1
|
Kempfer E, Sivalingam K, Neese F. Efficient Implementation of Approximate Fourth Order N-Electron Valence State Perturbation Theory. J Chem Theory Comput 2025; 21:3953-3967. [PMID: 40183285 PMCID: PMC12020360 DOI: 10.1021/acs.jctc.4c01735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
In this work, the implementation of a partial fourth order N-electron-valence perturbation theory (NEVPT) is reported and numerically evaluated. The method, termed NEVPT4(SD), includes the internally contracted functions that span the first-order-interacting space (FOIS) and evaluates their contribution to second-order in the wave function and fourth order in the energy. The triple- and quadruple excitations that would additionally enter the second-order-interacting space (SOIS) are not included. As discussed by Grimme [Chem. Phys. Lett. 2001, 334, 99-106] in order to obtain a size-consistent method, it is necessary to also drop the fourth-order renormalization term if the quadruple excitations are dropped. The NEVPT4(SD) method is demonstrated to be perfectly size consistent. Computationally, the method is still fairly affordable and requires about the same time as a single iteration of the fully internally contracted (FIC) MRCI or MRCEPA(0) and significantly cheaper than the FIC MRCC that serves as the reference for our calculations. The accuracy tests show that NEVPT4(SD) offers significant accuracy improvements over NEVPT2 for transition metal atom/ion multiplets as well as diatomic bond breaking potential energy surfaces. We find that going to fourth order in perturbation theory essentially eliminates the need for a second d-shell, thus showing that the latter primarily serves to capture higher-order dynamic correlation effects that are not present in a second-order treatment. Although it captures fourth-order correlation effects, NEVPT4(SD) is numerically not a large improvement over NEVPT2 for the calculation of Heisenberg exchange couplings as illustrated by test calculations on Cu(II) dimers.
Collapse
Affiliation(s)
- Emily
M. Kempfer
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr D-45470, Germany
| | | | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr D-45470, Germany
| |
Collapse
|
2
|
Lei Y, Guo Y, Suo B, Liu W. SDSPT2s:SDSPT2 with Selection. J Chem Theory Comput 2025; 21:1259-1275. [PMID: 39847030 DOI: 10.1021/acs.jctc.4c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
As an approximation to SDSCI [static-dynamic-static (SDS) configuration interaction (CI), a minimal MRCI; Theor. Chem. Acc. 2014, 133, 1481], SDSPT2 [Mol. Phys. 2017, 115, 2696] is a CI-like multireference (MR) second-order perturbation theory (PT2) that treats single and multiple roots in the same manner. This feature permits the use of configuration selection over a large complete active space (CAS) P to end up with a much reduced reference space P̃, which is connected only with a small portion (Q̃1) of the full first-order interacting space Q connected to P. The most expensive portion of the reduced interacting Q̃1 space (which involves three active orbitals) can further be truncated by partially bypassing its generation followed by an integral-based cutoff. With marginal loss of accuracy, the selection-truncation procedure, along with an efficient evaluation and storage of internal contraction coefficients, renders SDSPT2s (SDSPT2 with selection) applicable to systems that cannot be handled by the parent CAS-based SDSPT2, as demonstrated by several challenging showcases.
Collapse
Affiliation(s)
- Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, China
| | - Yang Guo
- School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Bingbing Suo
- Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Leyser da Costa Gouveia T, Maganas D, Neese F. General Spin-Restricted Open-Shell Configuration Interaction Approach: Application to Metal K-Edge X-ray Absorption Spectra of Ferro- and Antiferromagnetically Coupled Dimers. J Phys Chem A 2025; 129:330-345. [PMID: 39680653 PMCID: PMC11726630 DOI: 10.1021/acs.jpca.4c05228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
In this work, we present a generalized implementation of the previously developed restricted open-shell configuration interaction singles (ROCIS) family of methods. The new method allows us to treat high-spin (HS) ferro- as well as antiferromagnetically (AF) coupled systems while retaining the total spin as a good quantum number. To achieve this important and nontrivial goal, we employ the machinery of the iterative configuration expansion (ICE) method, which is able to tackle general configuration interaction (CI) problems on the basis of spin-adapted configuration state functions (CSFs). While ICE is designed to work in restricted orbital spaces, the new general-spin ROCIS (GS-ROCIS) method is designed to be applicable to larger molecules by employing a prototyping strategy. This new method can be applied to closed-shell, high-spin open-shell, as well as antiferromagnetic reference CSFs. In addition, GS-ROCIS can be combined with the pair natural orbital (PNO) machinery in the form of the PNO-GS-ROCIS method. With this extension, one can drastically reduce the required virtual space in the vicinity of the involved core orbitals, leading to computational savings of several orders of magnitude with negligible (<1%) loss in accuracy. To demonstrate the use of the new methodology, the metal K pre-edge X-ray absorption excitation problem of an antiferromagnetically coupled copper model dimer was investigated. By first analyzing a model copper dimer, it is shown that even for the minimum core excitation problem that involves the two antiferromagnetically coupled singly occupied orbitals and one virtual orbital, the resulting GS-ROCIS and broken-symmetry configuration interaction singles (BS-CIS) spectra may differ in terms of the number, energy position, and relative intensity of the computed bands. Furthermore, the methodology was validated to perform equally well in computing the K-edge spectra of antiferromagnetic nickel oxide dimers and mixed-valence cobalt oxide trimers. Collectively, the present development represents an important methodological advance in the application of theoretical X-ray spectroscopy.
Collapse
Affiliation(s)
| | - Dimitrios Maganas
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilheim-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilheim-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
Santos‐Jr CV, Kraka E, Moura RT. Chemical Bond Overlap Descriptors From Multiconfiguration Wavefunctions. J Comput Chem 2025; 46:e27534. [PMID: 39607372 PMCID: PMC11604095 DOI: 10.1002/jcc.27534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
The chemical bond is a fundamental concept in chemistry, and various models and descriptors have evolved since the advent of quantum mechanics. This study extends the overlap density and its topological descriptors (OP/TOP) to multiconfigurational wavefunctions. We discuss a comparative analysis of OP/TOP descriptors using CASSCF and DCD-CAS(2) wavefunctions for a diverse range of molecular systems, including X-O bonds in X-OH (XH, Li, Na, H2B, H3C, H2N, HO, F) and Li-X' (XF, Cl, and Br). Results show that OP/TOP aligns with bonding models like the quantum theory of atoms in molecules (QTAIM) and local vibrational modes theory, revealing insights such as overlap densities shifting towards the more electronegative atom in polar bonds. The Li-F dissociation profile using OP/TOP descriptors demonstrated sensitivity to ionic/neutral inversion during Li-F dissociation, highlighting their potential for elucidating complex bond phenomena and offering new avenues for understanding multiconfigurational chemical bond dynamics.
