collapse
Affiliation(s)
- Anupama Vijayakumar
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyothi Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA;
| | - Shivakumar Kailasam
- Department of Biotechnology, University of Kerala, Kariavattom, Trivandrum 695581, India
| |
Collapse
|
29
|
Mitsis A, Kyriakou M, Sokratous S, Karmioti G, Drakomathioulakis M, Myrianthefs M, Ziakas A, Tzikas S, Kassimis G. Exploring the Landscape of Anti-Inflammatory Trials: A Comprehensive Review of Strategies for Targeting Inflammation in Acute Myocardial Infraction. Biomedicines 2024; 12:701. [PMID: 38540314 PMCID: PMC10968587 DOI: 10.3390/biomedicines12030701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 11/11/2024] Open
Abstract
The role of inflammation in the pathophysiology of acute myocardial infarction (AMI) is well established. In recognizing inflammation's pivotal role in AMI, this manuscript systematically traces the historical studies spanning from early attempts to the present landscape. Several anti-inflammatory trials targeting inflammation in post-AMI have been performed, and this review includes the key trials, as well as examines their designs, patient demographics, and primary outcomes. Efficacies and challenges are analyzed, thereby shedding light on the translational implications of trial outcomes. This article also discusses emerging trends, ongoing research, and potential future directions in the field. Practical applications and implications for clinical practice are considered by providing a holistic view of the evolving landscape of anti-inflammatory interventions in the context of AMI.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus; (A.M.); (M.K.); (S.S.); (G.K.); (M.D.); (M.M.)
| | - Michaela Kyriakou
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus; (A.M.); (M.K.); (S.S.); (G.K.); (M.D.); (M.M.)
| | - Stefanos Sokratous
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus; (A.M.); (M.K.); (S.S.); (G.K.); (M.D.); (M.M.)
| | - Georgia Karmioti
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus; (A.M.); (M.K.); (S.S.); (G.K.); (M.D.); (M.M.)
| | - Michail Drakomathioulakis
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus; (A.M.); (M.K.); (S.S.); (G.K.); (M.D.); (M.M.)
| | - Michael Myrianthefs
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus; (A.M.); (M.K.); (S.S.); (G.K.); (M.D.); (M.M.)
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| |
Collapse
|
30
|
Yao J, Zhou Y, Yao Z, Meng Y, Yu W, Yang X, Zhou D, Yang X, Zhou Y. A novel machine learning-derived four-gene signature predicts STEMI and post-STEMI heart failure. BIOMOLECULES & BIOMEDICINE 2024; 24:423-433. [PMID: 37715537 PMCID: PMC10950350 DOI: 10.17305/bb.2023.9629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
High mortality and morbidity rates associated with ST-elevation myocardial infarction (STEMI) and post-STEMI heart failure (HF) necessitate proper risk stratification for coronary artery disease (CAD). A prediction model that combines specificity and convenience is highly required. This study aimed to design a monocyte-based gene assay for predicting STEMI and post-STEMI HF. A total of 1,956 monocyte expression profiles and corresponding clinical data were integrated from multiple sources. Meta-results were obtained through the weighted gene co-expression network analysis (WGCNA) and differential analysis to identify characteristic genes for STEMI. Machine learning models based on the decision tree (DT), support vector machine (SVM), and random forest (RF) algorithms were trained and validated. Five genes overlapped and were subjected to the model proposal. The discriminative performance of the DT model outperformed the other two methods. The established four-gene panel (HLA-J, CFP, STX11, and NFYC) could discriminate STEMI and HF with an area under the curve (AUC) of 0.86 or above. In the gene set enrichment analysis (GSEA), several cardiac pathogenesis pathways and cardiovascular disorder signatures showed statistically significant, concordant differences between subjects with high and low expression levels of the four-gene panel, affirming the validity of the established model. In conclusion, we have developed and validated a model that offers the hope for accurately predicting the risk of STEMI and HF, leading to optimal risk stratification and personalized management of CAD, thereby improving individual outcomes.
Collapse
Affiliation(s)
- Jialu Yao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Institute for Hypertension of Soochow University, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials of Soochow University, Suzhou, Jiangsu Province, China
| | - Yujia Zhou
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhichao Yao
- Department of Vascular Surgery, Gusu School of Nanjing Medical University, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital (HQ), Suzhou, Jiangsu Province, China
| | - Ye Meng
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Wangjianfei Yu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Xinyu Yang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Dayong Zhou
- Department of Vascular Surgery, Gusu School of Nanjing Medical University, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital (HQ), Suzhou, Jiangsu Province, China
| | - Xiaoqin Yang
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Institute for Hypertension of Soochow University, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials of Soochow University, Suzhou, Jiangsu Province, China
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Yafeng Zhou
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Institute for Hypertension of Soochow University, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
31
|
Manikanta K, Paul M, Sandesha VD, Mahalingam SS, Ramesh TN, Harishkumar K, Koundinya SS, Naveen S, Kemparaju K, Girish KS. Oxidative Stress-Induced Platelet Apoptosis/Activation: Alleviation by Purified Curcumin via ASK1-JNK/p-38 Pathway. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:417-430. [PMID: 38648762 DOI: 10.1134/s0006297924030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/26/2023] [Accepted: 01/29/2024] [Indexed: 04/25/2024]
Abstract
Platelets are known for their indispensable role in hemostasis and thrombosis. However, alteration in platelet function due to oxidative stress is known to mediate various health complications, including cardiovascular diseases and other health complications. To date, several synthetic molecules have displayed antiplatelet activity; however, their uses are associated with bleeding and other adverse effects. The commercially available curcumin is generally a mixture of three curcuminoids: curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Although crude curcumin is known to inhibit platelet aggregation, the effect of purified curcumin on platelet apoptosis, activation, and aggregation remains unclear. Therefore, in this study, curcumin was purified from a crude curcumin mixture and the effects of this preparation on the oxidative stress-induced platelet apoptosis and activation was evaluated. 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH) compound was used as an inducer of oxidative stress. Purified curcumin restored AAPH-induced platelet apoptotic markers like reactive oxygen species, intracellular calcium level, mitochondrial membrane potential, cardiolipin peroxidation, cytochrome c release from mitochondria to the cytosol, and phosphatidyl serine externalization. Further, it inhibited the agonist-induced platelet activation and aggregation, demonstrating its antiplatelet activity. Western blot analysis confirms protective effect of the purified curcumin against oxidative stress-induced platelet apoptosis and activation via downregulation of MAPKs protein activation, including ASK1, JNK, and p-38. Together, these results suggest that the purified curcumin could be a potential therapeutic bioactive molecule to treat the oxidative stress-induced platelet activation, apoptosis, and associated complications.
