1
|
Li P, Qi J, Zhou B, Ding T, Long J, Xiao H. The Pathogenic Mechanism of the ATP2C1 p.Ala109_Gln120del Mutation in Hailey-Hailey Disease. Clin Cosmet Investig Dermatol 2022; 15:2169-2175. [PMID: 36254249 PMCID: PMC9569160 DOI: 10.2147/ccid.s384443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/22/2022] [Indexed: 11/12/2022]
Abstract
Background Hailey-Hailey disease (HHD) is an autosomal dominant cutaneous disorder that manifests as repeated blisters and erosions on flexural or intertriginous skin areas. The calcium-transporting ATPase type 2C member 1 gene (ATP2C1) encodes the secretory pathway Ca2+/Mn2+-ATPase 1 (SPCA1), whose deficiency is responsible for HHD. An ATP2C1 splice-site mutation (c.325-2A>G, p.Ala109_Gln120del) was previously identified in a Han Chinese family with HHD. Methods In this study, the identified ATP2C1 splice-site mutation (c.325-2A>G, p.Ala109_Gln120del) was investigated in transfected human embryonic kidney 293 cells to analyze its pathogenic mechanism in HHD patients by using cycloheximide chase assay, CCK8 assay and in silico modeling of SPCA1 mutant. Results Cycloheximide chase assay showed that the degradation rate of the SPCA1 mutant was not obviously faster than that of the normal SPCA1. CCK8 assay showed that cell proliferation rates in the wild-type, A109_Q120del, and empty vector control groups all decreased in the gradient Mn2+ solutions in a dose-dependent manner. The cell proliferation rate in the wild-type was lower than that in the A109_Q120del and empty vector control (both P < 0.01), indicating overexpression of normal SPCA1 may rather induce Golgi stress, and even cell death. The cell proliferation rate in the A109_Q120del was lower than that in the empty vector control (P < 0.01), indicating that overexpression of the mutated SPCA1 may decrease its detoxification capability. Three-dimensional (3D) structure model of SPCA1 built by SWISS-MODEL and PyMOL showed that absence of the 12 amino acids from p.Ala109 to p.Gln120 in the SPCA1 mutant can cause obviously shortened transmembrane 2, which may affect correct localization of SPCA1 on the Golgi. Conclusion These results demonstrate that the ATP2C1 mutation (c.325-2A>G, p.Ala109_Gln120del) may cause impaired SPCA1 capability to detoxify Mn2+ and abnormal SPCA1 structure, which reveals a new side for the pathogenesis of HHD.
Collapse
Affiliation(s)
- Peiyao Li
- Department of Pathology, School of Medicine, Hunan Normal University, Changsha, People’s Republic of China,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Jialin Qi
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Baishun Zhou
- Department of Pathology, School of Medicine, Hunan Normal University, Changsha, People’s Republic of China
| | - Ting Ding
- Department of Endocrinology, Yiyang Central Hospital, Yiyang, People’s Republic of China
| | - Juan Long
- Department of Dermatology, Hunan Children’s Hospital, Changsha, People’s Republic of China
| | - Heng Xiao
- Department of Pathology, School of Medicine, Hunan Normal University, Changsha, People’s Republic of China,Correspondence: Heng Xiao, Department of Pathology, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, Hunan, 410013, People’s Republic of China, Tel +86-731-88912501, Email
| |
Collapse
|
2
|
Ikeda Y, Kaga M, Koide H, Ikeda S. A novel deletion mutation in the ATP2C1 gene in a case of generalized Hailey-Hailey disease possibly aggravated by scabies infection. J Dermatol 2021; 48:e178-e179. [PMID: 33580912 DOI: 10.1111/1346-8138.15783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Yuri Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Maya Kaga
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Koide
- Laboratory of Molecular and Biochemical Research, Research Support Center in Juntendo University, Tokyo, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Wang Z, Li L, Sun L, Mi Z, Fu F, Yu G, Fu X, Liu H, Zhang F. Review of 52 cases with Hailey-Hailey disease identified 25 novel mutations in Chinese Han population. J Dermatol 2019; 46:1024-1026. [PMID: 31435946 DOI: 10.1111/1346-8138.15055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
Hailey-Hailey disease (HHD) is a rare autosomal dominant inherited keratosis caused by mutations in ATP2C1. The aim of our study was to identify and analyze the features of the mutations in HHD. We examined 52 Chinese Han cases which were diagnosed as HHD based on their clinical and histological findings. Genomic DNA polymerase chain reaction and direct sequencing of ATP2C1 were performed from peripheral blood samples of the patients and 100 unrelated healthy controls. Twenty-five novel mutations and 14 recurrent mutations were identified, including 11 (28.2%) missense mutations, nine (23.1%) frame-shift deletion mutations, eight (20.5%) nonsense mutations, seven (17.9%) splicing mutations and four (10.3%) frame-shift insertion mutations. Together with ours, all 209 mutations showed a uniform distribution without hotspots or clusters. In addition, there is no specific genotype-phenotype correlation in HHD. Our findings update the spectrum of mutations in ATP2C1.
