1
|
Schmidt A, Miebach L, Bagli C, Kantz L, Emmert S, von Woedtke T, Bekeschus S. Medical gas plasma modifies Nrf2 signaling in diabetic wound healing. J Adv Res 2025:S2090-1232(25)00264-4. [PMID: 40250557 DOI: 10.1016/j.jare.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/01/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025] Open
Abstract
INTRODUCTION Diabetes mellitus is a chronic disease that can disrupt physiologic wound healing. Medical gas plasma technology produces therapeutic reactive species that support wound healing. OBJECTIVE Previous studies have shown that increasing the transcriptional activity of the redox regulator nuclear factor erythroid 2-related factor 2 (Nrf2) in diabetic models can improve insulin sensitivity, reduce blood glucose levels, and ameliorate diabetic complications. However, the therapeutic potential and mechanisms of action of gas plasma have not been addressed in this context. METHODS Full-thickness dermal ear wounds were created in a preclinical mouse model of type II diabetes and compared with a native wild-type strain of C57BL/6 mice. First, the formation of reactive species in the plasma gas phase was determined by optical emission spectroscopy. Second, qPCR, protein expression, and inflammation analysis by cytokine secretion were performed to confirm the transcriptional results. Finally, qPCR and cytokine profiling were conducted to measure the effects of gas plasma in patient wound samples. RESULTS Repeated in vivo treatment with medical gas plasma supported wound healing, e.g., re-epithelialization, in both sexes. Gas plasma-stimulated changes in Nrf2 signaling associated with downstream targets were supported by the evidence of impaired wound healing in Nrf2 knockout mice. In addition, gas plasma treatment significantly affected inflammation by modulating local and systemic cytokine levels. In vivo, treatment of human diabetic wounds underscored the involvement of Nrf2 signaling in protecting against oxidative stress, as assessed by qPCR. The cytokine signature of human diabetic wounds outlined different response patterns among patients after a single exposure, while inflammatory mediators were consistently reduced after repeated plasma treatment. CONCLUSIONS The present finding of accelerated wound healing by the Nrf2 activator underlines the high potential of medical gas plasma therapy in non-diabetic and diabetic wound healing.
Collapse
Affiliation(s)
- Anke Schmidt
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Research Alliance, Felix-Hausdorff-Str. 2, Greifswald 17489, Germany
| | - Lea Miebach
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Research Alliance, Felix-Hausdorff-Str. 2, Greifswald 17489, Germany
| | - Can Bagli
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Research Alliance, Felix-Hausdorff-Str. 2, Greifswald 17489, Germany
| | - Liane Kantz
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Research Alliance, Felix-Hausdorff-Str. 2, Greifswald 17489, Germany
| | - Steffen Emmert
- Department of Dermatology and Venereology, University Medical Center Rostock, Strempelstr. 13, Rostock 18057, Germany
| | - Thomas von Woedtke
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Research Alliance, Felix-Hausdorff-Str. 2, Greifswald 17489, Germany; Institute of Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., Greifswald 17475, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Research Alliance, Felix-Hausdorff-Str. 2, Greifswald 17489, Germany; Department of Dermatology and Venereology, University Medical Center Rostock, Strempelstr. 13, Rostock 18057, Germany.
| |
Collapse
|
2
|
Krewing M, Weisgerber KM, Dirks T, Bobkov I, Schubert B, Bandow JE. Iron-sulfur cluster proteins present the weak spot in non-thermal plasma-treated Escherichia coli. Redox Biol 2025; 81:103562. [PMID: 40023980 PMCID: PMC11915174 DOI: 10.1016/j.redox.2025.103562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025] Open
Abstract
Non-thermal atmospheric pressure plasmas have an antiseptic activity beneficial in different medical applications. In a genome-wide screening, hydrogen peroxide and superoxide were identified as key species contributing to the antibacterial effects of plasma while [FeS] cluster proteins emerged as potential cellular targets. We investigated the impact of plasma treatment on [FeS] cluster homeostasis in Escherichia coli treated for 1 min with the effluent of a microscale atmospheric pressure plasma jet (μAPPJ). Mutants defective in [FeS] cluster synthesis and maintenance lacking the SufBC2D scaffold protein complex or desulfurase IscS were hypersensitive to plasma treatment. Monitoring the activity of [FeS] cluster proteins of the tricarboxylic acid cycle (aconitase, fumarase, succinate dehydrogenase) and malate dehydrogenase (no [FeS] clusters), we identified cysteine, iron, superoxide dismutase, and catalase as determinants of plasma sensitivity. Survival rates, enzyme activity, and restoration of enzyme activity after plasma treatment were superior in mutants with elevated cysteine levels and in the wildtype under iron replete conditions. Mutants with elevated hydrogen peroxide and superoxide detoxification capacity over-expressing sodA and katE showed full protection from plasma-induced enzyme inactivation and survival rates increased from 34 % (controls) to 87 %. Our study indicates that metabolic and genetic adaptation of bacteria may result in plasma tolerance and resistance, respectively.