Collapse
Affiliation(s)
- Kurnegala Manikanta
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, India
| | - Manoj Paul
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, India
| | | | - Shanmuga S Mahalingam
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thimmasandra Narayan Ramesh
- Department of Studies and Research in Chemistry, University College of Science, Tumkur University, Tumakuru, 572103, India
| | | | - Shashank S Koundinya
- All India Institute of Medical Science, Sri Aurobindo Marg, Ansari Nagar, East, New Delhi, 110029, India
| | - Shivanna Naveen
- Applied Nutrition Discipline, Defense Food Research Laboratory, Mysuru, 570011, India
| | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, India.
| | - Kesturu S Girish
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru, 572103, India.
| |
Collapse
|
32
|
Tsare EPG, Klapa MI, Moschonas NK. Protein-protein interaction network-based integration of GWAS and functional data for blood pressure regulation analysis. Hum Genomics 2024; 18:15. [PMID: 38326862 PMCID: PMC11465932 DOI: 10.1186/s40246-023-00565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/12/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND It is valuable to analyze the genome-wide association studies (GWAS) data for a complex disease phenotype in the context of the protein-protein interaction (PPI) network, as the related pathophysiology results from the function of interacting polyprotein pathways. The analysis may include the design and curation of a phenotype-specific GWAS meta-database incorporating genotypic and eQTL data linking to PPI and other biological datasets, and the development of systematic workflows for PPI network-based data integration toward protein and pathway prioritization. Here, we pursued this analysis for blood pressure (BP) regulation. METHODS The relational scheme of the implemented in Microsoft SQL Server BP-GWAS meta-database enabled the combined storage of: GWAS data and attributes mined from GWAS Catalog and the literature, Ensembl-defined SNP-transcript associations, and GTEx eQTL data. The BP-protein interactome was reconstructed from the PICKLE PPI meta-database, extending the GWAS-deduced network with the shortest paths connecting all GWAS-proteins into one component. The shortest-path intermediates were considered as BP-related. For protein prioritization, we combined a new integrated GWAS-based scoring scheme with two network-based criteria: one considering the protein role in the reconstructed by shortest-path (RbSP) interactome and one novel promoting the common neighbors of GWAS-prioritized proteins. Prioritized proteins were ranked by the number of satisfied criteria. RESULTS The meta-database includes 6687 variants linked with 1167 BP-associated protein-coding genes. The GWAS-deduced PPI network includes 1065 proteins, with 672 forming a connected component. The RbSP interactome contains 1443 additional, network-deduced proteins and indicated that essentially all BP-GWAS proteins are at most second neighbors. The prioritized BP-protein set was derived from the union of the most BP-significant by any of the GWAS-based or the network-based criteria. It included 335 proteins, with ~ 2/3 deduced from the BP PPI network extension and 126 prioritized by at least two criteria. ESR1 was the only protein satisfying all three criteria, followed in the top-10 by INSR, PTN11, CDK6, CSK, NOS3, SH2B3, ATP2B1, FES and FINC, satisfying two. Pathway analysis of the RbSP interactome revealed numerous bioprocesses, which are indeed functionally supported as BP-associated, extending our understanding about BP regulation. CONCLUSIONS The implemented workflow could be used for other multifactorial diseases.
Collapse
Affiliation(s)
- Evridiki-Pandora G Tsare
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece.
| | - Nicholas K Moschonas
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece.
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece.
| |
Collapse
|
33
|
Comarița IK, Tanko G, Anghelache IL, Georgescu A. The siRNA-mediated knockdown of AP-1 restores the function of the pulmonary artery and the right ventricle by reducing perivascular and interstitial fibrosis and key molecular players in cardiopulmonary disease. J Transl Med 2024; 22:137. [PMID: 38317144 PMCID: PMC10845748 DOI: 10.1186/s12967-024-04933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a complex multifactorial vascular pathology characterized by an increased pulmonary arterial pressure, vasoconstriction, remodelling of the pulmonary vasculature, thrombosis in situ and inflammation associated with right-side heart failure. Herein, we explored the potential beneficial effects of treatment with siRNA AP-1 on pulmonary arterial hypertension (PAH), right ventricular dysfunction along with perivascular and interstitial fibrosis in pulmonary artery-PA, right ventricle-RV and lung in an experimental animal model of monocrotaline (MCT)-induced PAH. METHODS Golden Syrian hamsters were divided into: (1) C group-healthy animals taken as control; (2) MCT group obtained by a single subcutaneous injection of 60 mg/kg MCT at the beginning of the experiment; (3) MCT-siRNA AP-1 group received a one-time subcutaneous dose of MCT and subcutaneous injections containing 100 nM siRNA AP-1, every two weeks. All animal groups received water and standard chow ad libitum for 12 weeks. RESULTS In comparison with the MCT group, siRNA AP-1 treatment had significant beneficial effects on investigated tissues contributing to: (1) a reduction in TGF-β1/ET-1/IL-1β/TNF-α plasma concentrations; (2) a reduced level of cytosolic ROS production in PA, RV and lung and notable improvements regarding the ultrastructure of these tissues; a decrease of inflammatory and fibrotic marker expressions in PA (COL1A/Fibronectin/Vimentin/α-SMA/CTGF/Calponin/MMP-9), RV and lung (COL1A/CTGF/Fibronectin/α-SMA/F-actin/OB-cadherin) and an increase of endothelial marker expressions (CD31/VE-cadherin) in PA; (4) structural and functional recoveries of the PA [reduced Vel, restored vascular reactivity (NA contraction, ACh relaxation)] and RV (enlarged internal cavity diameter in diastole, increased TAPSE and PRVOFs) associated with a decrease in systolic and diastolic blood pressure, and heart rate; (5) a reduced protein expression profile of AP-1S3/ pFAK/FAK/pERK/ERK and a significant decrease in the expression levels of miRNA-145, miRNA-210, miRNA-21, and miRNA-214 along with an increase of miRNA-124 and miRNA-204. CONCLUSIONS The siRNA AP-1-based therapy led to an improvement of pulmonary arterial and right ventricular function accompanied by a regression of perivascular and interstitial fibrosis in PA, RV and lung and a down-regulation of key inflammatory and fibrotic markers in MCT-treated hamsters.