Collapse
Affiliation(s)
- Zhe Wang
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, China.,Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lulu Li
- Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lele Sun
- Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zihao Mi
- Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Fanghui Fu
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, China
| | - Gongqi Yu
- Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xian Fu
- Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, China.,Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases, Shandong University, Jinan, China.,Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
4
|
Xiao H, Huang X, Xu H, Chen X, Xiong W, Yang Z, Deng X, He Z, Deng H. A novel splice-site mutation in the ATP2C1 gene of a Chinese family with Hailey-Hailey disease. J Cell Biochem 2018; 120:3630-3636. [PMID: 30654607 DOI: 10.1002/jcb.27640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 08/15/2018] [Indexed: 12/18/2022]
Abstract
Hailey-Hailey disease (HHD), also known as familial benign chronic pemphigus, is an autosomal dominant genodermatosis. It is characterized by erosions, blisters and erythematous plaques at sites of friction or intertriginous areas. The pathogenic gene of HHD has been revealed as the ATPase secretory pathway Ca2+ transporting 1 gene ( ATP2C1), which encodes the protein, secretory pathway Ca 2+/Mn 2+-ATPase 1 (SPCA1). ATP2C1 gene mutations are responsible for HHD by resulting in abnormal Ca 2+ homeostasis in the skin and giving rise to acantholysis, a characteristic pathology of HHD. In this study, a four-generation family containing three HHD sufferers was recruited. Direct sequencing of the ATP2C1 gene was performed in the proband and other available family members. Reverse-transcriptase polymerase chain reaction analysis was conducted to show the potential variant effect on ATP2C1 splicing. A novel heterozygous c.325-2A>G transition at the splice acceptor site of intron 4 in the ATP2C1 gene was identified, and it co-segregated with the disease in this family. The mutation resulted in exon 5 skipping and an in-frame deletion of 12 amino acids (p.Ala109_Gln120del) in SPCA1. This splice-site mutation may be responsible for HHD in this family. This study would further expand the mutation spectrum of the ATP2C1 gene and may be helpful in the genetic counseling and prenatal diagnosis of HHD.
Collapse
Affiliation(s)
- Heng Xiao
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangjun Huang
- Department of General Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hongbo Xu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhijian Yang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiong Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenghao He
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Xu K, Shi B, Diao Q, Jiang X, Xiao Y. Identification of 2 Novel Mutations in ATP2C1 Gene in Hailey-Hailey Disease and a Literature Review of Variations in a Chinese Han Population. Med Sci Monit Basic Res 2017; 23:352-361. [PMID: 29104283 PMCID: PMC5687790 DOI: 10.12659/msmbr.906137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Hailey-Hailey disease (HHD) is a rare autosomal dominant skin condition. The ATP2C1 gene was identified as the defective gene in HHD. To date, 166 pathogenic mutations in ATP2C1 have been observed worldwide. The aim of this study was to identify variations in HHD and summarize the features of the mutations identified in China. Material/Methods We examined 2 familial and 2 sporadic cases of HHD. Genomic DNA polymerase chain reaction and direct sequencing of the ATP2C1 were performed from HHD patients, unaffected family members, and 200 healthy individuals. We also searched the published literature for data about the ATP2C1 gene using PubMed and the Chinese Biological Medicine Database. Results We detected 3 heterozygous mutations, including 2 novel frameshift mutations (c.819insA (273LfsX) and c.1264insTAGATGG (421LfsX)) and 1 recurrent nonsense mutation (c.115C>T (R39X)). To the best of our knowledge, 90 different mutations (including our current results) have been reported in China, all of which occurred in the Chinese Han population. Conclusions Our data may add to the existing list of ATP2C1 mutations and provide new insight into genetic variants of HHD in China.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (The First People's Hospital of Chongqing City), Chongqing, China (mainland)
| | - Bingjun Shi
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (The First People's Hospital of Chongqing City), Chongqing, China (mainland)
| | - Qingchun Diao
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (The First People's Hospital of Chongqing City), Chongqing, China (mainland)
| | - Xue Jiang
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (The First People's Hospital of Chongqing City), Chongqing, China (mainland)
| | - Yujuan Xiao
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (The First People's Hospital of Chongqing City), Chongqing, China (mainland)
| |
Collapse
|
6
|
Deng H, Xiao H. The role of the ATP2C1 gene in Hailey-Hailey disease. Cell Mol Life Sci 2017; 74:3687-3696. [PMID: 28551824 PMCID: PMC11107712 DOI: 10.1007/s00018-017-2544-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/27/2017] [Accepted: 05/18/2017] [Indexed: 12/24/2022]
Abstract
Hailey-Hailey disease (HHD) is a rare autosomal dominant acantholytic dermatosis, characterized by a chronic course of repeated and exacerbated skin lesions in friction regions. The pathogenic gene of HHD was reported to be the ATPase calcium-transporting type 2C member 1 gene (ATP2C1) located on chromosome 3q21-q24. Its function is to maintain normal intracellular concentrations of Ca2+/Mn2+ by transporting Ca2+/Mn2+ into the Golgi apparatus. ATP2C1 gene mutations are reportedly responsible for abnormal cytosolic Ca2+/Mn2+ levels and the clinical manifestations of HHD. Environmental factors and genetic modifiers may also affect the clinical variability of HHD. This article aims to critically discuss the clinical and pathological features of HHD, differential diagnoses, and genetic and functional studies of the ATP2C1 gene in HHD. Further understanding the role of the ATP2C1 gene in the pathogenesis of HHD by genetic, molecular, and animal studies may contribute to a better clinical diagnosis and provide new strategies for the treatment and prevention of HHD.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Tongzipo Road 138, Changsha, 410013, Hunan, People's Republic of China.