Collapse
Affiliation(s)
| | - Elfi Kraka
- Department of Chemistry, Computational and Theoretical Chemistry Group (CATCO)Southern Methodist UniversityDallasTexasUSA
| | - Renaldo T. Moura
- Department of Chemistry, Computational and Theoretical Chemistry Group (CATCO)Southern Methodist UniversityDallasTexasUSA
- Department of Chemistry and Physics, Center of Agrarian SciencesFederal University of ParaibaAreiaBrazil
| |
Collapse
|
5
|
Ganguly G, Havlas Z, Michl J. Ab Initio Calculation of UV-vis Absorption of Parent Mg, Fe, Co, Ni, Cu, and Zn Metalloporphyrins. Inorg Chem 2024; 63:10127-10142. [PMID: 38770816 DOI: 10.1021/acs.inorgchem.3c04460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Relativistic restricted active space (RAS) second-order multireference perturbation theory (MRPT2) methods, incorporating spin-orbit (SO) coupling perturbatively via state interaction (SO-MRPT2/RASSCF), were used to reproduce the absorption spectra of parent metalloporphyrins containing the Mg2+, Zn2+, Co2+, Ni2+, Cu2+, or FeCl2+ ions in the 12,500-40,000 cm-1 region. Particular attention was paid to the interaction between the porphyrin ring and the metal 3d electrons in states of different multiplicities (we used metal 3d and double d-shell or 3d' orbitals). For this class of compounds, the N-electron valence state perturbation theory (NEVPT2) method is superior to the complete active space perturbation theory (CASPT2) and successfully reproduces the energies of all four characteristic transitions (Q, B, N, and L) of closed-shell metalloporphyrins. Inclusion of SO coupling was found to have very little effect on excitation energies and oscillator strengths. For FeCl2+ porphyrin, we treated ligand-to-metal charge-transfer (LMCT; π,d), metal ligand field (d,d), and metal-to-ligand charge-transfer (MLCT; d,π*) transitions within the same framework. The broad and intense spectral features associated with its B (Soret) band are attributed to multiconfigurational LMCT (d,π*) bands involving strong metal-ligand orbital mixing.
Collapse
Affiliation(s)
- Gaurab Ganguly
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6 16610, Czech Republic
| | - Zdenek Havlas
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6 16610, Czech Republic
| | - Josef Michl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6 16610, Czech Republic
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
6
|
Lechner MH, Papadopoulos A, Sivalingam K, Auer AA, Koslowski A, Becker U, Wennmohs F, Neese F. Code generation in ORCA: progress, efficiency and tight integration. Phys Chem Chem Phys 2024; 26:15205-15220. [PMID: 38767596 DOI: 10.1039/d4cp00444b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
An improved version of ORCA's automated generator environment (ORCA-AGE II) is presented. The algorithmic improvements and the move to C++ as the programming language lead to a performance gain of up to two orders of magnitude compared to the previously developed PYTHON toolchain. Additionally, the restructured modular design allows for far more complex code engines to be implemented readily. Importantly, we have realised an extremely tight integration with the ORCA host program. This allows for a workflow in which only the wavefunction Ansatz is part of the source code repository while all actual high-level code is generated automatically, inserted at the appropriate place in the host program before it is compiled and linked together with the hand written code parts. This construction ensures longevity and uniform code quality. Furthermore the new developments allow ORCA-AGE II to generate parallelised production-level code for highly complex theories, such as fully internally contracted multireference coupled-cluster theory (fic-MRCC) with an enormous number of contributing tensor contractions. We also discuss the automated implementation of nuclear gradients for arbitrary theories. All these improvements enable the implementation of theories that are too complex for the human mind and also reduce development times by orders of magnitude. We hope that this work enables researchers to concentrate on the intellectual content of the theories they develop rather than be concerned with technical details of the implementation.
Collapse
Affiliation(s)
- Marvin H Lechner
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Anastasios Papadopoulos
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Kantharuban Sivalingam
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Alexander A Auer
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Axel Koslowski
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Ute Becker
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Frank Wennmohs
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Frank Neese
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
7
|
Li C, Mao S, Huang R, Evangelista FA. Frozen Natural Orbitals for the State-Averaged Driven Similarity Renormalization Group. J Chem Theory Comput 2024; 20:4170-4181. [PMID: 38747709 DOI: 10.1021/acs.jctc.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
We present a reduced-cost implementation of the state-averaged driven similarity renormalization group (SA-DSRG) based on the frozen natural orbital (FNO) approach. The natural orbitals (NOs) are obtained by diagonalizing the one-body reduced density matrix from SA-DSRG second-order perturbation theory (SA-DSRG-PT2). We consider three criteria to truncate the virtual NOs for the subsequent electron correlation treatment beyond SA-DSRG-PT2. An additive second-order correction is applied to the SA-DSRG Hamiltonian to reintroduce correlation effects from the discarded orbitals. The FNO SA-DSRG method is benchmarked on 35 small organic molecules in the QUEST database. When keeping 98-99% of the cumulative occupation numbers, the mean absolute error in the vertical transition energies due to FNO is less than 0.01 eV. Using the same FNO threshold, we observe a speedup of 9 times compared to the conventional SA-DSRG implementation for nickel carbonyl with a quadruple-ζ basis set. The FNO approach enables nonperturbative SA-DSRG computations on chloroiron corrole [FeCl(C19H11N4)] with more than 1000 basis functions, surpassing the current limit of a conventional implementation.
Collapse
Affiliation(s)
- Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shuxian Mao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Renke Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
8
|
Cheng Y, Ma H. Renormalized-Residue-Based Multireference Configuration Interaction Method for Strongly Correlated Systems. J Chem Theory Comput 2024; 20:1988-2009. [PMID: 38380619 DOI: 10.1021/acs.jctc.3c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The implementation of multireference configuration interaction (MRCI) methods in quantum systems with large active spaces is hindered by the expansion of configuration bases or the intricate handling of reduced density matrices (RDMs). In this work, we present a spin-adapted renormalized-residue-based MRCI (RR-MRCI) approach that leverages renormalized residues to effectively capture the entanglement between active and inactive orbitals. This approach is reinforced by a novel efficient algorithm, which also facilitates an efficient deployment of spin-adapted matrix product state MRCI (MPS-MRCI). The RR-MRCI framework possesses several advantages: (1) It considers the orbital entanglement and utilizes highly compressed MPS structure, improving computational accuracy and efficiency compared with internally contracted (ic) MRCI. (2) Utilizing small-sized buffer environments of a few external orbitals as probes based on quantum information theory, it enhances computational efficiency over MPS-MRCI and offers potential application to large molecular systems. (3) The RR framework can be implemented in conjunction with ic-MRCI, eliminating the need for high-rank RDMs, by using distinct renormalized residues. We evaluated this method across nine diverse molecular systems, including Cu2O22+ with an active space of (24e,24o) and two complexes of lanthanide and actinide with active space (38e,36o), demonstrating the method's versatility and efficacy.
Collapse
Affiliation(s)
- Yifan Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
9
|
Song Y, Huang W, Liu C, Lei Y, Suo B, Ma H. Spin-Adapted Externally Contracted Multireference Configuration Interaction Method Based on Selected Reference Configurations. J Phys Chem A 2024; 128:958-971. [PMID: 38272019 DOI: 10.1021/acs.jpca.3c07526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
As one kind of approximation of the full configuration interaction solution, the selected configuration interaction (sCI) methods have been shown to be valuable for large active spaces. However, the inclusion of dynamic correlation beyond large active spaces is necessary for more quantitative results. Since the sCI wave function can provide a compact reference for multireference methods, previously, we proposed an externally contracted multireference configuration interaction method using the sCI reference reconstructed from the density matrix renormalization group wave function [J. Chem. Theory Comput. 2018, 14, 4747-4755]. The DMRG2sCI-EC-MRCI method is promising for dealing with more than 30 active orbitals and large basis sets. However, it suffers from two drawbacks: spin contamination and low efficiency when using Slater determinant bases. To solve these problems, in this work, we adopt configuration state function bases and introduce a new algorithm based on the hybrid of tree structure for convenient configuration space management and the graphical unitary group approach for efficient matrix element calculation. The test calculation of naphthalene shows that the spin-adapted version could achieve a speed-up of 6.0 compared with the previous version based on the Slater determinant. Examples of dinuclear copper(II) compound as well as Ln(III) and An(III) complexes show that the sCI-EC-MRCI can give quantitatively accurate results by including dynamic correlation over sCI for systems with large active spaces and basis sets.