Collapse
Affiliation(s)
- Marco Krewing
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Kim Marie Weisgerber
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Tim Dirks
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Ivan Bobkov
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Britta Schubert
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| |
Collapse
|
3
|
Qi M, Zhao X, Fan R, Lin J, Li Z, Liu N, Sun X, Xu D, Zheng J, Liu D, Zhou R, Rong M, Ostrikov KK. Plasma-activated saline hyperthermic perfusion-induced pyroptosis boosts peritoneal carcinomatosis immunotherapy. Free Radic Biol Med 2025; 230:177-189. [PMID: 39914684 DOI: 10.1016/j.freeradbiomed.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
Peritoneal carcinomatosis (PC) is a common metastatic cancer with limited treatment options. Herein, we present a novel strategy for the combined treatment of PC involving plasma-activated saline (PAS) and hyperthermic intraperitoneal perfusion. PAS revealed a strong cytotoxic effect because of reactive oxygen species (ROS) in two-dimensional cultures and three-dimensional tumor spheroids of PC-related cell lines. Notably, PAS induced Gasdermin E (GSDME)-dependent pyroptosis and immunogenic cell death in vitro. PAS-enhanced hyperthermic intraperitoneal perfusion (PE-HIP) increased the number of CD3+, CD4+ and CD8+ T cells, while decreased the number of regulatory T cells, indicating that PAS stimulated T cell-based immune responses in vivo. Moreover, PE-HIP significantly inhibited tumor growth and improved survival in a PC-mice model, with no significant toxic side effects. Meanwhile, vaccination with PAS-induced cell pyroptosis activated systemic antitumor immunity to prevent subcutaneous tumor growth. Overall, PE-HIP can serve as a new approach for PC treatment by ROS-assisted cancer immunotherapy.
Collapse
Affiliation(s)
- Miao Qi
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Xinyi Zhao
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Runze Fan
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Jiao Lin
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhuo Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Na Liu
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, PR China.
| | - Jianbao Zheng
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Kostya Ken Ostrikov
- Centre for Materials Science, and Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
4
|
Martinet A, Miebach L, Weltmann K, Emmert S, Bekeschus S. Biomimetic Hydrogels - Tools for Regenerative Medicine, Oncology, and Understanding Medical Gas Plasma Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2403856. [PMID: 39905967 PMCID: PMC11878268 DOI: 10.1002/smll.202403856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Biomimetic hydrogels enable biochemical, cell biology, and tissue-like studies in the third dimension. Smart hydrogels are also frequently used in tissue engineering and as drug carriers for intra- or extracutaneous regenerative medicine. They have also been studied in bio-sensor development, 3D cell culture, and organoid growth optimization. Yet, many hydrogel types, adjuvant components, and cross-linking methods have emerged over decades, diversifying and complexifying such studies. Here, an evaluative overview is provided, mapping potential applications to the corresponding hydrogel tuning. Strikingly, hydrogels are ideal for studying locoregional therapy modalities, such as cold medical gas plasma technology. These partially ionized gases produce various reactive oxygen species (ROS) types along with other physico-chemical components such as ions and electric fields, and the spatio-temporal effects of these components delivered to diseased tissues remain largely elusive to date. Hence, this work outlines the promising applications of hydrogels in biomedical research in general and cold plasma science in particular and underlines the great potential of these smart scaffolds for current and future research and therapy.
Collapse
Affiliation(s)
- Alice Martinet
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| | - Lea Miebach
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| | - Klaus‐Dieter Weltmann
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
| | - Steffen Emmert
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
| | - Sander Bekeschus
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| |
Collapse
|
5
|
Ma Y, Sun T, Ren K, Ma R, Min T, Wang X, Yuan Y, Xie X, Zhang B, Deng X, Peng Y, Liu Y, Nan Y, Wang W, Zhou Z, Xu G, Li K, Zhu K, Hao N, Dang C, Zhang G, Zhang H. Plasma-activated solutions prevent peritoneal adhesion formation by regulating eNOS expression in mesothelial cells. J Adv Res 2025:S2090-1232(25)00122-5. [PMID: 40020874 DOI: 10.1016/j.jare.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/02/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
INTRODUCTION Peritoneal adhesions cause significant morbidity due to limited therapeutic options. Current strategies are limited by inconsistent efficacy and potential side effects. Plasma-activated solutions (PAS) exhibit anti-inflammatory and healing promoting properties with good safety, their efficacy in preventing peritoneal adhesions remains further investigation. OBJECTIVES This study aimed to investigate the therapeutic potential of PAS in preventing peritoneal adhesion formation and to elucidate its mechanisms. METHODS Two murine peritoneal adhesion models ("ischemic button" and "cecum-peritoneum abrasion") were established. Human peritoneal mesothelial cell was treated with LPS or TGF-β1 to model apoptosis and mesothelial-to-mesenchymal transition (MMT) in vitro. Apoptosis was quantified via flow cytometry and western blotting; ROS levels were assessed using immunofluorescence staining. MMT markers (western blotting) and inflammatory cytokines (ELISA) were analyzed. Histological evaluation included Masson's trichrome and immunofluorescence staining. RESULTS PAS-2 min significantly reduced adhesion scores compared to PBS controls (ischemic button: 6.250 ± 1.389 vs. 2.5 ± 2.268; abrasion: 7.333 ± 1.033 vs. 1.633 ± 1.333, p < 0.01). In vitro, PAS treatment decreased LPS-induced apoptosis in mesothelial cells by 8.14 % (flow cytometry: 39.10 % ± 1.47 % vs. 30.96 % ± 1.73 %, p < 0.01) and suppressed MMT markers, with N-cadherin and Vimentin expression reduced by 1.46-fold (p < 0.05) and 1.62-fold (p < 0.05). PAS also attenuated oxidative stress, decreasing general ROS levels by 3-fold (p < 0.001) and mitochondrial ROS (mtROS) by 2-fold (p < 0.01). Mechanistically, reactive nitrogen species (RNS) in PAS restored eNOS expression, attenuating apoptosis and MMT in mesothelial cells. CONCLUSION This study demonstrates that PAS prevents peritoneal adhesions via RNS-mediated eNOS restoration, suppressing oxidative stress, apoptosis, and MMT. These findings position PAS as a novel and promising therapy for adhesion prevention, warranting clinical translation.