Collapse
Affiliation(s)
- Ioana Karla Comarița
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | | | - Adriana Georgescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania.
| |
Collapse
|
34
|
Sun Z, Zhang X, Dong Y, Liu Y, Wang C, Li Y, Ma C, Xu G, Wang S, Yang C, Zhang G, Cong B. Norepinephrine-Activated p38 MAPK Pathway Mediates Stress-Induced Cytotoxic Edema of Basolateral Amygdala Astrocytes. Brain Sci 2024; 14:161. [PMID: 38391735 PMCID: PMC10887202 DOI: 10.3390/brainsci14020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
The amygdala is a core region in the limbic system that is highly sensitive to stress. Astrocytes are key players in stress disorders such as anxiety and depression. However, the effects of stress on the morphology and function of amygdala astrocytes and its potential mechanisms remain largely unknown. Hence, we performed in vivo and in vitro experiments using a restraint stress (RS) rat model and stress-induced astrocyte culture, respectively. Our data show that norepinephrine (NE) content increased, cytotoxic edema occurred, and aquaporin-4 (AQP4) expression was up-regulated in the basolateral amygdala (BLA) obtained from RS rats. Additionally, the p38 mitogen-activated protein kinase (MAPK) pathway was also observed to be significantly activated in the BLA of rats subjected to RS. The administration of NE to in vitro astrocytes increased the AQP4 level and induced cell edema. Furthermore, p38 MAPK signaling was activated. The NE inhibitor alpha-methyl-p-tyrosine (AMPT) alleviated cytotoxic edema in astrocytes, inhibited AQP4 expression, and inactivated the p38 MAPK pathway in RS rats. Meanwhile, in the in vitro experiment, the p38 MAPK signaling inhibitor SB203580 reversed NE-induced cytotoxic edema and down-regulated the expression of AQP4 in astrocytes. Briefly, NE-induced activation of the p38 MAPK pathway mediated cytotoxic edema in BLA astrocytes from RS rats. Thus, our data provide novel evidence that NE-induced p38 MAPK pathway activation may be one of the mechanisms leading to cytotoxic edema in BLA under stress conditions, which also could enable the development of an effective therapeutic strategy against cytotoxic edema in BLA under stress and provide new ideas for the treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Zhaoling Sun
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaojing Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yiming Dong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yichang Liu
- Department of Forensic Medicine, College of Medicine, Nantong University, Nantong 226000, China
| | - Chuan Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yingmin Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Chunling Ma
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Guangming Xu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Songjun Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Chenteng Yang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Guozhong Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Province Laboratory of Experimental Animal, Shijiazhuang 050017, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Hainan Tropical Forensic Medicine Academician Workstation, Haikou 571199, China
| |
Collapse
|
35
|
Ray AK, Priya A, Malik MZ, Thanaraj TA, Singh AK, Mago P, Ghosh C, Shalimar, Tandon R, Chaturvedi R. Conserved Cardiovascular Network: Bioinformatics Insights into Genes and Pathways for Establishing Caenorhabditis elegans as an Animal Model for Cardiovascular Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.24.573256. [PMID: 38234826 PMCID: PMC10793405 DOI: 10.1101/2023.12.24.573256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Cardiovascular disease (CVD) is a collective term for disorders of the heart and blood vessels. The molecular events and biochemical pathways associated with CVD are difficult to study in clinical settings on patients and in vitro conditions. Animal models play a pivotal and indispensable role in cardiovascular disease (CVD) research. Caenorhabditis elegans , a nematode species, has emerged as a prominent experimental organism widely utilised in various biomedical research fields. However, the specific number of CVD-related genes and pathways within the C. elegans genome remains undisclosed to date, limiting its in-depth utilisation for investigations. In the present study, we conducted a comprehensive analysis of genes and pathways related to CVD within the genomes of humans and C. elegans through a systematic bioinformatic approach. A total of 1113 genes in C. elegans orthologous to the most significant CVD-related genes in humans were identified, and the GO terms and pathways were compared to study the pathways that are conserved between the two species. In order to infer the functions of CVD-related orthologous genes in C. elegans, a PPI network was constructed. Orthologous gene PPI network analysis results reveal the hubs and important KRs: pmk-1, daf-21, gpb-1, crh-1, enpl-1, eef-1G, acdh-8, hif-1, pmk-2, and aha-1 in C. elegans. Modules were identified for determining the role of the orthologous genes at various levels in the created network. We also identified 9 commonly enriched pathways between humans and C. elegans linked with CVDs that include autophagy (animal), the ErbB signalling pathway, the FoxO signalling pathway, the MAPK signalling pathway, ABC transporters, the biosynthesis of unsaturated fatty acids, fatty acid metabolism, glutathione metabolism, and metabolic pathways. This study provides the first systematic genomic approach to explore the CVD-associated genes and pathways that are present in C. elegans, supporting the use of C. elegans as a prominent animal model organism for cardiovascular diseases.