Collapse
Affiliation(s)
- Yinxuan Song
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Chungen Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, People's Republic of China
| | - Bingbing Suo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an 710127, People's Republic of China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, Qingdao Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
10
|
Zhutova N, Réal F, Renault E, Vallet V, Maurice R. Excited states of polonium(IV): electron correlation and spin-orbit coupling in the Po 4+ free ion and in the bare and solvated [PoCl 5] - and [PoCl 6] 2- complexes. Phys Chem Chem Phys 2023; 25:24603-24612. [PMID: 37665002 DOI: 10.1039/d3cp03317a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Polonium (Po, Z = 84) is a main-block element with poorly known physico-chemical properties. Not much information has been firmly acquired since its discovery by Marie and Pierre Curie in 1898, especially regarding its speciation in aqueous solution and spectroscopy. In this work, we revisit the absorption properties of two complexes, [PoCl5]- and [PoCl6]2-, using quantum mechanical calculations. These complexes have the potential to exhibit a maximum absorption at 418 nm in HCl medium (for concentrations of 0.5 mol L-1 and above). Initially, we examine the electronic spectra of the Po4+ free ion and of its isoelectronic analogue, Bi3+, in the spin-orbit configuration interaction (SOCI) framework. Our findings demonstrate that the SOCI matrix should be dressed with correlated electronic energies and that the quality of the spectra is largely improved by decontracting the reference states at the complete active space plus singles (CAS + S) level. Subsequently, we investigate the absorption properties of the [PoCl5]- and [PoCl6]2- complexes in two stages. Firstly, we perform methodological tests at the MP2/def2-TZVP gas phase geometries, indicating that the decontraction of the reference states can be skipped without compromising the accuracy significantly. Secondly, we study the solution absorption properties by means of single-point calculations performed at the solvated geometries, obtained by an implicit solvation treatment or a combination of implicit and explicit solvation. Our results highlight the importance of saturating the first coordination sphere of the PoIV ion to obtain a qualitatively correct picture. Finally, we conclude that the known-for-decades 418 nm peak could be attributed to a mixture of both the [PoCl5(H2O)]- and [PoCl6]2- complexes. This finding not only aligns with the behaviour of the analogous BiIII ion under similar conditions but also potentially provides an explanation for previous discrepancies in the literature.
Collapse
Affiliation(s)
- Nadiya Zhutova
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France.
| | - Florent Réal
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France.
| | - Eric Renault
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Valérie Vallet
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France.
| | - Rémi Maurice
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
11
|
Xu Y, Cheng Y, Song Y, Ma H. New Density Matrix Renormalization Group Approaches for Strongly Correlated Systems Coupled with Large Environments. J Chem Theory Comput 2023. [PMID: 37471519 DOI: 10.1021/acs.jctc.2c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Thanks to the high compression of the matrix product state (MPS) form of the wave function and the efficient site-by-site iterative sweeping optimization algorithm, the density matrix normalization group (DMRG) and its time-dependent variant (TD-DMRG) have been established as powerful computational tools in accurately simulating the electronic structure and quantum dynamics of strongly correlated molecules with a large number (101-2) of quantum degrees of freedom (active orbitals or vibrational modes). However, the quantitative characterization of the quantum many-body behaviors of realistic strongly correlated systems requires a further consideration of the interaction between the embedded active subsystem and the remaining correlated environment, e.g., a larger number (102-3) of external orbitals in electronic structure or infinite condensed-phase phononic modes in nucleus dynamics. To this end, we introduced three new post-DMRG and TD-DMRG approaches, namely (1) DMRG2sCI-MRCI and DMRG2sCI-ENPT by the reconstruction of selected configuration interaction (sCI) type of compact reference function from DMRG coefficients and the use of externally contracted MRCI (multireference configuration interaction) and Epstein-Nesbet perturbation theory (ENPT), without recourse to the expensive high order n-electron reduced density matrices (n-RDMs). (2) DMRG combined with RR-MRCI (renormalized residue-based MRCI), which improves the computational accuracy and efficiency of internally contracted (ic) MRCI by renormalizing the contracted bases with small-sized buffer environment(s) of a few external orbitals as probes based on quantum information theory. (3) HM (hierarchical mapping)-TD-DMRG in which a large environment is reduced to a small number of renormalized environmental modes (which accounts for the most vital system-environment interactions) through stepwise mapping transformation. These advances extend the efficacy of highly accurate DMRG/TD-DMRG computations to the quantitative characterization of the electronic structure and quantum dynamics in realistic strongly correlated systems coupled with large environments and are reviewed in this paper.
Collapse
Affiliation(s)
- Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yifan Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yinxuan Song
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, Qingdao Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
12
|
Anglada JM, Poater J, Moreira IDR, Bofill JM. Controlling the Diradical Character of Thiele Like Compounds. J Org Chem 2023; 88:8553-8562. [PMID: 37339010 PMCID: PMC10336959 DOI: 10.1021/acs.joc.3c00482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 06/22/2023]
Abstract
Organic diradicals play an important role in many fields of chemistry, biochemistry, and materials science. In this work, by means of high-level theoretical calculations, we have investigated the effect of representative chemical substituents in p-quinodimethane (pQDM) and Thiele's hydrocarbons with respect to the singlet-triplet energy gap, a feature characterizing their diradical character. We show how the nature of the substituents has a very important effect in controlling the singlet-triplet energy gap so that several compounds show diradical features in their ground electronic state. Importantly, steric effects appear to play the most determinant role for pQDM analogues, with minor effects of the substituents in the central ring. For Thiele like compounds, we found that electron-withdrawing groups in the central ring favor the quinoidal form with a low or almost null diradical character, whereas electron-donating group substituents favor the aromatic-diradical form if the electron donation does not exceed 6-π electrons. In this case, if there is an excess of electron donation, the diradical character is reduced. The electronic spectrum of these compounds is also calculated, and we predict that the most intense bands occur in the visible region, although in some cases characteristic electronic transition in the near-IR region may appear.
Collapse
Affiliation(s)
- Josep M. Anglada
- Departament
de Química Biològica (IQAC-CSIC), Carrer Jordi Girona, 18, 08034 Barcelona, Spain
| | - Jordi Poater
- Departament
de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Ibério de
P. R. Moreira
- Departament
de Ciència de Materials i Química Física, Secció
de Química Física, Universitat
de Barcelona, 08028 Barcelona, Spain
- IQTCUB, Universitat de Barcelona, Martí i Franquès,
1-11, 08028 Barcelona, Spain
| | - Josep Maria Bofill
- Departament
de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Majumder R, Sokolov AY. Simulating Spin-Orbit Coupling with Quasidegenerate N-Electron Valence Perturbation Theory. J Phys Chem A 2023; 127:546-559. [PMID: 36599072 DOI: 10.1021/acs.jpca.2c07952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We present the first implementation of spin-orbit coupling effects in fully internally contracted second-order quasidegenerate N-electron valence perturbation theory (SO-QDNEVPT2). The SO-QDNEVPT2 approach enables the computations of ground- and excited-state energies and oscillator strengths combining the description of static electron correlation with an efficient treatment of dynamic correlation and spin-orbit coupling. In addition to SO-QDNEVPT2 with the full description of one- and two-body spin-orbit interactions at the level of two-component Breit-Pauli Hamiltonian, our implementation also features a simplified approach that takes advantage of spin-orbit mean-field approximation (SOMF-QDNEVPT2). The accuracy of these methods is tested for the group 14 and 16 hydrides, 3d and 4d transition metal ions, and two actinide dioxides (neptunyl and plutonyl dications). The zero-field splittings of group 14 and 16 molecules computed using SO-QDNEVPT2 and SOMF-QDNEVPT2 are in good agreement with the available experimental data. For the 3d transition metal ions, the SO-QDNEVPT2 method is significantly more accurate than SOMF-QDNEVPT2, while no substantial difference in the performance of two methods is observed for the 4d ions. Finally, we demonstrate that for the actinide dioxides the results of SO-QDNEVPT2 and SOMF-QDNEVPT2 are in good agreement with the data from previous theoretical studies of these systems. Overall, our results demonstrate that SO-QDNEVPT2 and SOMF-QDNEVPT2 are promising multireference methods for treating spin-orbit coupling with a relatively low computational cost.