Collapse
Affiliation(s)
- Yuyi Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Rulan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xueni Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yue Yuan
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Bo Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoyuan Deng
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuanchang Peng
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuanyuan Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yanglong Nan
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhangjian Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Guimin Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kun Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Nan Hao
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Guanjun Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
6
|
Bekeschus S, Roessler K, Kepp O, Freund E. Gas Plasma Technology and Immunogenic Cell Death: Implications for Chordoma Treatment. Cancers (Basel) 2025; 17:681. [PMID: 40002275 PMCID: PMC11852646 DOI: 10.3390/cancers17040681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer is the second-leading cause of death in developed societies. Specifically, cancers of the spine and brain come with significant therapeutic challenges. Chordomas are semi-malignant tumors that develop from embryonic residuals at the skull base (clival) or coccyx (sacral). Small tumor fragments can remain in the operation cavities during surgical resection, forming new tumor sites. This requires repeated surgeries or the application of proton-beam radiation and chemotherapy, which often do not lead to complete remission of the tumors. Hence, there is a need for novel therapeutic avenues that are not limited to killing visible tumors but can be applied after surgery to decrease chordoma recurrences. Reactive oxygen species (ROS) generated locally via novel medical gas plasma technologies are one potential approach to address this clinical problem. Previously, broad-spectrum free radicals generated by these cold physical plasmas operated at about body temperature were shown to oxidize cancer cells to the disadvantage of their growth and induce immunogenic cancer cell death (ICD), ultimately promoting anticancer immunity. This review outlines the clinical challenges of chordoma therapy, how medical gas plasma technology could serve as an adjuvant treatment modality, and potential immune-related mechanisms of action that could extend the longevity of gas plasma therapy beyond its acute local tissue effects.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
- Department of Dermatology and Venerology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Karl Roessler
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94800 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, 94270 Kremlin Bicêtre, France
| | - Eric Freund
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
7
|
Bekeschus S, Singer D, Ratnayake G, Ruhnau K, Ostrikov K, Thompson EW. Rationales of Cold Plasma Jet Therapy in Skin Cancer. Exp Dermatol 2025; 34:e70063. [PMID: 39973132 PMCID: PMC11840413 DOI: 10.1111/exd.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Skin cancer affects millions of patients worldwide, and its incidence is increasing. Current therapies targeting skin tumour subtypes, such as basal cell carcinoma, cutaneous squamous cell carcinoma, melanoma and actinic keratosis, vary in their degree of effectiveness and tolerability, motivating new research avenues on complementing treatment strategies. Cold medical gas plasma is a partially ionised gas operated at about body temperature and generates various reactive oxygen and nitrogen species simultaneously. A range of medical gas plasma devices has proven safe in thousands of patients and is an approved medical product for dermatology conditions, such as nonhealing wounds, in Europe and, more broadly, for clinical trials. Extending potential gas plasma applications in the field of dermato-oncology is therefore plausible, especially in light of the strong preclinical evidence and early clinical data. This review summarises existing work on gas plasma treatment, focusing on approved jet plasmas in skin cancer and outlining central mechanisms and treatment concepts. It also provides a concrete perspective on integrating medical gas plasma treatment into existing skin cancer therapy schemes, encouraging translational scientists and clinicians to enable gas plasma-assisted cancer care through clinical research.
Collapse
Affiliation(s)
- Sander Bekeschus
- Department of Dermatology and VenerologyRostock University Medical CenterRostockGermany
- ZIK PlasmatisLeibniz Institute for Plasma Science and Technology (INP)GreifswaldGermany
| | - Debora Singer
- Department of Dermatology and VenerologyRostock University Medical CenterRostockGermany
- ZIK PlasmatisLeibniz Institute for Plasma Science and Technology (INP)GreifswaldGermany
| | - Gishan Ratnayake
- Department of Radiation OncologyPrincess Alexandra HospitalBrisbaneQueenslandAustralia
| | | | - Kostya Ostrikov
- School of Chemistry and Physics and Centre for Biomedical TechnologiesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Erik W. Thompson
- School of Biomedical Sciences and Centre for Genomics and Personalised HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Translational Research InstituteBrisbaneQueenslandAustralia
| |
Collapse
|
8
|
Singer D, Bekeschus S. Transcriptional Pathways Predisposing to Cancer Oxidative Stress Sensitivity and Resistance Are Shared Between Hydrogen Peroxide and Cold Gas Plasma but Not Hypochlorous Acid. Cancers (Basel) 2025; 17:319. [PMID: 39858101 PMCID: PMC11763744 DOI: 10.3390/cancers17020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress is universal to all cell types, including cancer. It is elicited by a surplus of reactive oxygen species (ROS) or a reduced cellular ability to defend against those. At low levels (oxidative eustress), this induces altered cellular signaling, while at higher levels (oxidative distress), cellular toxicity and non-specific redox signaling become apparent. While oxidation-induced cell death is a hallmark of many cancer therapies, including ROS-producing radiotherapy, some chemotherapies and targeted therapies, photodynamic therapy, and recently emerging physical modalities such as medical gas plasma (a multi-ROS generating technology), less is known about the transcriptional profiles predisposing cancer cells to oxidative demise. In particular, which genes are associated with resistance or sensitivity to ROS overload and subsequent toxicity has not been systematically investigated. Moreover, it is unclear if there are differences between oxidant types, such as hydrogen peroxide and hypochlorous acid. To this end, we here employed 35 cell lines of various origins (e.g., adenocarcinoma, melanoma, leukemia, squamous cell carcinoma, and neuroblastoma). We first performed in-house transcriptomic analysis to assess baseline transcriptional profiles. Second, all cell lines were exposed to four different ROS concentrations of either hydrogen peroxide, hypochlorous, or gas plasma exposure. Third, correlation analysis was performed to identify genes associated with (i) oxidative stress sensitivity, (ii) oxidative stress resistance, and (iii) similarities and/or differences between the different oxidative stress inducers. Intriguingly, distinct gene sets were found for all treatments, and there was a striking difference between hydrogen peroxide and hypochlorous acid, suggesting different modes of action of both oxidants.