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| | - Heng Xiao
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Tongzipo Road 138, Changsha, 410013, Hunan, People's Republic of China
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| |
Collapse
|
7
|
Micaroni M, Giacchetti G, Plebani R, Xiao GG, Federici L. ATP2C1 gene mutations in Hailey-Hailey disease and possible roles of SPCA1 isoforms in membrane trafficking. Cell Death Dis 2016; 7:e2259. [PMID: 27277681 PMCID: PMC5143377 DOI: 10.1038/cddis.2016.147] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/17/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022]
Abstract
ATP2C1 gene codes for the secretory pathway Ca(2+)/Mn(2+)-ATPase pump type 1 (SPCA1) localizing at the golgi apparatus. Mutations on the human ATP2C1 gene, causing decreased levels of the SPCA1 expression, have been identified as the cause of the Hailey-Hailey disease, a rare skin disorder. In the last few years, several mutations have been described, and here we summarize how they are distributed along the gene and how missense mutations affect protein expression. SPCA1 is expressed in four different isoforms through alternative splicing of the ATP2C1 gene and none of these isoforms is differentially affected by any of these mutations. However, a better understanding of the tissue specific expression of the isoforms, their localization along the secretory pathway, their specific binding partners and the role of the C-terminal tail making isoforms different from each other, will be future goals of the research in this field.
Collapse
Affiliation(s)
- M Micaroni
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - G Giacchetti
- Aging Research Center (Ce.S.I.), University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy
| | - R Plebani
- Aging Research Center (Ce.S.I.), University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy.,Department of Medical Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy
| | - G G Xiao
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - L Federici
- Aging Research Center (Ce.S.I.), University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy.,Department of Medical Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy
| |
Collapse
|
8
|
Identification of several mutations in ATP2C1 in Lebanese families: insight into the pathogenesis of Hailey-Hailey disease. PLoS One 2015; 10:e0115530. [PMID: 25658765 PMCID: PMC4319924 DOI: 10.1371/journal.pone.0115530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/25/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hailey-Hailey disease (HHD) is an inherited blistering dermatosis characterized by recurrent erosions and erythematous plaques that generally manifest in intertriginous areas. Genetically, HHD is an autosomal dominant disease, resulting from heterozygous mutations in ATP2C1, which encodes a Ca2+/Mn2+ATPase. In this study, we aimed at identifying and analyzing mutations in five patients from unrelated families diagnosed with HHD and study the underlying molecular pathogenesis. OBJECTIVES To genetically study Lebanese families with HHD, and the underlying molecular pathogenesis of the disease. METHODS We performed DNA sequencing for the coding sequence and exon-intron boundaries of ATP2C1. Heat shock experiments were done on several cell types. This was followed by real-time and western blotting for ATP2C1, caspase 3, and PARP proteins to examine any possible role of apoptosis in HHD. This was followed by TUNEL staining to confirm the western blotting results. We then performed heat shock experiments on neonatal rat primary cardiomyocytes. RESULTS Four mutations were detected, three of which were novel and one recurrent mutation in two families. In order for HHD to manifest, it requires both the genetic alteration and the environmental stress, therefore we performed heat shock experiments on fibroblasts (HH and normal) and HaCaT cells, mimicking the environmental factor seen in HHD. It was found that stress stimuli, represented here as temperature stress, leads to an increase in the mRNA and protein levels of ATP2C1 in heat-shocked cells as compared to non-heat shocked ones. However, the increase in ATP2C1 and heat shock protein hsp90 is significantly lower in HH fibroblasts in comparison to normal fibroblasts and HaCaT cells. We did not find a role for apoptosis in the pathogenesis of HHD. A similar approach (heat shock experiments) done on rat cardiomyocytes, led to a significant variation in ATP2C1 transcript and protein levels. CONCLUSION This is the first genetic report of HHD from Lebanon in which we identified three novel mutations in ATP2C1 and shed light on the molecular mechanisms and pathogenesis of HHD by linking stress signals like heat shock to the observed phenotypes. This link was also found in cultured cardiomyocytes suggesting thus a yet uncharacterized cardiac phenotype in HHD patients masked by its in-expressivity in normal health conditions.
Collapse
|
9
|
Shi BJ, Xiao S, Zhang Z, Lü J, Xue M, Jiang Y, Liu Y, Hao J, Diao QC. The ATP2C1 gene in Hailey-Hailey disease patients: one novel deletion and one novel splicing mutation. J Eur Acad Dermatol Venereol 2014; 29:2495-7. [PMID: 24981372 DOI: 10.1111/jdv.12603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B-J Shi
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (the First People's Hospital of Chongqing City), Chongqing, China
| | - S Xiao
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (the First People's Hospital of Chongqing City), Chongqing, China
| | - Z Zhang
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (the First People's Hospital of Chongqing City), Chongqing, China
| | - J Lü
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (the First People's Hospital of Chongqing City), Chongqing, China
| | - M Xue
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (the First People's Hospital of Chongqing City), Chongqing, China
| | - Y Jiang
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (the First People's Hospital of Chongqing City), Chongqing, China
| | - Y Liu
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (the First People's Hospital of Chongqing City), Chongqing, China
| | - J Hao
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (the First People's Hospital of Chongqing City), Chongqing, China
| | - Q-C Diao
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine (the First People's Hospital of Chongqing City), Chongqing, China
| |
Collapse
|
10
|
Voisset C, García-Rodríguez N, Birkmire A, Blondel M, Wellinger RE. Using yeast to model calcium-related diseases: example of the Hailey-Hailey disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2315-21. [PMID: 24583118 DOI: 10.1016/j.bbamcr.2014.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/25/2014] [Accepted: 02/16/2014] [Indexed: 02/05/2023]
Abstract
Cross-complementation studies offer the possibility to overcome limitations imposed by the inherent complexity of multicellular organisms in the study of human diseases, by taking advantage of simpler model organisms like the budding yeast Saccharomyces cerevisiae. This review deals with, (1) the use of S. cerevisiae as a model organism to study human diseases, (2) yeast-based screening systems for the detection of disease modifiers, (3) Hailey-Hailey as an example of a calcium-related disease, and (4) the presentation of a yeast-based model to search for chemical modifiers of Hailey-Hailey disease. The preliminary experimental data presented and discussed here show that it is possible to use yeast as a model system for Hailey-Hailey disease and suggest that in all likelihood, yeast has the potential to reveal candidate drugs for the treatment of this disorder. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Cécile Voisset
- Institut National de la Santé et de la Recherche Médicale UMR 1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France
| | - Néstor García-Rodríguez
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University of Seville, Avd. Americo Vespucio SN, 41092 Sevilla, Spain
| | - April Birkmire
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University of Seville, Avd. Americo Vespucio SN, 41092 Sevilla, Spain
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR 1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest F-29200, France.