Collapse
|
36
|
Huang YM, Wu YS, Dang YY, Xu YM, Ma KY, Dai XY. Par3L, a polarity protein, promotes M1 macrophage polarization and aggravates atherosclerosis in mice via p65 and ERK activation. Acta Pharmacol Sin 2024; 45:112-124. [PMID: 37731037 PMCID: PMC10770347 DOI: 10.1038/s41401-023-01161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
Proinflammatory M1 macrophages are critical for the progression of atherosclerosis. The Par3-like protein (Par3L) is a homolog of the Par3 family involved in cell polarity establishment. Par3L has been shown to maintain the stemness of mammary stem cells and promote the survival of colorectal cancer cells. In this study, we investigated the roles of the polar protein Par3L in M1 macrophage polarization and atherosclerosis. To induce atherosclerosis, Apoe-/- mice were fed with an atherosclerotic Western diet for 8 or 16 weeks. We showed that Par3L expression was significantly increased in human and mouse atherosclerotic plaques. In primary mouse macrophages, oxidized low-density lipoprotein (oxLDL, 50 μg/mL) time-dependently increased Par3L expression. In Apoe-/- mice, adenovirus-mediated Par3L overexpression aggravated atherosclerotic plaque formation accompanied by increased M1 macrophages in atherosclerotic plaques and bone marrow. In mouse bone marrow-derived macrophages (BMDMs) or peritoneal macrophages (PMs), we revealed that Par3L overexpression promoted LPS and IFNγ-induced M1 macrophage polarization by activating p65 and extracellular signal-regulated kinase (ERK) rather than p38 and JNK signaling. Our results uncover a previously unidentified role for the polarity protein Par3L in aggravating atherosclerosis and favoring M1 macrophage polarization, suggesting that Par3L may serve as a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Yi-Min Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Sen Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan-Ye Dang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi-Ming Xu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Kong-Yang Ma
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiao-Yan Dai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
37
|
Gladwell LR, Ahiarah C, Rasheed S, Rahman SM, Choudhury M. Traditional Therapeutics and Potential Epidrugs for CVD: Why Not Both? Life (Basel) 2023; 14:23. [PMID: 38255639 PMCID: PMC10820772 DOI: 10.3390/life14010023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. In addition to the high mortality rate, people suffering from CVD often endure difficulties with physical activities and productivity that significantly affect their quality of life. The high prevalence of debilitating risk factors such as obesity, type 2 diabetes mellitus, smoking, hypertension, and hyperlipidemia only predicts a bleak future. Current traditional CVD interventions offer temporary respite; however, they compound the severe economic strain of health-related expenditures. Furthermore, these therapeutics can be prescribed indefinitely. Recent advances in the field of epigenetics have generated new treatment options by confronting CVD at an epigenetic level. This involves modulating gene expression by altering the organization of our genome rather than altering the DNA sequence itself. Epigenetic changes are heritable, reversible, and influenced by environmental factors such as medications. As CVD is physiologically and pathologically diverse in nature, epigenetic interventions can offer a ray of hope to replace or be combined with traditional therapeutics to provide the prospect of addressing more than just the symptoms of CVD. This review discusses various risk factors contributing to CVD, perspectives of current traditional medications in practice, and a focus on potential epigenetic therapeutics to be used as alternatives.
Collapse
Affiliation(s)
- Lauren Rae Gladwell
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| | - Chidinma Ahiarah
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| | - Shireen Rasheed
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| | - Shaikh Mizanoor Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz, Nizwa 616, Oman
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Texas A&M Irma Lerma Rangel College of Pharmacy, 1114 TAMU, College Station, TX 77843, USA
| |
Collapse
|
38
|
Samidurai A, Olex AL, Ockaili R, Kraskauskas D, Roh SK, Kukreja RC, Das A. Integrated Analysis of lncRNA-miRNA-mRNA Regulatory Network in Rapamycin-Induced Cardioprotection against Ischemia/Reperfusion Injury in Diabetic Rabbits. Cells 2023; 12:2820. [PMID: 38132140 PMCID: PMC10742118 DOI: 10.3390/cells12242820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The inhibition of mammalian target of rapamycin (mTOR) with rapamycin (RAPA) provides protection against myocardial ischemia/reperfusion (I/R) injury in diabetes. Since interactions between transcripts, including long non-coding RNA (lncRNA), microRNA(miRNA) and mRNA, regulate the pathophysiology of disease, we performed unbiased miRarray profiling in the heart of diabetic rabbits following I/R injury with/without RAPA treatment to identify differentially expressed (DE) miRNAs and their predicted targets of lncRNAs/mRNAs. Results showed that among the total of 806 unique miRNAs targets, 194 miRNAs were DE after I/R in diabetic rabbits. Specifically, eight miRNAs, including miR-199a-5p, miR-154-5p, miR-543-3p, miR-379-3p, miR-379-5p, miR-299-5p, miR-140-3p, and miR-497-5p, were upregulated and 10 miRNAs, including miR-1-3p, miR-1b, miR-29b-3p, miR-29c-3p, miR-30e-3p, miR-133c, miR-196c-3p, miR-322-5p, miR-499-5p, and miR-672-5p, were significantly downregulated after I/R injury. Interestingly, RAPA treatment significantly reversed these changes in miRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated the participation of miRNAs in the regulation of several signaling pathways related to I/R injury, including MAPK signaling and apoptosis. Furthermore, in diabetic hearts, the expression of lncRNAs, HOTAIR, and GAS5 were induced after I/R injury, but RAPA suppressed these lncRNAs. In contrast, MALAT1 was significantly reduced following I/R injury, with the increased expression of miR-199a-5p and suppression of its target, the anti-apoptotic protein Bcl-2. RAPA recovered MALAT1 expression with its sponging effect on miR-199-5p and restoration of Bcl-2 expression. The identification of novel targets from the transcriptome analysis in RAPA-treated diabetic hearts could potentially lead to the development of new therapeutic strategies for diabetic patients with myocardial infarction.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Amy L. Olex
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Ramzi Ockaili
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Donatas Kraskauskas
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Sean K. Roh
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Rakesh C. Kukreja