Collapse
Affiliation(s)
- Debora Singer
- Department of Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- Department of Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
9
|
Meinke MC, Hasse S, Schleusener J, Hahn V, Gerling T, Hadian Rasnani K, Bernhardt T, Ficht PK, Staffeld A, Bekeschus S, Lademann J, Emmert S, Lohan SB, Boeckmann L. Radical formation in skin and preclinical characterization of a novel medical plasma device for dermatology after single application. Free Radic Biol Med 2025; 226:199-215. [PMID: 39549883 DOI: 10.1016/j.freeradbiomed.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Cold atmospheric plasma (CAP) enables painless tissue treatment by producing reactive species including excited molecules and charged particles and is of great interest for medical applications. Medical CAP sources work in contact with air at ambient pressure, resulting in the generation of substantial amounts of reactive oxygen and nitrogen radicals. These radicals have a significant influence on cellular biochemistry, are crucial components of the immune system, and play a central role in wound therapy. CAP has a variety of applications, with a particular emphasis on tissue treatment in dermatology. It eradicates microorganisms by preventing biofilm formation so that wounds can be effectively disinfected and treated antiseptically. Using both in vitro and ex vivo methods, a comprehensive preclinical assessment of a novel battery-operated cold plasma handheld device with a reusable, and autoclavable glass cylinder was performed. The objectives were to evaluate the potential impact of single CAP application on radical formation with and without wound dressing, by directly measuring radicals in skin, to investigate the influence of CAP application on antimicrobial activity and cytotoxicity in vitro, and to assess skin tolerance ex vivo. The direct effect of CAP on the formation of radicals in the skin after plasma application at different levels with and without wound dressing was demonstrated quantitatively for the first time using electron paramagnetic resonance spectroscopy. Free radicals were measured in the skin as a function of the duration of CAP treatment. Furthermore, it was found that an alginate or wound plaster dressing does not significantly inhibit radical formation in skin compared to application without a dressing. In vitro and ex vivo data showed no cytotoxic potential with simultaneous efficacy against bacteria strains and no risk of temperature rise, pH change, skin barrier or DNA damage. These results show a high potential for wound healing applications in vivo.
Collapse
Affiliation(s)
- Martina C Meinke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Sybille Hasse
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Johannes Schleusener
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Veronika Hahn
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Torsten Gerling
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Diabetes Competence Centre Karlsburg (KDK), Leibniz Institute for Plasma Science and Technology (INP), Greifswalder Str. 11, 17495, Karlsburg, Germany
| | - Katayoon Hadian Rasnani
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Thoralf Bernhardt
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057, Rostock, Germany
| | - Philipp-Kjell Ficht
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057, Rostock, Germany
| | - Anna Staffeld
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057, Rostock, Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057, Rostock, Germany
| | - Jürgen Lademann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057, Rostock, Germany
| | - Silke B Lohan
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Lars Boeckmann
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Strempelstraße 13, 18057, Rostock, Germany
| |
Collapse
|
10
|
Nie S, Zhang S, Wang Y, Zhu M, Chen X, Wang X, Huang P. Extraction, purification, structural characterization, and bioactivities of Ginkgo biloba leave polysaccharides: A review. Int J Biol Macromol 2024; 281:136280. [PMID: 39368588 DOI: 10.1016/j.ijbiomac.2024.136280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/09/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Ginkgo biloba, a deciduous tree from the Ginkgoaceae family, is widely cultivated globally. In China, it predominantly grows in the eastern and southern regions. The leaves can be harvested multiple times throughout the growing season, presenting a significant resource potential. Ginkgo biloba leaves are considered as a living fossil with both medicinal and edible properties in traditional Chinese medicine. Polysaccharides, the primary bioactive compounds in these leaves, exhibit numerous biological activities, including antioxidant, antitumor, anti-inflammatory, immunoregulatory activity, antidepressant effects, hepatoprotective, hypoglycemic activity and hair-growth promoting effect. This review highlights the advancements in the extraction separation purification, structural elucidation, and functional analysis of polysaccharides derived from Ginkgo biloba leaves over the past decade, aiming to provide valuable insights for future development and commercialization of Ginkgo biloba leave polysaccharides.