Collapse
Affiliation(s)
- Rajat Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| |
Collapse
|
14
|
Kollmar C, Sivalingam K, Guo Y, Neese F. An efficient implementation of the NEVPT2 and CASPT2 methods avoiding higher-order density matrices. J Chem Phys 2021; 155:234104. [PMID: 34937355 DOI: 10.1063/5.0072129] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A factorization of the matrix elements of the Dyall Hamiltonian in N-electron valence state perturbation theory allowing their evaluation with a computational effort comparable to the one needed for the construction of the third-order reduced density matrix at the most is presented. Thus, the computational bottleneck arising from explicit evaluation of the fourth-order density matrix is avoided. It is also shown that the residual terms arising in the case of an approximate complete active space configuration interaction solution and containing even the fifth-order density matrix for two excitation classes can be evaluated with little additional effort by choosing again a favorable factorization of the corresponding matrix elements. An analogous argument is also provided for avoiding the fourth-order density matrix in complete active space second-order perturbation theory. Practical calculations indicate that such an approach leads to a considerable gain in computational efficiency without any compromise in numerical accuracy or stability.
Collapse
Affiliation(s)
- Christian Kollmar
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Kantharuban Sivalingam
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
15
|
Atanasov M, Andreici Eftimie EL, Avram NM, Brik MG, Neese F. First-Principles Study of Optical Absorption Energies, Ligand Field and Spin-Hamiltonian Parameters of Cr 3+ Ions in Emeralds. Inorg Chem 2021; 61:178-192. [PMID: 34930002 DOI: 10.1021/acs.inorgchem.1c02650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we study the electronic structure, energies, and vibronic structure of optical d-d transitions of Cr3+ ions doped in beryl (Be3Si6Al2O18:Cr3+, emerald). A computational protocol is developed that combines periodic density functional theory (for modeling of the bulk crystalline lattice of emerald) and the multireference configuration interaction complete active space self-consistent field method supplemented with n-electron valence second-order perturbation theory (for the calculation of the energy levels, wave functions, and spin-Hamiltonian and ligand-field parameters of the trigonal Cr3+ centers in the [CrO6]9- clusters embedded in an extended point charge field). Ligand-field parameters were extracted from mapping the effective ligand-field Hamiltonian onto the full many-particle Hamiltonian from one side and from a direct fit to energies of computed d-d transitions on the other side. These have been analyzed using ab initio ligand-field theory. The quality of the theoretical predictions is critically assessed through a detailed comparison with the available experimental data.
Collapse
Affiliation(s)
- Mihail Atanasov
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr D-45470, Germany.,Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | | | - Nicolae M Avram
- Department of Physics, West University of Timisoara, Bd.V. Parvan No. 4, Timisoara 300223, Romania.,Academy of Romanian Scientists, Ilfov 3, Bucharest 050044, Romania
| | - Mikhail G Brik
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia.,CQUPT-BUL Innovation Institute & College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China.,Faculty of Science and Technology, Jan Długosz University, Armii Krajowej 13/15, Częstochowa PL-42200, Poland.,Academy of Romanian Scientists, Ilfov 3, Bucharest 050044, Romania
| | - Frank Neese
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr D-45470, Germany
| |
Collapse
|
16
|
Park JW. Analytical Gradient Theory for Resolvent-Fitted Second-Order Extended Multiconfiguration Perturbation Theory (XMCQDPT2). J Chem Theory Comput 2021; 17:6122-6133. [PMID: 34582217 DOI: 10.1021/acs.jctc.1c00613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We present the formulation and implementation of an analytical gradient algorithm for extended multiconfiguration quasidegenerate perturbation theory (XMCQDPT2) with the resolvent-fitting approximation by Granovsky. This algorithm is powerful when optimizing molecular configurations with a moderate-sized active space and many electronic states. First, we present the powerfulness and accuracy of resolvent-fitting approximations compared to canonical XMCQDPT2 theory. Then, we demonstrate the utility of the current algorithm in frequency analyses, optimizing the minimum energy conical intersection geometries of the retinal chromophore model RPSB6 and evaluating nuclear gradients when there are many electronic states. Furthermore, we parallelize the algorithm using the OpenMP/MPI hybrid approach. Additionally, we report the computational cost and parallel efficiency of the program.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
17
|
Khedkar A, Roemelt M. Modern multireference methods and their application in transition metal chemistry. Phys Chem Chem Phys 2021; 23:17097-17112. [PMID: 34355719 DOI: 10.1039/d1cp02640b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition metal chemistry is a challenging playground for quantum chemical methods owing to the simultaneous presence of static and dynamic electron correlation effects in many systems. Wavefunction based multireference (MR) methods constitute a physically sound and systematically improvable Ansatz to deal with this complexity but suffer from some conceptual difficulties and high computational costs. The latter problem partially arises from the unfavorable scaling of the Full Configuration Interaction (Full-CI) problem which in the majority of MR methods is solved for a subset of the molecular orbital space, the so-called active space. In the last years multiple methods such as modern variants of selected CI, Full-CI Quantum Monte Carlo (FCIQMC) and the density matrix renormalization group (DMRG) have been developed that solve the Full-CI problem approximately for a fraction of the computational cost required by conventional techniques thereby significantly extending the range of applicability of modern MR methods. This perspective review outlines recent advancements in the field of MR electronic structure methods together with the resulting chances and challenges for theoretical studies in the field of transition metal chemistry. In light of its emerging importance a special focus is put on the selection of adequate active spaces and the concomitant development of numerous selection aides in recent years.
Collapse
Affiliation(s)
- Abhishek Khedkar
- Lehrstuhl für theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| | | |
Collapse
|
18
|
Lechner MH, Izsák R, Nooijen M, Neese F. A perturbative approach to multireference equation-of-motion coupled cluster. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1939185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Marvin H. Lechner
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Róbert Izsák
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, USA
| | - Marcel Nooijen
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| |
Collapse
|
19
|
Guo Y, Sivalingam K, Kollmar C, Neese F. Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). II. The full rank NEVPT2 (FR-NEVPT2) formulation. J Chem Phys 2021; 154:214113. [PMID: 34240984 DOI: 10.1063/5.0051218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Paper I, the performances of pre-screening (PS), extended PS (EPS), and cumulant (CU) approximations to the fourth-order density matrix were examined in the context of second-order N-electron valence state perturbation theory (NEVPT2). It has been found that the CU, PS, and even EPS approximations with loose thresholds may introduce intruder states. In the present work, the origin of these "false intruder" states introduced by approximated density matrices is discussed. Canonical NEVPT2 implementations employ a rank reduction trick. By analyzing its residual error, we find that the omission of the rank reduction leads to a more stable multireference perturbation theory for incomplete active space reference wave functions. Such a full rank (FR)-NEVPT2 formulation is equivalent to the conventional NEVPT2 method for the complete active space self-consistent field/complete active space configuration interaction reference wave function. A major drawback of the FR-NEVPT2 formulation is the necessity of the fifth-order density matrix. To avoid the construction of the high-order density matrices, the combination of the FR-NEVPT2 with the CU approximation is studied. However, we find that the CU approximation remains problematic as it still introduces intruder states. The question of how to robustly and efficiently perform internally contracted multireference perturbation theories with approximate densities remains a challenging field of investigation.