| | - Ralf Erik Wellinger
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University of Seville, Avd. Americo Vespucio SN, 41092 Sevilla, Spain
| |
Collapse
|
11
|
Chao SC, Lee JYY, Wu MC, Hsu MML. A novel splice mutation in the ATP2C1 gene in a woman with concomitant psoriasis vulgaris and disseminated Hailey-Hailey disease. Int J Dermatol 2012; 51:947-51. [DOI: 10.1111/j.1365-4632.2010.04800.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Li X, Zhang D, Xiao S, Peng Z. Four novel mutations of the ATP2C1 gene in Chinese patients are associated with familial benign chronic pemphigus. Clin Exp Dermatol 2012; 37:797-9. [PMID: 22607350 DOI: 10.1111/j.1365-2230.2012.04364.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Detection and comparison of two types of ATP2C1 gene mutations in Chinese patients with Hailey-Hailey disease. Arch Dermatol Res 2011; 304:163-70. [PMID: 22124882 DOI: 10.1007/s00403-011-1185-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 10/15/2022]
Abstract
The gene ATP2C1 is identified as the defective gene in Hailey-Hailey disease (HHD). The nonsense and missense are two common types of mutations and have, respectively, been detected in many HHD patients. The aims of our study were to identify the pathogenic ATP2C1 abnormality in Chinese HHD patients, and to compare nonsense and missense mutations in vivo to provide further understanding of the molecular and the physiological basis of HHD. The nucleotide sequencing of the ATP2C1 gene was performed in HHD patients, unaffected family members and 100 unrelated individuals. Meanwhile, we detected and analyzed the clinical manifestations, the expression of ATP2C1 mRNA and hSPCA1 protein in the two types of mutations. Three heterozygous mutations were identified, including a previously reported nonsense mutation (R799X), two novel missense mutations (D644G) and (R417K). The results of comparisons between two types of mutations showed that the common clinical features, the similarly low-level expressions of ATP2C1 mRNA and hSPCA1 protein, but the ATP2C1 mRNA expression of nonsense mutation was lower than missense mutation and even less than half the level of normal people. Our findings expand the known spectrum of ATP2C1 mutations in HHD. We supported the haploinsufficiency theory as prevalent mechanism in both types of mutations, and believed that the differences of ATP2C1 mRNA expressions in peripheral blood may relate with the type of mutation and reflect the state of illness of patients.
Collapse
|
14
|
Cheng TS, Ho KM, Lam CW. Heterogeneous mutations of the ATP2C1 gene causing Hailey-Hailey disease in Hong Kong Chinese. J Eur Acad Dermatol Venereol 2011; 24:1202-6. [PMID: 20236194 DOI: 10.1111/j.1468-3083.2010.03623.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hailey-Hailey disease (HHD) is a rare autosomal dominant dermatosis. It causes suprabasilar acantholysis leading to vesicular and crusted erosions affecting the flexures. Mutation of ATP2C1 gene encoding the human secretory pathway Ca(2+) /Mn(2+) -ATPase (hSPCA1) was identified to be the cause of this entity. OBJECTIVE The aim of this study was to study the mutational profile of the ATP2C1 gene in Hong Kong Chinese patients with HHD. METHODS Patients with the clinical diagnosis of HHD proven by skin biopsy were included in this study. Mutation analysis was performed in 17 Hong Kong Chinese patients with HHD. RESULTS Ten mutations in the ATP2C1 gene were found. Six of these were novel mutations. The novel mutations included a donor splice site mutation (IVS22+1G>A); a missense mutation (c.1049A>T); two deletion mutations (c.185_188delAGTT and c.923_925delAAG); an acceptor splice site mutation (IVS21-1G>C) and an insertion mutation (c.2454dupT). CONCLUSION The six novel mutations provide additions to the HHD mutation database. No hot-spot mutation was found and high allelic heterogeneity was demonstrated in the Hong Kong Chinese patients.