Collapse
Affiliation(s)
- Shanshan Nie
- Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Shan Zhang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Yongxia Wang
- Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Mingjun Zhu
- Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xinju Chen
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xinlu Wang
- Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
11
|
Babajani A, Eftekharinasab A, Bekeschus S, Mehdian H, Vakhshiteh F, Madjd Z. Reactive oxygen species from non-thermal gas plasma (CAP): implication for targeting cancer stem cells. Cancer Cell Int 2024; 24:344. [PMID: 39438918 PMCID: PMC11515683 DOI: 10.1186/s12935-024-03523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains a major global health challenge, with the persistence of cancer stem cells (CSCs) contributing to treatment resistance and relapse. Despite advancements in cancer therapy, targeting CSCs presents a significant hurdle. Non-thermal gas plasma, also known as CAP, represents an innovative cancer treatment. It has recently gained attention for its often found to be selective, immunogenic, and potent anti-cancer properties. CAP is composed of a collection of transient, high-energy, and physically and chemically active entities, such as reactive oxygen species (ROS). It is acknowledged that the latter are responsible for a major portion of biomedical CAP effects. The dynamic interplay of CAP-derived ROS and other components contributes to the unique and versatile properties of CAP, enabling it to interact with biological systems and elicit various therapeutic effects, including its potential in cancer treatment. While CAP has shown promise in various cancer types, its application against CSCs is relatively unexplored. This review assesses the potential of CAP as a therapeutic strategy for targeting CSCs, focusing on its ability to regulate cellular states and achieve redox homeostasis. This is done by providing an overview of CSC characteristics and demonstrating recent findings on CAP's efficacy in targeting these cells. By contributing insights into the unique attributes of CSCs and the potential of CAP, this work contributes to an advanced understanding of innovative oncology strategies.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Hassan Mehdian
- Plasma Medicine Group, Plasma Research Institute, Kharazmi University, Tehran, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
12
|
Du MR, Guo YY, Wei HZ, Zhu YP, Liu RR, Ma RN, Shi FK, Guo JS, Zhuang J. The effectiveness of gliding arc discharge plasma in sterilizing artificial seawater contaminated with Vibrio parahaemolyticus. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135015. [PMID: 38943886 DOI: 10.1016/j.jhazmat.2024.135015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
The rapid proliferation of the halophilic pathogen Vibrio parahaemolyticus poses a severe health hazard to halobios and significantly impedes intensive mariculture. This study aimed to evaluate the potential application of gliding arc discharge plasma (GADP) to control the infection of Vibrio parahaemolyticus in mariculture. This study investigated the inactivation ability of GADP against Vibrio parahaemolyticus in artificial seawater (ASW), changes in the water quality of GADP-treated ASW, and possible inactivation mechanisms of GADP against Vibrio parahaemolyticus in ASW. The results indicate that GADP effectively inactivated Vibrio parahaemolyticus in ASW. As the volume of ASW increased, the time required for GADP sterilization also increased. However, the complete sterilization of 5000 mL of ASW containing Vibrio parahaemolyticus of approximately 1.0 × 104 CFU/mL was achieved within 20 min. Water quality tests of the GADP-treated ASW demonstrated that there were no significant changes in salinity or temperature when Vibrio parahaemolyticus (1.0 ×104 CFU/mL) was completely inactivated. In contrast to the acidification observed in plasma-activated water (PAW) in most studies, the pH of ASW did not decrease after treatment with GADP. The H2O2 concentration in the GADP-treated ASW decreased after post-treatment. The NO2-concentration in the GADP-treated ASW remained unchanged after post-treatment. Further analysis revealed that GADP induced oxidative stress in Vibrio parahaemolyticus, which increased cell membrane permeability and intracellular ROS levels of Vibrio parahaemolyticus. This study provides a viable solution for infection with the halophilic pathogen Vibrio parahaemolyticus and demonstrates the potential of GADP in mariculture.
Collapse
Affiliation(s)
- Meng-Ru Du
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Yu-Yi Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Han-Ze Wei
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Yu-Pan Zhu
- Henan Key Laboratory of Ion-beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Rong-Rong Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Ruo-Nan Ma
- Henan Key Laboratory of Ion-beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Fu-Kun Shi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Jin-Song Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Jie Zhuang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| |
Collapse
|
13
|
Clemen R, Miebach L, Singer D, Freund E, von Woedtke T, Weltmann K, Bekeschus S. Oxidized Melanoma Antigens Promote Activation and Proliferation of Cytotoxic T-Cell Subpopulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404131. [PMID: 38958560 PMCID: PMC11434111 DOI: 10.1002/advs.202404131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Increasing evidence suggests the role of reactive oxygen and nitrogen species (RONS) in regulating antitumor immune effects and immunosuppression. RONS modify biomolecules and induce oxidative post-translational modifications (oxPTM) on proteins that can alarm phagocytes. However, it is unclear if and how protein oxidation by technical means could be a strategy to foster antitumor immunity and therapy. To this end, cold gas plasma technology producing various RONS simultaneously to oxidize the two melanoma-associated antigens MART and PMEL is utilized. Cold plasma-oxidized MART (oxMART) and PMEL (oxPMEL) are heavily decorated with oxPTMs as determined by mass spectrometry. Immunization with oxidized MART or PMEL vaccines prior to challenge with viable melanoma cells correlated with significant changes in cytokine secretion and altered T-cell differentiation of tumor-infiltrated leukocytes (TILs). oxMART promoted the activity of cytotoxic central memory T-cells, while oxPMEL led to increased proliferation of cytotoxic effector T-cells. Similar T-cell results are observed after incubating splenocytes of tumor-bearing mice with B16F10 melanoma cells. This study, for the first time, provides evidence of the importance of oxidative modifications of two melanoma-associated antigens in eliciting anticancer immunity.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| | - Lea Miebach
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| | - Debora Singer
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
| | - Eric Freund
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
- Department of NeurosurgeryWien University Medical CenterVienna1090Austria
| | - Thomas von Woedtke
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
- Institute for Hygiene and Environmental MedicineGreifswald University Medical CenterFerdinand‐Sauerbruch‐Str.17475GreifswaldGermany
| | - Klaus‐Dieter Weltmann
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| | - Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
| |
Collapse
|
14
|
Zhang J, Wu T, Wang Z, Xu S, Jing X, Zhang Z, Lin J, Zhang H, Liu D, Zhou R, Guo L, Wang X, Rong M, Shao Y, Ostrikov KK. Plasma-generated RONS in liquid transferred into cryo-microneedles patch for skin treatment of melanoma. Redox Biol 2024; 75:103284. [PMID: 39059203 PMCID: PMC11332077 DOI: 10.1016/j.redox.2024.103284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Malignant melanoma is the most lethal form of skin cancer. As a promising anti-cancer agent, plasma-activated water (PAW) rich in reactive oxygen and nitrogen species (RONS) has shown significant potential for melanoma treatment. However, rapid decay of RONS and inefficient delivery of PAW in conventional injection methods limit its practical applications. To address this issue, here we report a new approach for the production of plasma-activated cryo-microneedles (PA-CMNs) patches using custom-designed plasma devices and processes. Our innovation is to incorporate PAW into the PA-CMNs that are fabricated using a fast cryogenic micro-molding method. It is demonstrated that PA-CMNs can be easily inserted into skin to release RONS and slow the decay of RONS thereby prolonging their bioactivity and effectiveness. The new insights into the effective melanoma treatment suggest that the rich mixture of RONS within PA-CMNs prepared by custom-developed hybrid plasma-assisted configuration induces both ferroptosis and apoptosis to selectively kill tumor cells. A significant inhibition of subcutaneous A375 melanoma growth was observed in PA-CMNs-treated tumor-bearing nude mice without any signs of systemic toxicity. The new approach based on PA-CMNs may potentially open new avenues for a broader range of disease treatments.