Collapse
Affiliation(s)
- Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Kantharuban Sivalingam
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Christian Kollmar
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
20
|
Guo Y, Sivalingam K, Neese F. Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). I. Revisiting the NEVPT2 construction. J Chem Phys 2021; 154:214111. [PMID: 34240991 DOI: 10.1063/5.0051211] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Over the last decade, the second-order N-electron valence state perturbation theory (NEVPT2) has developed into a widely used multireference perturbation method. To apply NEVPT2 to systems with large active spaces, the computational bottleneck is the construction of the fourth-order reduced density matrix. Both its generation and storage become quickly problematic beyond the usual maximum active space of about 15 active orbitals. To reduce the computational cost of handling fourth-order density matrices, the cumulant approximation (CU) has been proposed in several studies. A more conventional strategy to address the higher-order density matrices is the pre-screening approximation (PS), which is the default one in the ORCA program package since 2010. In the present work, the performance of the CU, PS, and extended PS (EPS) approximations for the fourth-order density matrices is compared. Following a pedagogical introduction to NEVPT2, contraction schemes, as well as the approximations to density matrices, and the intruder state problem are discussed. The CU approximation, while potentially leading to large computational savings, virtually always leads to intruder states. With the PS approximation, the computational savings are more modest. However, in conjunction with conservative cutoffs, it produces stable results. The EPS approximation to the fourth-order density matrices can reproduce very accurate NEVPT2 results without any intruder states. However, its computational cost is not much lower than that of the canonical algorithm. Moreover, we found that a good indicator of intrude states problems in any approximation to high order density matrices is the eigenspectra of the Koopmans matrices.
Collapse
Affiliation(s)
- Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Kantharuban Sivalingam
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
21
|
Gałyńska M, Ásgeirsson V, Jónsson H, Bjornsson R. Localized and Delocalized States of a Diamine Cation: Resolution of a Controversy. J Phys Chem Lett 2021; 12:1250-1255. [PMID: 33497225 PMCID: PMC7875508 DOI: 10.1021/acs.jpclett.0c03651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Recent Rydberg spectroscopy measurements of a diamine molecule, N,N'-dimethylpiperazine (DMP), indicate the existence of a localized electronic state as well as a delocalized electronic state. This implies that the cation, DMP+, can similarly have its positive charge either localized on one of the N atoms or delocalized over both. This interpretation of the experiments has, however, been questioned based on coupled cluster calculations. In this article, results of high-level multireference configuration interaction calculations are presented where a localized state of DMP+ is indeed found to be present with an energy barrier separating it from the delocalized state. The energy difference between the two states is in excellent agreement with the experimental estimate. The results presented here, therefore, support the original interpretation of the experiments and illustrate a rare shortcoming of CCSD(T), the "gold standard" of quantum chemistry. These results have implications for the development of density functionals, as most functionals fail to produce the localized state.
Collapse
Affiliation(s)
- Marta Gałyńska
- Science
Institute and Faculty of Physical Sciences, VR-III, University of Iceland, 107 Reykjavík, Iceland
- Institute
of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland
| | - Vilhjálmur Ásgeirsson
- Science
Institute and Faculty of Physical Sciences, VR-III, University of Iceland, 107 Reykjavík, Iceland
| | - Hannes Jónsson
- Science
Institute and Faculty of Physical Sciences, VR-III, University of Iceland, 107 Reykjavík, Iceland
| | - Ragnar Bjornsson
- Max-Planck
Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
22
|
Burton HGA, Thom AJW. Reaching Full Correlation through Nonorthogonal Configuration Interaction: A Second-Order Perturbative Approach. J Chem Theory Comput 2020; 16:5586-5600. [DOI: 10.1021/acs.jctc.0c00468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hugh G. A. Burton
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Alex J. W. Thom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
23
|
Stroscio GD, Srnec M, Hadt RG. Multireference Ground and Excited State Electronic Structures of Free- versus Iron Porphyrin-Carbenes. Inorg Chem 2020; 59:8707-8715. [PMID: 32510941 DOI: 10.1021/acs.inorgchem.0c00249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron porphyrin carbenes (IPCs) are important reaction intermediates in engineered carbene transferase enzymes and homogeneous catalysis. However, discrepancies between theory and experiment complicate the understanding of IPC electronic structure. In the literature, this has been framed as whether the ground state is an open- vs closed-shell singlet (OSS vs CSS). Here we investigate the structurally dependent ground and excited spin-state energetics of a free carbene and its IPC analogs with variable trans axial ligands. In particular, for IPCs, multireference ab initio wave function methods are more consistent with experiment and predict a mixed singlet ground state that is dominated by the CSS (Fe(II) ← {:C(X)Y}0) configuration (i.e., electrophilic carbene) but that also has a small, non-negligible contribution from an Fe(III)-{C(X)Y}-• configuration (hole in d(xz), i.e., radical carbene). In the multireference approach, the "OSS-like" excited states are metal-to-ligand charge transfer (MLCT) in nature and are energetically well above the CSS-dominated ground state. The first, lowest energy of these "OSS-like" excited states is predicted to be heavily weighted toward the Fe(III)-{C(X)Y}-• (hole in d(yz)) configuration. As expected from exchange considerations, this state falls energetically above a triplet of the same configuration. Furthermore, potential energy surfaces (PESs) along the IPC Fe-C(carbene) bond elongation exhibit increasingly strong mixings between CSS/OSS characters, with the Fe(III)-{C(X)Y}-• configuration (hole in d(xz)) growing in weight in the ground state during bond elongation. The relative degree of electrophilic/radical carbene character along this structurally relevant PES can potentially play a role in reactivity and selectivity patterns in catalysis. Future studies on IPC reaction coordinates should evaluate contributions from ground and excited state multireference character.