Collapse
Affiliation(s)
- T S Cheng
- Social Hygiene Service, Centre for Health Protection, Department of Health, Hong Kong, China.
| | | | | |
Collapse
|
15
|
Cheng Y, Cheng YM, Zhao G, Jia MC. A novel missense mutation of the ATP2C1 gene in a Chinese patient with Hailey-Hailey disease. Biochem Biophys Res Commun 2011; 406:420-2. [PMID: 21329674 DOI: 10.1016/j.bbrc.2011.02.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 02/10/2011] [Indexed: 11/26/2022]
Abstract
Benign familial chronic pemphigus (Hailey-Hailey disease, HHD; MIM 169600) is a rare autosomal dominant hereditary disorder characterized by pruritic vesicles, painful erosions and scaly erythematous plaques at the sites of friction and flexures. Mutations in ATP2C1, which encoding the human secretory pathway Ca²(+)/Mn²(+)-ATPase protein 1 (hSPCA1), have been identified as the pathogenic gene of HHD. We found a novel, distinct, heterozygous mutation during study of a Chinese patient with HHD. We identified a C→T transition at nucleotide 1235 (p.Thr352IIe), in exon 13 of ATP2C1. This observation would be useful for genetic counseling and prenatal diagnosis for affected families and in expanding the repertoire of ATP2C1 mutations underlying HHD.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Dermatology, The General Hospital of the Air Force, Beijing, China
| | | | | | | |
Collapse
|
16
|
Wu MC, Liao YC, Chao SC. Mutation analysis of the ATP2C1 gene in Taiwanese patients with Hailey-Hailey disease. DERMATOL SIN 2010. [DOI: 10.1016/s1027-8117(10)60012-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
17
|
Hamada T, Fukuda S, Sakaguchi S, Yasumoto S, Kim SC, Hashimoto T. Molecular and clinical characterization in Japanese and Korean patients with Hailey-Hailey disease: six new mutations in the ATP2C1 gene. J Dermatol Sci 2008; 51:31-6. [PMID: 18372165 DOI: 10.1016/j.jdermsci.2008.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/04/2008] [Accepted: 02/11/2008] [Indexed: 10/22/2022]
Abstract
BACKGROUND The autosomal dominant disorder Hailey-Hailey disease (HHD) results from mutations in the ATP2C1 gene, which encodes the human secretory pathway Ca2+/Mn2+ -ATPase protein 1. To date, over 90 pathological mutations scattered throughout ATP2C1 have been described with no indication of mutational hotspots or clustering of mutations. No paradigm for genotype-phenotype correlation has emerged. OBJECTIVES To determine the pathogenic ATP2C1 abnormality in additional patients with HHD in order to provide further contributions to the understanding of the molecular basis of this disorder and to add the data to the known mutation database. METHODS In this study, we investigated eight unrelated Japanese and Korean patients with HHD. We performed direct nucleotide sequencing of the ATP2C1 gene in all patients and RT-PCR analysis, using RNA extracted from a skin biopsy, in a patient with the mildest clinical features. RESULTS We identified seven different heterozygous mutations in seven of the eight investigated patients, including three new single nucleotide deletion/duplication mutations: c.520delC; c.681dupA; c.956delC, three new donor splice site mutations: c.360+1G>C; c.899+1G>T; c.1570+2T>C, as well as a previously described nonsense mutation: p.Arg153X. RT-PCR analysis in the mildest affected patient with a heterozygous c.360+1G>C mutation, demonstrated expression of a short in-frame mutant transcript with exon 5 skipping, which may account for the mild phenotype. CONCLUSIONS The results expand the known mutation spectrum in HHD and show the importance of RNA analysis for understanding the genotype-phenotype correlations more precisely.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Dermatology, Kurume University School of Medicine, Kurume, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Ma YM, Zhang XJ, Liang YH, Ma L, Sun LD, Zhou FS, Fang QY, Gao M, Yang S, Li YZ. Genetic diagnosis in a Chinese Hailey-Hailey disease pedigree with novel ATP2C1 gene mutation. Arch Dermatol Res 2008; 300:203-7. [PMID: 18259764 DOI: 10.1007/s00403-008-0834-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 01/15/2008] [Accepted: 01/24/2008] [Indexed: 11/29/2022]
Abstract
Hailey-Hailey disease (HHD) is an autosomal dominant skin disorder characterized by recurrent eruption of vesicles and bullae at the sites of friction and in the intertriginous areas. Mutations in the ATP2C1 gene encoding the human secretory pathway calcium ATPase 1 (hSPCA1) have been identified as the causative mutations in HHD. In this study, we used direct sequencing and restriction endonuclease digestion to analyze mutations of the ATP2C1 gene in a Chinese three-generation pedigree. A heterozygous T-to-C transition at nucleotide 1004 in exon 12 of ATP2C1 gene was detected. After summarizing the reported cases with ATP2C1 mutation, we concluded that the T1004C transition resulted in a novel missense mutation of leucine condon (CTG) to proline (CCG) at amino acid residue 335(L335P) in hSPCA1. Here, a genetic diagnosis was made for the proband's daughter before the clinical presentation. The study realized the molecular diagnosis in the HHD pedigree. Our findings should be useful for genetic counseling and prenatal diagnosis for the affected family and in demonstrating the critical role of the ATP2C1 gene in the pathogenesis of HHD further.