Collapse
Affiliation(s)
- Jishen Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Tong Wu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Shengduo Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Xixi Jing
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Zizhu Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Jiao Lin
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China.
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Xiaohua Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Yongping Shao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| |
Collapse
|
15
|
Nitsch A, Qarqash S, Römer S, Schoon J, Singer D, Bekeschus S, Ekkernkamp A, Wassilew GI, Tzvetkov MV, Haralambiev L. Effective combination of cold physical plasma and chemotherapy against Ewing sarcoma cells in vitro. Sci Rep 2024; 14:6505. [PMID: 38499701 PMCID: PMC10948386 DOI: 10.1038/s41598-024-56985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
Ewing's sarcoma (ES) is the second most common bone tumor in children and adolescents and is highly malignant. Although the new chemotherapy has significantly improved the survival rate for ES from about 10 to 75%, the survival rate for metastatic tumors remains around 30%. This treatment is often associated with various side effects that contribute to the suffering of the patients. Cold physical plasma (CPP), whether used alone or in combination with current chemotherapy, is considered a promising adjunctive tool in cancer treatment. This study aims to investigate the synergistic effects of CPP in combination with cytostatic chemotherapeutic agents that are not part of current ES therapy. Two different ES cell lines, RD-ES and A673, were treated with the determined IC20 concentrations of the chemotherapeutic agents cisplatin and methotrexate (MTX) in combination with CPP. The effects on population doubling, cell viability, and apoptotic processes within these cell lines were assessed. This combination therapy has led to a reduction of population doubling and cell viability, as well as an increase in apoptotic activity in cells compared to CPP monotherapy. The results of this study provide evidence that combining CPP with non-common chemotherapy drugs such as MTX and CIS in the treatment of ES enhances the anticancer effects of these drugs. These findings open up new possibilities for the effective use of these drugs against ES.
Collapse
Affiliation(s)
- Andreas Nitsch
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Sara Qarqash
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Sarah Römer
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17489, Greifswald, Germany
| | - Janosch Schoon
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Debora Singer
- Clinic and Polyclinic for Dermatology and Venerology, Strempelstr. 13, 18057, Rostock, Germany
- Leibniz Institute for Plasma Science and Technology (INP), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Sander Bekeschus
- Clinic and Polyclinic for Dermatology and Venerology, Strempelstr. 13, 18057, Rostock, Germany
- Leibniz Institute for Plasma Science and Technology (INP), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Axel Ekkernkamp
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- Department of Trauma and Orthopaedic Surgery, BG Klinikum Unfallkrankenhaus Berlin, Warener Straße 7, 12683, Berlin, Germany
| | - Georgi I Wassilew
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Mladen V Tzvetkov
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17489, Greifswald, Germany
| | - Lyubomir Haralambiev
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.
- Department of Trauma and Orthopaedic Surgery, BG Klinikum Unfallkrankenhaus Berlin, Warener Straße 7, 12683, Berlin, Germany.