Collapse
Affiliation(s)
- Gautam D Stroscio
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague 8, 18223 Czech Republic
| | - Ryan G Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
24
|
Neese F, Wennmohs F, Becker U, Riplinger C. The ORCA quantum chemistry program package. J Chem Phys 2020; 152:224108. [DOI: 10.1063/5.0004608] [Citation(s) in RCA: 697] [Impact Index Per Article: 139.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
- FAccTs GmbH, Rolandstr. 67, 50677 Köln, Germany
| | - Frank Wennmohs
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Ute Becker
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | |
Collapse
|
25
|
Kollmar C, Sivalingam K, Neese F. An alternative choice of the zeroth-order Hamiltonian in CASPT2 theory. J Chem Phys 2020; 152:214110. [DOI: 10.1063/5.0010019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Christian Kollmar
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Kantharuban Sivalingam
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
26
|
Park JW, Al-Saadon R, MacLeod MK, Shiozaki T, Vlaisavljevich B. Multireference Electron Correlation Methods: Journeys along Potential Energy Surfaces. Chem Rev 2020; 120:5878-5909. [PMID: 32239929 DOI: 10.1021/acs.chemrev.9b00496] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multireference electron correlation methods describe static and dynamical electron correlation in a balanced way and, therefore, can yield accurate and predictive results even when single-reference methods or multiconfigurational self-consistent field theory fails. One of their most prominent applications in quantum chemistry is the exploration of potential energy surfaces. This includes the optimization of molecular geometries, such as equilibrium geometries and conical intersections and on-the-fly photodynamics simulations, both of which depend heavily on the ability of the method to properly explore the potential energy surface. Because such applications require nuclear gradients and derivative couplings, the availability of analytical nuclear gradients greatly enhances the scope of quantum chemical methods. This review focuses on the developments and advances made in the past two decades. A detailed account of the analytical nuclear gradient and derivative coupling theories is presented. Emphasis is given to the software infrastructure that allows one to make use of these methods. Notable applications of multireference electron correlation methods to chemistry, including geometry optimizations and on-the-fly dynamics, are summarized at the end followed by a discussion of future prospects.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University, Chungdae-ro 1, Cheongju 28644, Korea
| | - Rachael Al-Saadon
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew K MacLeod
- Workday, 4900 Pearl Circle East, Suite 100, Boulder, Colorado 80301, United States
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Quantum Simulation Technologies, Inc., 625 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, 414 East Clark Street, Vermillion, South Dakota 57069, United States
| |
Collapse
|
27
|
Locating conical intersections using the quasidegenerate partially and strongly contracted NEVPT2 methods. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Saitow M, Yanai T. A multireference coupled-electron pair approximation combined with complete-active space perturbation theory in local pair-natural orbital framework. J Chem Phys 2020; 152:114111. [PMID: 32199413 DOI: 10.1063/1.5142622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Complete-Active Space Second-order Perturbation Theory (CASPT2) has been one of the most widely-used methods for reliably calculating electronic structures of multireference systems. Because of its lowest level treatment of dynamic correlation, it has a high computational feasibility; however, its accuracy in some cases falls short of needs. Here, as a simple yet higher-order alternative, we introduce a hybrid theory of the CASPT2 and a multireference variant of the Coupled-Electron Pair Approximation (CEPA), which is a class of high level correlation theory. A central feature of our theory (CEPT2) is to use the two underlying theories for describing different divisions of correlation components based on the full internal contraction framework. The external components, which usually give a major contribution to the dynamic correlation, are intensively described using the CEPA Ansatz, while the rests are treated at the CASPT2 level. Furthermore, to drastically reduce the computational demands, we have incorporated the pair-natural orbital (PNO) method into our multireference implementations. This development, thus, requires highly complex derivations and coding, while it has been largely facilitated with an automatic expression and code generation technique. To highlight the accuracy of the CEPT2 approach and to assess the errors caused by the PNO truncation, benchmark calculations are shown on small- to medium-size molecules, illustrating the high accuracy of the present CEPT2 model. By tightening the truncation thresholds, the PNO-CEPT2 energy converges toward the canonical counterpart and is more accurate than that of PNO-CASPT2 as long as the same truncation thresholds are used.
Collapse
Affiliation(s)
- Masaaki Saitow
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
29
|
Maganas D, Kowalska JK, Van Stappen C, DeBeer S, Neese F. Mechanism of L 2,3-edge x-ray magnetic circular dichroism intensity from quantum chemical calculations and experiment-A case study on V (IV)/V (III) complexes. J Chem Phys 2020; 152:114107. [PMID: 32199419 DOI: 10.1063/1.5129029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this work, we present a combined experimental and theoretical study on the V L2,3-edge x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra of VIVO(acac)2 and VIII(acac)3 prototype complexes. The recorded V L2,3-edge XAS and XMCD spectra are richly featured in both V L3 and L2 spectral regions. In an effort to predict and interpret the nature of the experimentally observed spectral features, a first-principles approach for the simultaneous prediction of XAS and XMCD spectra in the framework of wavefunction based ab initio methods is presented. The theory used here has previously been formulated for predicting optical absorption and MCD spectra. In the present context, it is applied to the prediction of the V L2,3-edge XAS and XMCD spectra of the VIVO(acac)2 and VIII(acac)3 complexes. In this approach, the spin-free Hamiltonian is computed on the basis of the complete active space configuration interaction (CASCI) in conjunction with second order N-electron valence state perturbation theory (NEVPT2) as well as the density functional theory (DFT)/restricted open configuration interaction with singles configuration state functions based on a ground state Kohn-Sham determinant (ROCIS/DFT). Quasi-degenerate perturbation theory is then used to treat the spin-orbit coupling (SOC) operator variationally at the many particle level. The XAS and XMCD transitions are computed between the relativistic many particle states, considering their respective Boltzmann populations. These states are obtained from the diagonalization of the SOC operator along with the spin and orbital Zeeman operators. Upon averaging over all possible magnetic field orientations, the XAS and XMCD spectra of randomly oriented samples are obtained. This approach does not rely on the validity of low-order perturbation theory and provides simultaneous access to the calculation of XMCD A, B, and C terms. The ability of the method to predict the XMCD C-term signs and provide access to the XMCD intensity mechanism is demonstrated on the basis of a generalized state coupling mechanism based on the type of the excitations dominating the relativistically corrected states. In the second step, the performance of CASCI, CASCI/NEVPT2, and ROCIS/DFT is evaluated. The very good agreement between theory and experiment has allowed us to unravel the complicated XMCD C-term mechanism on the basis of the SOC interaction between the various multiplets with spin S' = S, S ± 1. In the last step, it is shown that the commonly used spin and orbital sum rules are inadequate in interpreting the intensity mechanism of the XAS and XMCD spectra of the VIVO(acac)2 and VIII(acac)3 complexes as they breakdown when they are employed to predict their magneto-optical properties. This conclusion is expected to hold more generally.
Collapse
Affiliation(s)
- Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Joanna K Kowalska
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Casey Van Stappen
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
30
|
Abstract
![]()
We
introduce a new variant of the complete active space second-order
perturbation theory (CASPT2) method that performs similarly to multistate
CASPT2 (MS-CASPT2) in regions of the potential energy surface where
the electronic states are energetically well separated and is akin
to extended MS-CASPT2 (XMS-CASPT2) in case the underlying zeroth-order
references are near-degenerate. Our approach follows a recipe analogous
to that of XMS-CASPT2 to ensure approximate invariance under unitary
transformations of the model states and a dynamic weighting scheme
to smoothly interpolate the Fock operator between state-specific and
state-average regimes. The resulting extended dynamically weighted
CASPT2 (XDW-CASPT2) methodology possesses the most desirable features
of both MS-CASPT2 and XMS-CASPT2, that is, the ability to provide
accurate transition energies and correctly describe avoided crossings
and conical intersections. The reliability of XDW-CASPT2 is assessed
on a number of molecular systems. First, we consider the dissociation
of lithium fluoride, highlighting the distinctive characteristics
of the new approach. Second, the invariance of the theory is investigated
by studying the conical intersection of the distorted allene molecule.
Finally, the relative accuracy in the calculation of vertical excitation
energies is benchmarked on a set of 26 organic compounds. We found
that XDW-CASPT2, albeit being only approximately invariant, produces
smooth potential energy surfaces around conical intersections and
avoided crossings, performing equally well to the strictly invariant
XMS-CASPT2 method. The accuracy of vertical transition energies is
almost identical to MS-CASPT2, with a mean absolute deviation of 0.01–0.02
eV, in contrast to 0.12 eV for XMS-CASPT2.