Collapse
Affiliation(s)
- Yue-Mei Ma
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang, 150086, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang CC, Chao SC, Tsai TH. Hailey-Hailey disease: a novel mutation of the ATP2C1 gene in a Taiwanese family with divergent clinical presentation. J Eur Acad Dermatol Venereol 2008; 22:1145-6. [PMID: 18266684 DOI: 10.1111/j.1468-3083.2007.02562.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Zhang ZZ, Liang YH, Quan C, Gao M, Xiao FL, Yang S, Zhang XJ, Zhou FS, Li W, Fang QY, Shen YJ, Du WH, Mu YZ, Sui WC, Zhou L. Three novel ATP2C1 mutations in Chinese patients with Hailey-Hailey disease. Br J Dermatol 2008; 158:831-3. [PMID: 18205868 DOI: 10.1111/j.1365-2133.2007.08400.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Z Z Zhang
- Institute of Dermatology and Department of Dermatology at First Hospital, Anhui Medical University, 69 Meishan Road, Hefei, Anhui 230032, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Missiaen L, Dode L, Vanoevelen J, Raeymaekers L, Wuytack F. Calcium in the Golgi apparatus. Cell Calcium 2007; 41:405-16. [PMID: 17140658 DOI: 10.1016/j.ceca.2006.11.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 10/30/2006] [Indexed: 11/16/2022]
Abstract
The secretory-pathway Ca2+-ATPases (SPCAs) represent a recently recognized family of phosphorylation-type ATPases that supply the lumen of the Golgi apparatus with Ca2+ and Mn2+ needed for the normal functioning of this structure. Mutations of the human SPCA1 gene (ATP2C1) cause Hailey-Hailey disease, an autosomal dominant skin disorder in which keratinocytes in the suprabasal layer of the epidermis detach. We will first review the physiology of the SPCAs and then discuss how mutated SPCA1 proteins can lead to an epidermal disorder.
Collapse
Affiliation(s)
- Ludwig Missiaen
- Afdeling Fysiologie, Departement Moleculaire Celbiologie, KULeuven Campus Gasthuisberg O/N, Herestraat 49 bus 802, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
22
|
Vanoevelen J, Dode L, Raeymaekers L, Wuytack F, Missiaen L. Diseases involving the Golgi calcium pump. Subcell Biochem 2007; 45:385-404. [PMID: 18193645 DOI: 10.1007/978-1-4020-6191-2_14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Secretory-pathway Ca2(+)-transport ATPases (SPCA) provide the Golgi apparatus with Ca2+ and Mn2+ needed for the normal functioning of this organelle. Loss of one functional copy of the human SPCA1 gene (ATP2C1) causes Hailey-Hailey disease, a rare skin disorder characterized by recurrent blisters and erosions in the flexural areas. Here, we will review the properties and functional role of the SPCAs. The relationship between Hailey-Hailey disease and its defective gene (ATP2C1) will be adressed as well.
Collapse
Affiliation(s)
- J Vanoevelen
- Laboratory of Physiology, KULeuven Campus Gasthuisberg O&N1, Herestraat 49 bus 802, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
23
|
Zhang F, Yan X, Jiang D, Tian H, Wang C, Yu L. Eight novel mutations of ATP2C1 identified in 17 Chinese families with Hailey-Hailey disease. Dermatology 2007; 215:277-283. [PMID: 17911984 DOI: 10.1159/000107620] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 04/20/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hailey-Hailey disease (HHD) is a rare autosomal dominantly inherited dermatosis, characterized by persistent blisters and erosions of the skin. It was recently discovered that HHD was caused by mutations in the ATP2C1 gene, a Ca2+ pump located in the Golgi apparatus. OBSERVATION In this study, we sequenced the ATP2C1 gene from blood samples of 31 patients in 17 unrelated Chinese families and 120 healthy individuals. Eight novel mutations were identified in 9 families, including 3 insertion/deletions (nt 1464-1487/1462-1485 del, 1523 del AT, 2375 del TTGT), 3 splicing-site mutations [360(-2)a-->g, 1415(-2)a-->c, 2243(+2)t-->c], and 2 missense mutations (P307L, D648Y). CONCLUSION Eight mutations were found in 8 unrelated families and 1 sporadic case, and these new findings have further improved our understanding of the role of ATP2C1 in HHD.
Collapse
Affiliation(s)
- Furen Zhang
- Shandong Provincial Institute of Dermatovenereology, Jinan, China.
| | | | | | | | | | | |
Collapse
|
24
|
Majore S, Biolcati G, Barboni L, Cannistraci C, Binni F, Crisi A, Picardo M, Grammatico P. ATP2C1 Gene Mutation Analysis in Italian Patients with Hailey–Hailey Disease. J Invest Dermatol 2005; 125:933-5. [PMID: 16297192 DOI: 10.1111/j.0022-202x.2005.23941.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hailey-Hailey disease (HHD) is a rare autosomal dominant disorder characterized by recurrent skin lesions predominantly involving the body folds. It is caused by heterozygous mutations in the ATP2C1 gene, encoding the human secretory pathway Ca2+/Mn2+-ATPase protein 1 (hSPCA1). In this report we describe the molecular studies performed in eight HHD cases from Italy that led us to identify six different mutations scattered through the ATP2C1 gene in seven of eight cases. Four of the detected mutations were novel. Our results confirm the high allelic heterogeneity of the ATP2C1 gene and support the notion that HHD is a genetically homogeneous disorder. Furthermore, we created a table summarizing all previously reported ATP2C1 mutations, adapting the nomenclature, if needed, according to the guidelines of the Human Genome Variation Society.