| |
Collapse
|
16
|
Bekeschus S. Gas plasmas technology: from biomolecule redox research to medical therapy. Biochem Soc Trans 2023; 51:2071-2083. [PMID: 38088441 DOI: 10.1042/bst20230014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Physical plasma is one consequence of gas ionization, i.e. its dissociation of electrons and ions. If operated in ambient air containing oxygen and nitrogen, its high reactivity produces various reactive oxygen and nitrogen species (RONS) simultaneously. Technology leap innovations in the early 2010s facilitated the generation of gas plasmas aimed at clinics and operated at body temperature, enabling their potential use in medicine. In parallel, their high potency as antimicrobial agents was systematically discovered. In combination with first successful clinical trials, this led in 2013 to the clinical approval of first medical gas plasma devices in Europe for promoting the healing of chronic and infected wounds and ulcers in dermatology. While since then, thousands of patients have benefited from medical gas plasma therapy, only the appreciation of the critical role of gas plasma-derived RONS led to unraveling first fragments of the mechanistic basics of gas plasma-mediated biomedical effects. However, drawing the complete picture of effectors and effects is still challenging. This is because gas plasma-produced RONS not only show a great variety of dozens of types but also each of them having distinct spatio-temporal concentration profiles due to their specific half-lives and reactivity with other types of RONS as well as different types of (bio) molecules they can react with. However, this makes gas plasmas fascinating and highly versatile tools for biomolecular redox research, especially considering that the technical capacity of increasing and decreasing individual RONS types holds excellent potential for tailoring gas plasmas toward specific applications and disease therapies.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic of Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| |
Collapse
|
17
|
Miebach L, Melo‐Zainzinger G, Freund E, Clemen R, Cecchini AL, Bekeschus S. Medical Gas Plasma Technology Combines with Antimelanoma Therapies and Promotes Immune-Checkpoint Therapy Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303183. [PMID: 37541287 PMCID: PMC10558686 DOI: 10.1002/advs.202303183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/11/2023] [Indexed: 08/06/2023]
Abstract
Strategies to improve activity and selectivity are major goals in oncological drug development. Medical gas plasma therapy has been subject to intense research in dermatooncology recently. Based on partial gas ionization, this approach is exceptional in generating a variety of reactive oxygen species simultaneously that can be applied locally at the tumor side. It is hypothesized that combined gas plasma treatment can potentiate drug responses in the treatment of melanoma. Using a plasma jet approved as medical device in Europe, a systematic screening of 46 mitochondria-targeted drugs identifies five agents synergizing in vitro and in vivo. Increased intratumoral leucocyte infiltration points to immunomodulatory aspects of the treatment, motivating to investigate responses to immune checkpoint blockade in combination with plasma. Tumor growth is monitored based on bioluminescent imaging, and single-cell suspensions are retrieved from each tumor to characterize tumor-infiltrating leucocytes using multicolor flow cytometry. Gene expression profiling is done using a validated NanoString panel targeting 770 genes specifically designed for immuno-oncological research. Cell type abundancies are characterized from bulk RNA samples using the CIBERSORT computational framework. Collectively, the results indicate that local application of medical gas plasma technology synergizes with mitochondria-targeted drugs and anti-PD1 checkpoint therapy in treating melanoma.
Collapse
Affiliation(s)
- Lea Miebach
- Department of General, Thoracic, Vascular, and Visceral SurgeryGreifswald University Medical Center17475GreifswaldGermany
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)17489GreifswaldGermany
| | - Gabriella Melo‐Zainzinger
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)17489GreifswaldGermany
- Cancer Research UnitBoehringer IngelheimVienna1121Austria
| | - Eric Freund
- Department of General, Thoracic, Vascular, and Visceral SurgeryGreifswald University Medical Center17475GreifswaldGermany
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)17489GreifswaldGermany
- Department of NeurosurgeryWien University Medical CenterVienna1090Austria
| | - Ramona Clemen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)17489GreifswaldGermany
| | | | - Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)17489GreifswaldGermany
- Clinic for Dermatology and VenerologyRostock University Medical Center18057RostockGermany
| |
Collapse
|
18
|
Bekeschus S. Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy. Redox Biol 2023; 65:102798. [PMID: 37556976 PMCID: PMC10433236 DOI: 10.1016/j.redox.2023.102798] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/11/2023] Open
Abstract
Despite continuous therapeutic progress, cancer remains an often fatal disease. In the early 2010s, first evidence in rodent models suggested promising antitumor action of gas plasma technology. Medical gas plasma is a partially ionized gas depositing multiple physico-chemical effectors onto tissues, especially reactive oxygen and nitrogen species (ROS/RNS). Today, an evergrowing body of experimental evidence suggests multifaceted roles of medical gas plasma-derived therapeutic ROS/RNS in targeting cancer alone or in combination with oncological treatment schemes such as ionizing radiation, chemotherapy, and immunotherapy. Intriguingly, gas plasma technology was recently unraveled to have an immunological dimension by inducing immunogenic cell death, which could ultimately promote existing cancer immunotherapies via in situ or autologous tumor vaccine schemes. Together with first clinical evidence reporting beneficial effects in cancer patients following gas plasma therapy, it is time to summarize the main concepts along with the chances and limitations of medical gas plasma onco-therapy from a biological, immunological, clinical, and technological point of view.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
19
|
Berner J, Miebach L, Kordt M, Seebauer C, Schmidt A, Lalk M, Vollmar B, Metelmann HR, Bekeschus S. Chronic oxidative stress adaptation in head and neck cancer cells generates slow-cyclers with decreased tumour growth in vivo. Br J Cancer 2023; 129:869-883. [PMID: 37460712 PMCID: PMC10449771 DOI: 10.1038/s41416-023-02343-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) are implicated in cancer therapy and as drivers of microenvironmental tumour cell adaptations. Medical gas plasma is a multi-ROS generating technology that has been shown effective for palliative tumour control in head and neck cancer (HNC) patients before tumour cells adapted to the oxidative stress and growth regressed fatally. METHODS In a bedside-to-bench approach, we sought to explore the oxidative stress adaptation in two human squamous cell carcinoma cell lines. Gas plasma was utilised as a putative therapeutic agent and chronic oxidative stress inducer. RESULTS Cellular responses of single and multiple treated cells were compared regarding sensitivity, cellular senescence, redox state and cytokine release. Whole transcriptome analysis revealed a strong correlation of cancer cell adaption with increased interleukin 1 receptor type 2 (IL1R2) expression. Using magnetic resonance imaging, tumour growth and gas plasma treatment responses of wild-type (WT) and repeatedly exposed (RE) A431 cells were further investigated in a xenograft model in vivo. RE cells generated significantly smaller tumours with suppressed inflammatory secretion profiles and increased epidermal growth factor receptor (EGFR) activity showing significantly lower gas plasma sensitivity until day 8. CONCLUSIONS Clinically, combination treatments together with cetuximab, an EGFR inhibitor, may overcome acquired oxidative stress resistance in HNC.