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| |
Collapse
|
39
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, Proteomic, and Metabolomic Correlates of Traffic-Related Air Pollution in the Context of Cardiorespiratory Health: A Systematic Review, Pathway Analysis, and Network Analysis. TOXICS 2023; 11:1014. [PMID: 38133415 PMCID: PMC10748071 DOI: 10.3390/toxics11121014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead to cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
40
|
Jia P, Chen D, Zhu Y, Wang M, Zeng J, Zhang L, Cai Q, Lian D, Zhao C, Xu Y, Chu J, Lin S, Peng J, Lin W. Liensinine improves AngII-induced vascular remodeling via MAPK/TGF-β1/Smad2/3 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116768. [PMID: 37308031 DOI: 10.1016/j.jep.2023.116768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liensinine(Lien, C37H42N2O6) is an alkaloid compound from plumula nelumbinis that demonstrates an antihypertensive effect. The protective effects of Lien on target organs during hypertension are still unclear. AIM OF THE STUDY This study aimed to understand the mechanism of Lien during the treatment of hypertension, with emphasis on vascular protection. MATERIALS AND METHODS Lien was extracted and isolated from plumula nelumbinis for further study. In vivo model of Ang II-induced hypertension, non-invasive sphygmomanometer was used to detect the blood pressure in and out of the context of Lien intervention. Ultrasound was used to detect the abdominal aorta pulse wave and media thickness of hypertensive mice, and RNA sequencing was used to detect the differential genes and pathways of blood vessels. The intersection of Lien and MAPK protein molecules was detected by molecular interconnecting technique. The pathological conditions of abdominal aorta vessels of mice were observed by HE staining. The expression of PCNA, α-SMA, Collagen Type Ⅰ and Collagen Type Ⅲ proteins were detected by IHC. The collagen expression in the abdominal aorta was detected by Sirius red staining. The MAPK/TGF-β1/Smad2/3 signaling and the protein expression of PCNA and α-SMA was detected by Western blot. In vitro, MAPK/TGF-β1/Smad2/3 signaling and the protein expression of PCNA and α-SMA were detected by Western blot, and the expression of α-SMA was detected by immunofluorescence; ELISA was used to detect the effect of ERK/MAPK inhibitor PD98059 on Ang Ⅱ-induced TGF-β1secrete; and the detection TGF-β1and α-SMA protein expression by Western blot; Western blot was used to detect the effect of ERK/MAPK stimulant12-O-tetradecanoyl phorbol-13-acetate (TPA) on the protein expression of TGF-β1 and α-SMA. RESULTS Lien displayed an antihypertensive effect on Ang Ⅱ-induced hypertension, reducing the pulse wave conduction velocity of the abdominal aorta and the thickness of the abdominal aorta vessel wall, ultimately improving the pathological state of blood vessels. RNA sequencing further indicated that the differential pathways expressed in the abdominal aorta of hypertensive mice were enriched in proliferation-related markers compared with the Control group. The profile of differentially expressed pathways was ultimately reversed by Lien. Particularly, MAPK protein demonstrated good binding with the Lien molecule. In vivo, Lien inhibited Ang Ⅱ-induced abdominal aorta wall thickening, reduced collagen deposition in the ventral aortic vessel, and prevented the occurrence of vascular remodeling by inhibiting MAPK/TGF-β1/Smad2/3 signaling activation. In addition, Lien inhibited the activation of Ang II-induced MAPK and TGF-β1/Smad2/3 signaling, attenuating the expression of PCNA and inhibiting the reduction of α-SMA, collectively playing a role in the inhibition of Ang Ⅱ-induced hypertensive vascular remodeling. PD98059 alone could inhibit Ang Ⅱ-induced elevation of TGF-β1 and the decrease of α-SMA expression. Further, PD98059 combined with Lien had no discrepancy with the inhibitors alone. Simultaneously TPA alone could significantly increase the expression of TGF-β1 and decrease the expression of α-SMA. Further, Lien could inhibit the effect of TPA. CONCLUSION This study helped clarify the protective mechanism of Lien during hypertension, elucidating its role as an inhibitor of vascular remodeling and providing an experimental basis for the research and development of novel antihypertensive therapies.
Collapse
Affiliation(s)
- Peizhi Jia
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Daxin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Ying Zhu
- Fujian Health College, Fuzhou, Fujian, 350101, China.
| | - Meiling Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jianwei Zeng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Qiaoyan Cai
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Dawei Lian
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Chunyu Zhao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Yaoyao Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China; Scientific and Economic Integration Service Platform for Translational Medicine of Cardiovascular Diseases in Fujian Province, Fuzhou, Fujian, 350122, China.
| | - Wei Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
41
|
Yi JS, Perla S, Bennett AM. An Assessment of the Therapeutic Landscape for the Treatment of Heart Disease in the RASopathies. Cardiovasc Drugs Ther 2023; 37:1193-1204. [PMID: 35156148 PMCID: PMC11726350 DOI: 10.1007/s10557-022-07324-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
The RAS/mitogen-activated protein kinase (MAPK) pathway controls a plethora of developmental and post-developmental processes. It is now clear that mutations in the RAS-MAPK pathway cause developmental diseases collectively referred to as the RASopathies. The RASopathies include Noonan syndrome, Noonan syndrome with multiple lentigines, cardiofaciocutaneous syndrome, neurofibromatosis type 1, and Costello syndrome. RASopathy patients exhibit a wide spectrum of congenital heart defects (CHD), such as valvular abnormalities and hypertrophic cardiomyopathy (HCM). Since the cardiovascular defects are the most serious and recurrent cause of mortality in RASopathy patients, it is critical to understand the pathological signaling mechanisms that drive the disease. Therapies for the treatment of HCM and other RASopathy-associated comorbidities have yet to be fully realized. Recent developments have shown promise for the use of repurposed antineoplastic drugs that target the RAS-MAPK pathway for the treatment of RASopathy-associated HCM. However, given the impact of the RAS-MAPK pathway in post-developmental physiology, establishing safety and evaluating risk when treating children will be paramount. As such insight provided by preclinical and clinical information will be critical. This review will highlight the cardiovascular manifestations caused by the RASopathies and will discuss the emerging therapies for treatment.