Collapse
Affiliation(s)
- Stefano Battaglia
- Department of Chemistry-BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Roland Lindh
- Department of Chemistry-BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| |
Collapse
|
31
|
Zhang Y, Suo B, Wang Z, Zhang N, Li Z, Lei Y, Zou W, Gao J, Peng D, Pu Z, Xiao Y, Sun Q, Wang F, Ma Y, Wang X, Guo Y, Liu W. BDF: A relativistic electronic structure program package. J Chem Phys 2020; 152:064113. [DOI: 10.1063/1.5143173] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yong Zhang
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, People’s Republic of China
| | - Bingbing Suo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi’an, Shaanxi 710127, People’s Republic of China
| | - Zikuan Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing 100871, People’s Republic of China
| | - Ning Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing 100871, People’s Republic of China
| | - Zhendong Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710127, People’s Republic of China
| | - Wenli Zou
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi’an, Shaanxi 710127, People’s Republic of China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, People’s Republic of China
| | - Daoling Peng
- College of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Zhichen Pu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing 100871, People’s Republic of China
| | - Yunlong Xiao
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing 100871, People’s Republic of China
| | - Qiming Sun
- Tencent America LLC, Palo Alto, California 94306, USA
| | - Fan Wang
- Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, People’s Republic of China
| | - Yongtao Ma
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, People’s Republic of China
| | - Xiaopeng Wang
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, People’s Republic of China
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, People’s Republic of China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, People’s Republic of China
| |
Collapse
|
32
|
Mahajan A, Blunt NS, Sabzevari I, Sharma S. Multireference configuration interaction and perturbation theory without reduced density matrices. J Chem Phys 2019; 151:211102. [DOI: 10.1063/1.5128115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ankit Mahajan
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| | - Nick S. Blunt
- Department of Chemistry, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Iliya Sabzevari
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, USA
| |
Collapse
|
33
|
Craig GA, Velmurugan G, Wilson C, Valiente R, Rajaraman G, Murrie M. Magnetic Properties of a Family of [MnIII4LnIII4] Wheel Complexes: An Experimental and Theoretical Study. Inorg Chem 2019; 58:13815-13825. [DOI: 10.1021/acs.inorgchem.9b01592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gavin A. Craig
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Gunasekaran Velmurugan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400 076, India
| | - Claire Wilson
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Rafael Valiente
- Física Aplicada, Facultad de Ciencias, Universidad de Cantabria-IDIVAL, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400 076, India
| | - Mark Murrie
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
34
|
Zhang T, Li C, Evangelista FA. Improving the Efficiency of the Multireference Driven Similarity Renormalization Group via Sequential Transformation, Density Fitting, and the Noninteracting Virtual Orbital Approximation. J Chem Theory Comput 2019; 15:4399-4414. [PMID: 31268704 DOI: 10.1021/acs.jctc.9b00353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study examines several techniques to improve the efficiency of the linearized multireference driven similarity renormalization group truncated to one- and two-body operators [MR-LDSRG(2)]. We propose a sequential MR-LDSRG(2) [sq-MR-LDSRG(2)] scheme, in which one-body substitutions are folded exactly into the Hamiltonian. This new approach is combined with density fitting (DF) to reduce the storage cost of two-electron integrals. To further avoid storage of large four-index intermediates, we propose a noninteracting virtual orbital (NIVO) approximation of the Baker-Campbell-Hausdorff series that neglects commutators terms with three and four virtual indices. The NIVO approximation reduces the computational prefactor of the MR-LDSRG(2), bringing it closer to that of coupled cluster with singles and doubles (CCSD). We test the effect of the DF and NIVO approximations on the MR-LDSRG(2) and sq-MR-LDSRG(2) methods by computing properties of eight diatomic molecules. The diatomic constants obtained by DF-sq-MR-LDSRG(2)+NIVO are found to be as accurate as those from the original MR-LDSRG(2) and coupled cluster theory with singles, doubles, and perturbative triples. Finally, we demonstrate that the DF-sq-MR-LDSRG(2)+NIVO scheme can be applied to chemical systems with more than 550 basis functions by computing the automerization energy of cyclobutadiene with a quintuple-ζ basis set. The predicted automerization energy is found to be similar to the value computed with Mukherjee's state-specific multireference coupled cluster theory with singles and doubles.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation , Emory University , Atlanta , Georgia 30322 , United States
| | - Chenyang Li
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation , Emory University , Atlanta , Georgia 30322 , United States
| | - Francesco A Evangelista
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation , Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|
35
|
Dittmer A, Izsák R, Neese F, Maganas D. Accurate Band Gap Predictions of Semiconductors in the Framework of the Similarity Transformed Equation of Motion Coupled Cluster Theory. Inorg Chem 2019; 58:9303-9315. [PMID: 31240911 PMCID: PMC6750750 DOI: 10.1021/acs.inorgchem.9b00994] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
In
this work, we present a detailed comparison between wave-function-based
and particle/hole techniques for the prediction of band gap energies
of semiconductors. We focus on the comparison of the back-transformed
Pair Natural Orbital Similarity Transformed Equation of Motion Coupled-Cluster
(bt-PNO-STEOM-CCSD) method with Time Dependent Density Functional
Theory (TD-DFT) and Delta Self Consistent Field/DFT (Δ-SCF/DFT)
that are employed to calculate the band gap energies in a test set
of organic and inorganic semiconductors. Throughout, we have used
cluster models for the calculations that were calibrated by comparing
the results of the cluster calculations to periodic DFT calculations
with the same functional. These calibrations were run with cluster
models of increasing size until the results agreed closely with the
periodic calculation. It is demonstrated that bt-PNO-STEOM-CC yields
accurate results that are in better than 0.2 eV agreement with the
experiment. This holds for both organic and inorganic semiconductors.
The efficiency of the employed computational protocols is thoroughly
discussed. Overall, we believe that this study is an important contribution
that can aid future developments and applications of excited state
coupled cluster methods in the field of solid-state chemistry and
heterogeneous catalysis. In this work, it is shown
that a combination of the embedded cluster approach with wave-function-based
ab initio methods in the framework of the Similarity Transformed Equation
of Motion Coupled Cluster (bt-PNO STEOM-CC) provides an accurate protocol
for band gap energy predictions in classes of organic and inorganic
semiconductors.