Collapse
Affiliation(s)
- Silvia Majore
- Medical Genetics, Experimental Medicine and Pathology Dept, University La Sapienza, S. Camillo-Forlanini Hospital, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen S, Huang C, Li J. Detection of ATP2C1 gene mutation in familial benign chronic pemphigus. ACTA ACUST UNITED AC 2005; 25:585-6, 589. [PMID: 16463682 DOI: 10.1007/bf02896025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The ATP2C1 gene mutation in one case of familial benign chronic pemphigus was investigated. One patient was diagnosed as familial benign chronic pemphigus by pathology, ultrastructral examination and clinical features. Genomic DNA was extracted from blood samples. Mutation of ATP2C1 gene was detected by polymerase chain reaction (PCR) and DNA sequencing. The results showed that deletion mutation was detected in ATP2C1 gene in this patient, which was 2374delTTTG. No mutation was found in the family members and normal individuals. It was concluded that the 2374delTTTG mutation in ATP2C1 gene was the specific mutation for the clinical phenotype for this patient and was a de novo mutation.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | |
Collapse
|
26
|
|
27
|
Van Baelen K, Dode L, Vanoevelen J, Callewaert G, De Smedt H, Missiaen L, Parys JB, Raeymaekers L, Wuytack F. The Ca2+/Mn2+ pumps in the Golgi apparatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1742:103-12. [PMID: 15590060 DOI: 10.1016/j.bbamcr.2004.08.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 08/31/2004] [Indexed: 11/28/2022]
Abstract
Recent evidence highlights the functional importance of the Golgi apparatus as an agonist-sensitive intracellular Ca(2+) store. Besides Ca(2+)-release channels and Ca(2+)-binding proteins, the Golgi complex contains Ca(2+)-uptake mechanisms consisting of the well-known sarco/endoplasmic reticulum Ca(2+)-transport ATPases (SERCA) and the much less characterized secretory-pathway Ca(2+)-transport ATPases (SPCA). SPCA supplies the Golgi compartments and, possibly, the more distal compartments of the secretory pathway with both Ca(2+) and Mn(2+) and, therefore, plays an important role in the cytosolic and intra-Golgi Ca(2+) and Mn(2+) homeostasis. Mutations in the human gene encoding the SPCA1 pump (ATP2C1) resulting in Hailey-Hailey disease, an autosomal dominant skin disorder, are discussed.
Collapse
Affiliation(s)
- Kurt Van Baelen
- Laboratorium voor Fysiologie, K.U. Leuven Campus Gasthuisberg O/N, Herestraat 49, B-3000, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Missiaen L, Raeymaekers L, Dode L, Vanoevelen J, Van Baelen K, Parys JB, Callewaert G, De Smedt H, Segaert S, Wuytack F. SPCA1 pumps and Hailey-Hailey disease. Biochem Biophys Res Commun 2004; 322:1204-13. [PMID: 15336968 DOI: 10.1016/j.bbrc.2004.07.128] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Indexed: 10/26/2022]
Abstract
Both the endoplasmic reticulum and the Golgi apparatus are agonist-sensitive intracellular Ca2+ stores. The Golgi apparatus has Ca2+-release channels and a Ca2+-uptake mechanism consisting of sarco(endo)plasmic-reticulum Ca2+-ATPases (SERCA) and secretory-pathway Ca2+-ATPases (SPCA). SPCA1 has been shown to transport both Ca2+ and Mn2+ in the Golgi lumen and therefore plays an important role in the cytosolic and intra-Golgi Ca2+ and Mn2+ homeostasis. Human genetic studies have provided new information on the physiological role of SPCA1. Loss of one functional copy of the SPCA1 (ATP2C1) gene causes Hailey-Hailey disease, a skin disorder arising in the adult age with recurrent vesicles and erosions in the flexural areas. Here, we review recent experimental evidence showing that the Golgi apparatus plays a much more important role in intracellular ion homeostasis than previously anticipated.
Collapse
Affiliation(s)
- Ludwig Missiaen
- Laboratorium voor Fysiologie, K.U.Leuven Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ton VK, Rao R. Functional expression of heterologous proteins in yeast: insights into Ca2+signaling and Ca2+-transporting ATPases. Am J Physiol Cell Physiol 2004; 287:C580-9. [PMID: 15308463 DOI: 10.1152/ajpcell.00135.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The baker's yeast Saccharomyces cerevisiae is a well-developed, versatile, and widely used model organism. It offers a compact and fully sequenced genome, tractable genetics, simple and inexpensive culturing conditions, and, importantly, a conservation of basic cellular machinery and signal transducing pathways with higher eukaryotes. In this review, we describe recent technical advances in the heterologous expression of proteins in yeast and illustrate their application to the study of the Ca2+homeostasis machinery, with particular emphasis on Ca2+-transporting ATPases. Putative Ca2+-ATPases in the newly sequenced genomes of organisms such as parasites, plants, and vertebrates have been investigated by functional complementation of an engineered yeast strain lacking endogenous Ca2+pumps. High-throughput screens of mutant phenotypes to identify side chains critical for ion transport and selectivity have facilitated structure-function analysis, and genomewide approaches may be used to dissect cellular pathways involved in Ca2+transport and trafficking. The utility of the yeast system is demonstrated by rapid advances in the study of the emerging family of Golgi/secretory pathway Ca2+,Mn2+-ATPases (SPCA). Functional expression of human SPCA1 in yeast has provided insight into the physiology, novel biochemical characteristics, and subcellular localization of this pump. Haploinsufficiency of SPCA1 leads to Hailey-Hailey disease (HDD), a debilitating blistering disorder of the skin. Missense mutations, identified in patients with HHD, may be conveniently assessed in yeast for loss-of-function phenotypes associated with the disease.