Collapse
Affiliation(s)
- Jae-Sung Yi
- Department of Pharmacology, Yale University School of Medicine, SHM B226D, 333 Cedar Street, New Haven, CT, 06520-8066, USA
| | - Sravan Perla
- Department of Pharmacology, Yale University School of Medicine, SHM B226D, 333 Cedar Street, New Haven, CT, 06520-8066, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University School of Medicine, SHM B226D, 333 Cedar Street, New Haven, CT, 06520-8066, USA.
- Yale Center for Molecular and Systems Metabolism, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
42
|
Oktaviono YH, Lamara AD, Tri Saputra PB, Arnindita JN, Pasahari D, Saputra ME, Made Adnya Suasti N. The roles of trimethylamine-N-oxide in atherosclerosis and its potential therapeutic aspect: A literature review. BIOMOLECULES & BIOMEDICINE 2023; 23:936-948. [PMID: 37337893 PMCID: PMC10655873 DOI: 10.17305/bb.2023.8893] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/21/2023]
Abstract
Current research supports the evidence that the gut microbiome (GM), which consist of gut microbiota and their biologically active metabolites, is associated with atherosclerosis development. Trimethylamine-N-oxide (TMAO), a metabolite produced by the GM through trimethylamine (TMA) oxidation, significantly enhances the formation and vulnerability of atherosclerotic plaques. TMAO promotes inflammation and oxidative stress in endothelial cells, leading to vascular dysfunction and plaque formation. Dimethyl-1-butanol (DMB), iodomethylcholine (IMC) and fluoromethylcholine (FMC) have been recognized for their ability to reduce plasma TMAO by inhibiting trimethylamine lyase, a bacterial enzyme involved in the choline cleavage anaerobic process, thus reducing TMA formation. Conversely, indole-3-carbinol (I3C) and trigonelline inhibit TMA oxidation by inhibiting flavin-containing monooxygenase-3 (FMO3), resulting in reduced plasma TMAO. The combined use of inhibitors of choline trimethylamine lyase and flavin-containing monooxygenase-3 could provide novel therapeutic strategies for cardiovascular disease prevention by stabilizing existing atherosclerotic plaques. This review aims to present the current evidence of the roles of TMA/TMAO in atherosclerosis as well as its potential therapeutic prevention aspects.
Collapse
Affiliation(s)
- Yudi Her Oktaviono
- Department of Cardiology and Vascular Medicine, General Hospital Dr. Soetomo, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Ariikah Dyah Lamara
- Department of Cardiology and Vascular Medicine, General Hospital Dr. Soetomo, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Pandit Bagus Tri Saputra
- Department of Cardiology and Vascular Medicine, General Hospital Dr. Soetomo, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | | | - Diar Pasahari
- Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Mahendra Eko Saputra
- Department of Cardiology and Vascular Medicine, General Hospital Dr. Soetomo, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | | |
Collapse
|
43
|
Gál R, Halmosi R, Gallyas F, Tschida M, Mutirangura P, Tóth K, Alexy T, Czopf L. Resveratrol and beyond: The Effect of Natural Polyphenols on the Cardiovascular System: A Narrative Review. Biomedicines 2023; 11:2888. [PMID: 38001889 PMCID: PMC10669290 DOI: 10.3390/biomedicines11112888] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality worldwide. Unhealthy dietary habits have clearly been shown to contribute to the development of CVDs. Beyond the primary nutrients, a healthy diet is also rich in plant-derived compounds. Natural polyphenols, found in fruits, vegetables, and red wine, have a clear role in improving cardiovascular health. In this review, we strive to summarize the results of the relevant pre-clinical and clinical trials that focused on some of the most important natural polyphenols, such as resveratrol and relevant flavonoids. In addition, we aim to identify their common sources, biosynthesis, and describe their mechanism of action including their regulatory effect on signal transduction pathways. Finally, we provide scientific evidence regarding the cardiovascular benefits of moderate, long-term red wine consumption.
Collapse
Affiliation(s)
- Roland Gál
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Róbert Halmosi
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary;
| | - Michael Tschida
- Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Pornthira Mutirangura
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Kálmán Tóth
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Tamás Alexy
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - László Czopf
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
| |
Collapse
|
44
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, proteomic, and metabolomic correlates of traffic-related air pollution: A systematic review, pathway analysis, and network analysis relating traffic-related air pollution to subclinical and clinical cardiorespiratory outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.30.23296386. [PMID: 37873294 PMCID: PMC10592990 DOI: 10.1101/2023.09.30.23296386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease, and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
45
|
Stone JC, MacDonald MJ. The impacts of endogenous progesterone and exogenous progestin on vascular endothelial cell, and smooth muscle cell function: A narrative review. Vascul Pharmacol 2023; 152:107209. [PMID: 37591444 DOI: 10.1016/j.vph.2023.107209] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Vascular endothelial and smooth muscle cell dysfunction proceed the development of numerous vascular diseases, such as atherosclerosis. Both estrogen and progesterone receptors are present on vascular endothelial and smooth muscle cells, and therefore it has been postulated that these compounds may affect vascular function. It has been well-established that estrogen is a vasoprotective compound, however, the effects of progesterone on vascular function are not well understood. This narrative review summarizes the current research investigating the impact of both endogenous progesterone, and exogenous synthetic progestin on vascular endothelial and smooth muscle cell function and identifies discrepancies on their effects in vitro and in vivo. We speculate that an inverted-U dose response curve may exist between nitric oxide bioavailability and progesterone concentration, and that the androgenic properties of a progestin may influence vascular function. Future research is needed to discern the effects of both endogenous progesterone and exogenous progestin on vascular endothelial and smooth muscle cell function with consideration for the impacts of progesterone/progestin dose, and progestin type.