Collapse
Affiliation(s)
- Anneke Dittmer
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Róbert Izsák
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
36
|
Li C, Evangelista FA. Multireference Theories of Electron Correlation Based on the Driven Similarity Renormalization Group. Annu Rev Phys Chem 2019; 70:245-273. [DOI: 10.1146/annurev-physchem-042018-052416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The driven similarity renormalization group (DSRG) provides an alternative way to address the intruder state problem in quantum chemistry. In this review, we discuss recent developments of multireference methods based on the DSRG. We provide a pedagogical introduction to the DSRG and its various extensions and discuss its formal properties in great detail. In addition, we report several illustrative applications of the DSRG to molecular systems.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA; emails: ,
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA; emails: ,
| |
Collapse
|
37
|
Shi B, Nachtigallová D, Aquino AJA, Machado FBC, Lischka H. High-level theoretical benchmark investigations of the UV-vis absorption spectra of paradigmatic polycyclic aromatic hydrocarbons as models for graphene quantum dots. J Chem Phys 2019; 150:124302. [DOI: 10.1063/1.5086760] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Baimei Shi
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, São Paulo 12228-900, Brazil
| | - Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
38
|
Maganas D, Kowalska JK, Nooijen M, DeBeer S, Neese F. Comparison of multireference ab initio wavefunction methodologies for X-ray absorption edges: A case study on [Fe(II/III)Cl4]2–/1– molecules. J Chem Phys 2019; 150:104106. [DOI: 10.1063/1.5051613] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Joanna K. Kowalska
- Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Marcel Nooijen
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Serena DeBeer
- Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
39
|
Schriber JB, Hannon KP, Li C, Evangelista FA. A Combined Selected Configuration Interaction and Many-Body Treatment of Static and Dynamical Correlation in Oligoacenes. J Chem Theory Comput 2018; 14:6295-6305. [DOI: 10.1021/acs.jctc.8b00877] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jeffrey B. Schriber
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Kevin P. Hannon
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chenyang Li
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
40
|
Sen S, Schapiro I. A comprehensive benchmark of the XMS-CASPT2 method for the photochemistry of a retinal chromophore model. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1501112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Saumik Sen
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
41
|
Song C, Martínez TJ. Reduced scaling CASPT2 using supporting subspaces and tensor hyper-contraction. J Chem Phys 2018; 149:044108. [DOI: 10.1063/1.5037283] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chenchen Song
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Todd J. Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
42
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
43
|
Evangelista FA. Perspective: Multireference coupled cluster theories of dynamical electron correlation. J Chem Phys 2018; 149:030901. [DOI: 10.1063/1.5039496] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Francesco A. Evangelista
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
44
|
Saitow M, Becker U, Riplinger C, Valeev EF, Neese F. A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory. J Chem Phys 2018; 146:164105. [PMID: 28456208 DOI: 10.1063/1.4981521] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Coupled-Cluster expansion, truncated after single and double excitations (CCSD), provides accurate and reliable molecular electronic wave functions and energies for many molecular systems around their equilibrium geometries. However, the high computational cost, which is well-known to scale as O(N6) with system size N, has limited its practical application to small systems consisting of not more than approximately 20-30 atoms. To overcome these limitations, low-order scaling approximations to CCSD have been intensively investigated over the past few years. In our previous work, we have shown that by combining the pair natural orbital (PNO) approach and the concept of orbital domains it is possible to achieve fully linear scaling CC implementations (DLPNO-CCSD and DLPNO-CCSD(T)) that recover around 99.9% of the total correlation energy [C. Riplinger et al., J. Chem. Phys. 144, 024109 (2016)]. The production level implementations of the DLPNO-CCSD and DLPNO-CCSD(T) methods were shown to be applicable to realistic systems composed of a few hundred atoms in a routine, black-box fashion on relatively modest hardware. In 2011, a reduced-scaling CCSD approach for high-spin open-shell unrestricted Hartree-Fock reference wave functions was proposed (UHF-LPNO-CCSD) [A. Hansen et al., J. Chem. Phys. 135, 214102 (2011)]. After a few years of experience with this method, a few shortcomings of UHF-LPNO-CCSD were noticed that required a redesign of the method, which is the subject of this paper. To this end, we employ the high-spin open-shell variant of the N-electron valence perturbation theory formalism to define the initial guess wave function, and consequently also the open-shell PNOs. The new PNO ansatz properly converges to the closed-shell limit since all truncations and approximations have been made in strict analogy to the closed-shell case. Furthermore, given the fact that the formalism uses a single set of orbitals, only a single PNO integral transformation is necessary, which offers large computational savings. We show that, with the default PNO truncation parameters, approximately 99.9% of the total CCSD correlation energy is recovered for open-shell species, which is comparable to the performance of the method for closed-shells. UHF-DLPNO-CCSD shows a linear scaling behavior for closed-shell systems, while linear to quadratic scaling is obtained for open-shell systems. The largest systems we have considered contain more than 500 atoms and feature more than 10 000 basis functions with a triple-ζ quality basis set.
Collapse
Affiliation(s)
- Masaaki Saitow
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Ute Becker
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Christoph Riplinger
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Frank Neese
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
45
|
Suo B, Lei Y, Han H, Wang Y. Development of Xi'an-CI package – applying the hole–particle symmetry in multi-reference electronic correlation calculations. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1441464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Bingbing Suo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, People's Republic of China
| | - Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an, China
| | - Huixian Han
- School of Physics, Northwest University, Xi'an, China
| | - Yubin Wang
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, People's Republic of China
| |
Collapse
|
46
|
Pathak S, Lang L, Neese F. A dynamic correlation dressed complete active space method: Theory, implementation, and preliminary applications. J Chem Phys 2017; 147:234109. [DOI: 10.1063/1.5017942] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Shubhrodeep Pathak
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Lucas Lang
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
47
|
Neese F. Software update: the ORCA program system, version 4.0. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1327] [Citation(s) in RCA: 2259] [Impact Index Per Article: 282.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Frank Neese
- Abteilung molekulare Theorie und Spektroskopie, Max Planck Institut für Chemische Energiekonversion Mülheim an der Ruhr Germany
| |
Collapse
|
48
|
Krupička M, Sivalingam K, Huntington L, Auer AA, Neese F. A toolchain for the automatic generation of computer codes for correlated wavefunction calculations. J Comput Chem 2017; 38:1853-1868. [DOI: 10.1002/jcc.24833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Martin Krupička
- Max-Planck-Institut für Chemische Energiekonversion, Department of Molecular Theory and Spectroscopy; Stiftstr. 34-36 Mülheim a.d. Ruhr 45470 Germany
| | - Kantharuban Sivalingam
- Max-Planck-Institut für Chemische Energiekonversion, Department of Molecular Theory and Spectroscopy; Stiftstr. 34-36 Mülheim a.d. Ruhr 45470 Germany
| | - Lee Huntington
- Max-Planck-Institut für Chemische Energiekonversion, Department of Molecular Theory and Spectroscopy; Stiftstr. 34-36 Mülheim a.d. Ruhr 45470 Germany
| | - Alexander A. Auer
- Max-Planck-Institut für Chemische Energiekonversion, Department of Molecular Theory and Spectroscopy; Stiftstr. 34-36 Mülheim a.d. Ruhr 45470 Germany
| | - Frank Neese
- Max-Planck-Institut für Chemische Energiekonversion, Department of Molecular Theory and Spectroscopy; Stiftstr. 34-36 Mülheim a.d. Ruhr 45470 Germany
| |
Collapse
|
49
|
Dutta AK, Neese F, Izsák R. A simple scheme for calculating approximate transition moments within the equation of motion expectation value formalism. J Chem Phys 2017; 146:214111. [PMID: 28595413 PMCID: PMC5461178 DOI: 10.1063/1.4984618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/17/2017] [Indexed: 11/15/2022] Open
Abstract
A simple scheme for calculating approximate transition moments within the framework of the equation of motion coupled cluster method is proposed. It relies on a matrix inversion technique to calculate the excited state left eigenvectors and requires no additional cost over that of the excitation energy calculation. The new approximation gives almost identical UV-Vis spectra to that obtained using the standard equation of motion coupled cluster method with single and double excitations for molecules in a standard test set.
Collapse
Affiliation(s)
- Achintya Kumar Dutta
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Róbert Izsák
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
50
|
Wiebeler C, Borin V, Sanchez de Araújo AV, Schapiro I, Borin AC. Excitation Energies of Canonical Nucleobases Computed by Multiconfigurational Perturbation Theories. Photochem Photobiol 2017; 93:888-902. [DOI: 10.1111/php.12765] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/16/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Christian Wiebeler
- Fritz Haber Center for Molecular Dynamics; Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Veniamin Borin
- Fritz Haber Center for Molecular Dynamics; Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Adalberto Vasconcelos Sanchez de Araújo
- Department of Fundamental Chemistry; Institute of Chemistry; NAP-PhotoTech the USP Consortium for Photochemical Technology; University of São Paulo; São Paulo SP Brazil
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics; Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Antonio Carlos Borin
- Department of Fundamental Chemistry; Institute of Chemistry; NAP-PhotoTech the USP Consortium for Photochemical Technology; University of São Paulo; São Paulo SP Brazil
| |
Collapse
|