Collapse
Affiliation(s)
- Van-Khue Ton
- Dept. of Physiology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | | |
Collapse
|
30
|
Fairclough RJ, Lonie L, Van Baelen K, Haftek M, Munro CS, Burge SM, Hovnanian A. Hailey–Hailey Disease: Identification of Novel Mutations in ATP2C1 and Effect of Missense Mutation A528P on Protein Expression Levels. J Invest Dermatol 2004; 123:67-71. [PMID: 15191544 DOI: 10.1111/j.0022-202x.2004.22713.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ATP2C1, encoding the human secretory pathway Ca(2+)-ATPase (hSPCA1), was recently identified as the defective gene in Hailey-Hailey disease (HHD), an autosomal dominant skin disorder characterized by abnormal keratinocyte adhesion in the suprabasal layers of the epidermis. In this study, we used denaturing high-performance liquid chromatography to screen all 28 exons and flanking intron boundaries of ATP2C1 for mutations in 9 HHD patients. Nine different mutations were identified. Five of these mutations, including one nonsense, one deletion, two splice-site, and one missense mutation, have not been previously reported. Recently, functional analysis of a series of site-specific mutants, designed to mimic missense mutations found in ATP2C1, uncovered specific defects in Ca(2+) and/or Mn(2+) transport and protein expression in mutant hSPCA1 polypeptides. In order to investigate the molecular and physiological basis of HHD in the patient carrying missense mutation A528P, located in the putative nucleotide binding domain of the molecule, site-directed mutagenesis was employed to introduce this mutation into the wild-type ATP2C1 (hSPCA1) sequence. Functional analyses of HHD-mutant A528P demonstrated a low level of protein expression, despite normal levels of mRNA and correct targeting to the Golgi, suggesting instability or abnormal folding of the mutated hSPCA1 polypeptides. Analogous to conclusions drawn from our previous studies, these results further support the theory of haploinsufficiency as a prevalent mechanism for the dominant inheritance of HHD, by suggesting that the level of hSPCA1 in epidermal cells is critical.
Collapse
|
31
|
Dhitavat J, Fairclough RJ, Hovnanian A, Burge SM. Calcium pumps and keratinocytes: lessons from Darier's disease and Hailey-Hailey disease. Br J Dermatol 2004; 150:821-8. [PMID: 15149492 DOI: 10.1111/j.1365-2133.2004.05904.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Darier's disease and Hailey-Hailey disease are autosomal dominantly inherited skin disorders in which desmosomal adhesion between keratinocytes is abnormal. ATP2A2 and ATP2C1 have been identified as the causative genes for Darier's disease and Hailey-Hailey disease, respectively. ATP2A2 encodes the sarco(endo)plasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2) pump, while ATP2C1 encodes a secretory pathway Ca(2+)/Mn(2+)-ATPase (SPCA1) found in the Golgi apparatus. We review recent work into the function of these pumps in human keratinocytes and discuss how mutations in these genes might cause these diseases by altering the formation or stability of desmosomes.
Collapse
Affiliation(s)
- J Dhitavat
- INSERM U563, Purpan Hospital, Place du Dr Baylac, 31059 Toulouse cedex 03, France
| | | | | | | |
Collapse
|
32
|
Li H, Sun XK, Zhu XJ. Four novel mutations in ATP2C1 found in Chinese patients with Hailey-Hailey disease. Br J Dermatol 2003; 149:471-4. [PMID: 14510977 DOI: 10.1046/j.1365-2133.2003.05495.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Familial benign chronic pemphigus or Hailey-Hailey disease (HHD; OMIM 169600) is an autosomal dominant blistering disease. Pathogenic mutations in ATP2C1 encoding a novel Ca2+ pump have recently been identified. OBJECTIVES To identify mutations in ATP2C1 in Chinese patients with HHD. METHODS Eleven unrelated Chinese patients with HHD were subjected to mutation detection in ATP2C1. Eight of them had a family history of HHD. The 27 coding exons and their flanking sequences were amplified and sequenced. RESULTS Five of the 11 patients were identified to have heterozygous mutations including three nonsense mutations and two splicing mutations in ATP2C1. CONCLUSIONS Four novel mutations, nonsense mutations S887X and W795X and splicing mutations 118-1 g-->a and 1890+1del(gtgag)ins53, were found in this series of Chinese patients with HHD.
Collapse
Affiliation(s)
- H Li
- Department of Dermatology, Peking University First Hospital, Beijing 100034, China
| | | | | |
Collapse
|
33
|
Abstract
Intracellular Ca(2+)-transport ATPases exert a pivotal role in the endoplasmic reticulum and in the compartments of the cellular secretory pathway by maintaining a sufficiently high lumenal Ca(2+) (and Mn(2+)) concentration in these compartments required for an impressive number of vastly different cell functions. At the same time this lumenal Ca(2+) represents a store of releasable activator Ca(2+) controlling an equally impressive number of cytosolic functions. This review mainly focuses on the different Ca(2+)-transport ATPases found in the intracellular compartments of mainly animal non-muscle cells: the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pumps. Although it is not our intention to treat the ATPases of the specialized sarcoplasmic reticulum in depth, we can hardly ignore the SERCA1 pump of fast-twitch skeletal muscle since its structure and function is by far the best understood and it can serve as a guide to understand the other members of the family. In a second part of this review we describe the relatively novel family of secretory pathway Ca(2+)/Mn(2+) ATPases (SPCA), which in eukaryotic cells are primarily found in the Golgi compartment.
Collapse
Affiliation(s)
- F Wuytack
- Laboratorium voor Fysiologie, K.U.Leuven, Campus Gasthuisberg, Leuven, Belgium.
| | | | | |
Collapse
|