Collapse
Affiliation(s)
- Jenna C Stone
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Maureen J MacDonald
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
46
|
Niu C, Zhang P, Zhang L, Lin D, Lai H, Xiao D, Liu Y, Zhuang R, Li M, Ma L, Ye J, Pan Y. Molecular targets and mechanisms of Guanxinning tablet in treating atherosclerosis: Network pharmacology and molecular docking analysis. Medicine (Baltimore) 2023; 102:e35106. [PMID: 37773840 PMCID: PMC10545342 DOI: 10.1097/md.0000000000035106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Guanxinning tablet (GXNT), a Chinese patent medicine, is composed of salvia miltiorrhiza bunge and ligusticum striatum DC, which may play the role of endothelial protection through many pathways. We aimed to explore the molecular mechanisms of GXNT against atherosclerosis (AS) through network pharmacology and molecular docking verification. METHODS The active ingredients and their potential targets of GXNT were obtained in traditional Chinese medicine systems pharmacology database and analysis platform and bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine databases. DrugBank, TTD, DisGeNET, OMIM, and GeneCards databases were used to screen the targets of AS. The intersection targets gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis were performed in DAVID database. GXNT-AS protein-protein interaction network, ingredient-target network and herb-target-pathway network were constructed by Cytoscape. Finally, we used AutoDock for molecular docking. RESULTS We screened 65 active ingredients of GXNT and 70 GXNT-AS intersection targets. The key targets of protein-protein interaction network were AKT1, JUN, STAT3, TNF, TP53, IL6, EGFR, MAPK14, RELA, and CASP3. The Kyoto encyclopedia of genes and genomes pathway enrichment analysis showed that pathways in cancer, lipid and atherosclerosis, and PI3K-Akt signaling pathway were the main pathways. The ingredient-target network showed that the key ingredients were luteolin, tanshinone IIA, myricanone, dihydrotanshinlactone, dan-shexinkum d, 2-isopropyl-8-methylphenanthrene-3,4-dione, miltionone I, deoxyneocryptotanshinone, Isotanshinone II and 4-methylenemiltirone. The results of molecular docking showed that tanshinone IIA, dihydrotanshinlactone, dan-shexinkum d, 2-isopropyl-8-methylphenanthrene-3,4-dione, miltionone I, deoxyneocryptotanshinone, Isotanshinone II and 4-methylenemiltirone all had good binding interactions with AKT1, EGFR and MAPK14. CONCLUSION The results of network pharmacology and molecular docking showed that the multiple ingredients within GXNT may confer protective effects on the vascular endothelium against AS through multitarget and multichannel mechanisms. AKT1, EGFR and MAPK14 were the core potential targets of GXNT against AS.
Collapse
Affiliation(s)
- Chaofeng Niu
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peiyu Zhang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lijing Zhang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dingfeng Lin
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haixia Lai
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Di Xiao
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Liu
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Zhuang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Li
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liyong Ma
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Ye
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Pan
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
47
|
Avagimyan A, Pogosova N, Kakturskiy L, Sheibani M, Urazova O, Trofimenko A, Navarsdyan G, Jndoyan Z, Abgaryan K, Fogacci F, Galli M, Agati L, Kobalava Z, Shafie D, Marzilli M, Gogiashvili L, Sarrafzadegan N. HIV-Related Atherosclerosis: State-of-the-Art-Review. Curr Probl Cardiol 2023; 48:101783. [PMID: 37172874 DOI: 10.1016/j.cpcardiol.2023.101783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
The infection caused by the Human Immunodeficiency Virus (HIV) has spread rapidly across the globe, assuming the characteristics of an epidemic in some regions. Thanks to the introduction of antiretroviral therapy into routine clinical practice, there was a considerable breakthrough in the treatment of HIV, that is now HIV is potentially well-controlled even in low-income countries. To date, HIV infection has moved from the group of life-threatening conditions to the group of chronic and well controlled ones and the quality of life and life expectancy of HIV+ people, with an undetectable viral load is closer to that of an HIV- people. However, unsolved issues still persist. For example: people living with HIV are more prone to the age-related diseases, especially atherosclerosis. For this reason, a better understanding of the mechanisms of HIV-associated destabilization of vascular homeostasis seems to be an urgent duty, that may lead to the development of new protocols, bringing the possibilities of pathogenetic therapies to a new level. The purpose of the article was to evaluate the pathological aspects of HIV-induced atherosclerosis.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Assistant Professor, Anatomical Pathology and Clinical Morphology Department, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia.
| | - Nana Pogosova
- Professor, Deputy of General Director for Science and Preventive Cardiology, National Medical Research Centre of Cardiology after E. Chazov, Moscow, Russia
| | - Lev Kakturskiy
- Professor, Scientific Director, Research Institute of Human Morphology FSBI «Petrovskiy NRCS, Moscow, Russia
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Olga Urazova
- Professor, Head of Pathophysiology Department, Siberian State Medical University, Tomsk, Russia
| | - Artem Trofimenko
- Associate Professor, Pathophysiology Department, Kuban State Medical University, Krasnodar, Russia
| | - Grizelda Navarsdyan
- Professor, Pathophysiology Department, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Zinaida Jndoyan
- Professor, Head of Internal Diseases Propedeutics Department, Yerevan State Medical University after M. Heratsi, Armenia
| | - Kristina Abgaryan
- Associate Professor, Medical Microbiology Department, Yerevan State Medical University after M.Heratsi, Armenia
| | - Federica Fogacci
- Research Fellow, Atherosclerosis and Metabolic Disorders Research Unit, University of Bologna, Bologna, Italy
| | - Mattia Galli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Luciano Agati
- Professor of Cardiology Department, Head of Cardiology Unit Azienda Policlinico Umberto II, Sapienza University, Rome, Italy
| | - Zhanna Kobalava
- Professor, Head of Internal Disease, Cardiology and Clinical Pharmacology Department, Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Davood Shafie
- Isfahan Cardiovascular Research Institute, Isfahan, Iran
| | - Mario Marzilli
- Professor, Head of Cardiovascular Medicine Division, University of Pisa, Pisa, Italy
| | - Liana Gogiashvili
- Professor, Head of Experimental and Clinical Pathology Department, Al. Natishvili Institute of Experimental Morphology, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Nizal Sarrafzadegan
- Professor, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
48
|
Kmieć P, Rosenkranz S, Odenthal M, Caglayan E. Differential Role of Aldosterone and Transforming Growth Factor Beta-1 in Cardiac Remodeling. Int J Mol Sci 2023; 24:12237. [PMID: 37569619 PMCID: PMC10419155 DOI: 10.3390/ijms241512237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Angiotensin II, a major culprit in cardiovascular disease, activates mediators that are also involved in pathological cardiac remodeling. In this context, we aimed at investigating the effects of two of them: aldosterone (Ald) and transforming growth factor beta-1 (TGF-β1) in an in vivo model. Six-week-old male wild-type (WT) and TGF-β1-overexpressing transgenic (TGF-β1-TG) mice were infused with subhypertensive doses of Ald for 2 weeks and/or treated orally with eplerenone from postnatal day 21. Thehearts' ventricles were examined by morphometry, immunoblotting to assess the intracellular signaling pathways and RT qPCR to determine hypertrophy and fibrosis marker genes. The TGF-β1-TG mice spontaneously developed cardiac hypertrophy and interstitial fibrosis and exhibited a higher baseline phosphorylation of p44/42 and p38 kinases, fibronectin and ANP mRNA expression. Ald induced a comparable increase in the ventricular-heart-weight-to-body-weight ratio and cardiomyocyte diameter in both strains, but a less pronounced increase in interstitial fibrosis in the transgenic compared to the WT mice (23.6% vs. 80.9%, p < 0.005). Ald increased the phosphorylation of p44/42 and p38 in the WT but not the TGF-β1-TG mice. While the eplerenone-enriched chow partially prevented Ald-induced cardiac hypertrophy in both genotypes and interstitial fibrosis in the WT controls, it completely protected against additional fibrosis in transgenic mice. Ald appears to induce cardiac hypertrophy independently of TGF-β1, while in the case of fibrosis, the downstream signaling pathways of these two factors probably converge.
Collapse
Affiliation(s)
- Piotr Kmieć
- Department of Endocrinology and Internal Medicine, Medical University of Gdańsk, 80214 Gdańsk, Poland;
| | - Stephan Rosenkranz
- Clinic for Internal Medicine III and Cologne Cardiovascular Research Center, Cologne University Heart Center, 50937 Köln, Germany;
| | - Margarete Odenthal
- Institute of Pathology, University Hospital of Cologne and Center for Molecular Medicine, University of Cologne, 50937 Köln, Germany;
| | - Evren Caglayan
- Department of Cardiology, University-Medicine Rostock, 18057 Rostock, Germany
| |
Collapse
|
49
|
Najjar RS. The Impacts of Animal-Based Diets in Cardiovascular Disease Development: A Cellular and Physiological Overview. J Cardiovasc Dev Dis 2023; 10:282. [PMID: 37504538 PMCID: PMC10380617 DOI: 10.3390/jcdd10070282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States, and diet plays an instrumental role in CVD development. Plant-based diets have been strongly tied to a reduction in CVD incidence. In contrast, animal food consumption may increase CVD risk. While increased serum low-density lipoprotein (LDL) cholesterol concentrations are an established risk factor which may partially explain the positive association with animal foods and CVD, numerous other biochemical factors are also at play. Thus, the aim of this review is to summarize the major cellular and molecular effects of animal food consumption in relation to CVD development. Animal-food-centered diets may (1) increase cardiovascular toll-like receptor (TLR) signaling, due to increased serum endotoxins and oxidized LDL cholesterol, (2) increase cardiovascular lipotoxicity, (3) increase renin-angiotensin system components and subsequent angiotensin II type-1 receptor (AT1R) signaling and (4) increase serum trimethylamine-N-oxide concentrations. These nutritionally mediated factors independently increase cardiovascular oxidative stress and inflammation and are all independently tied to CVD development. Public policy efforts should continue to advocate for the consumption of a mostly plant-based diet, with the minimization of animal-based foods.
Collapse
Affiliation(s)
- Rami Salim Najjar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
50
|
Alarabi AB, Mohsen A, Taleb ZB, Mizuguchi K, Alshbool FZ, Khasawneh FT. Predicting thrombotic cardiovascular outcomes induced by waterpipe-associated chemicals using comparative toxicogenomic database: Genes, phenotypes, and pathways. Life Sci 2023; 323:121694. [PMID: 37068705 PMCID: PMC10798163 DOI: 10.1016/j.lfs.2023.121694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023]
Abstract
Hookah, or waterpipe, is a tobacco smoking device that has gained popularity in the United States. A growing body of evidence demonstrates that waterpipe smoke (WPS) is associated with various adverse effects on human health, including infectious diseases, cancer, and cardiovascular diseases (CVDs), particularly thrombotic events. However, the molecular mechanisms through which WPS contributes to disease development remain unclear. In this study, we utilized an analytical approach based on the Comparative Toxicogenomics Database (CTD) to integrate chemical, gene, phenotype, and disease data to predict potential molecular mechanisms underlying the effects of WPS, based on its chemical and toxicant profile. Our analysis revealed that CVDs were among the top disease categories with regard to the number of curated interactions with WPS chemicals. We identified 5674 genes common between those modulated by WPS chemicals and traditional tobacco smoking. The CVDs with the most curated interactions with WPS chemicals were hypertension, atherosclerosis, and myocardial infarction, whereas "particulate matter", "heavy metals", and "nicotine" showed the highest number of curated interactions with CVDs. Our analysis predicted that the potential mechanisms underlying WPS-induced thrombotic diseases involve common phenotypes, such as inflammation, apoptosis, and cell proliferation, which are shared across all thrombotic diseases and the three aforementioned chemicals. In terms of enriched signaling pathways, we identified several, including chemokine and MAPK signaling, with particulate matter exhibiting the most statistically significant association with all 12 significant signaling pathways related to WPS chemicals. Collectively, our predictive comprehensive analysis provides evidence that WPS negatively impacts health and offers insights into the potential mechanisms through which it exerts these effects. This information should guide further research to explore and better understand the WPS and other tobacco product-related health consequences.
Collapse
Affiliation(s)
- Ahmed B Alarabi
- Department of Pharmacy Practice, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA.
| | - Attayab Mohsen
- Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Ziyad Ben Taleb
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0081, Japan
| | - Fatima Z Alshbool
- Department of Pharmacy Practice, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA.
| | - Fadi T Khasawneh
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA.
| |
Collapse
|