Collapse
Grants
- This study was funded by the joint research project ONKOTHER-H is supported by the European Social Fund (ESF, grant numbers ESF/14-BM-A55-0003/18, ESF/14-BM-A55-0005/18, and ESF/14-BM-A55-0006/18) and the Ministry of Education, Science, and Culture of Mecklenburg-Vorpommern, Germany, as well as the German Federal Ministry of Education and Research (BMBF, grant numbers 03Z22DN11 and 03Z22Di1).
- This study was funded by the joint research project ONKOTHER-H is supported by the European Social Fund (ESF, grant numbers ESF/14-BM-A55-0005/18).
- Gerhard-Domagk-Foundation Greifswald (Germany).
- This study was funded by the joint research project ONKOTHER-H is supported by the European Social Fund (ESF, grant numbers ESF/14-BM-A55-0003/18).
Collapse
Affiliation(s)
- Julia Berner
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str, 17475, Greifswald, Germany
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str, 17475, Greifswald, Germany
| | - Marcel Kordt
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany
| | - Christian Seebauer
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str, 17475, Greifswald, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Michael Lalk
- Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany
| | - Hans-Robert Metelmann
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str, 17475, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
20
|
Hofmeyer S, Weber F, Gerds S, Emmert S, Thiem A. A Prospective Randomized Controlled Pilot Study to Assess the Response and Tolerability of Cold Atmospheric Plasma for Rosacea. Skin Pharmacol Physiol 2023; 36:205-213. [PMID: 37490882 PMCID: PMC10652650 DOI: 10.1159/000533190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Rosacea is a common, facial, chronic inflammatory skin disease. Due to its complex pathogenesis, adequate therapy of rosacea can be challenging. An innovative recent therapeutic tool is cold atmospheric plasma (CAP), which is already established in the treatment of chronic wounds and promising in different other skin diseases. METHODS In a split-face pilot study we investigated dielectric-barrier-discharged CAP in erythemato-telangiectatic (ETR) and/or papulopustular rosacea (PPR). CAP treatment was applied on lesional skin of a randomized side once daily (90 s/area) for 6 weeks. The other untreated side served as control. Co-primary endpoints were ≥1 improvement of the Investigator Global Assessment (IGA) score on the treated side compared to control and a decline of the Dermatology Life Quality Index (DLQI) after 6 weeks. Secondary endpoints included inflammatory lesion count (papules and pustules), skin redness intensity and erythema size. Adverse events (AEs) were recorded constantly. Additionally, participants were weekly assessed for symptoms, skin condition, trigger factors, skin care, treatment success, and local tolerance parameters. All p values were calculated using the Wilcoxon signed-rank test. RESULTS Twelve subjects (ETR, n = 3; ETR and PPR, n = 9) completed the study. DLQI was significantly improved after 6 weeks (p = 0.007). On the CAP-treated side, lesions (p = 0.007) and erythema size (p = 0.041) were significantly reduced compared to the control. IGA (p = 0.2) and skin redness intensity (p = 0.5) did not differ significantly between control and CAP-treated side. No serious AEs occurred and treatment was well tolerated. CONCLUSION CAP is a promising new treatment of rosacea, especially for PPR.
Collapse
Affiliation(s)
- Stella Hofmeyer
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Frank Weber
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, University Medical Center Rostock, Rostock, Germany
| | - Sandra Gerds
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Alexander Thiem
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
21
|
Negi M, Kaushik N, Nguyen LN, Choi EH, Kaushik NK. Argon gas plasma-treated physiological solutions stimulate immunogenic cell death and eradicates immunosuppressive CD47 protein in lung carcinoma. Free Radic Biol Med 2023; 201:26-40. [PMID: 36907254 DOI: 10.1016/j.freeradbiomed.2023.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Cold atmospheric plasma-treated liquids (PTLs) exhibit selective toxicity toward tumor cells and are provoked by a cocktail of reactive oxygen and nitrogen species in such liquids. Compared to the gaseous phase, these reactive species are more persistent in the aqueous phase. This indirect plasma treatment method has gradually gathered interest in the discipline of plasma medicine to treat cancer. PTL's motivated effect on immunosuppressive proteins and immunogenic cell death (ICD) in solid cancer cells is still not explored. In this study, we aimed to induce immunomodulation by plasma-treated Ringer's lactate (PT-RL) and phosphate-buffered saline (PT-PBS) solutions for cancer treatment. PTLs induced minimum cytotoxicity in normal lung cells and inhibited cancer cell growth. ICD is confirmed by the enhanced expression of damage-associated molecular patterns (DAMPs). We evidenced that PTLs induce intracellular nitrogen oxide species accumulation and elevate immunogenicity in cancer cells owing to the production of pro-inflammatory cytokines, DAMPs, and reduced immunosuppressive protein CD47 expression. In addition, PTLs influenced A549 cells to elevate the organelles (mitochondria and lysosomes) in macrophages. Taken together, we have developed a therapeutic approach to potentially facilitate the selection of a suitable candidate for direct clinical applications.
Collapse
Affiliation(s)
- Manorma Negi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, South Korea.
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea; Laboratory of Plasma Technology, Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 100000, Vietnam
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea; Plasade Co. Ltd., 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea; Plasade Co. Ltd., 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, South Korea.
| |
Collapse
|
22
|
Förster S, Niu Y, Eggers B, Nokhbehsaim M, Kramer FJ, Bekeschus S, Mustea A, Stope MB. Modulation of the Tumor-Associated Immuno-Environment by Non-Invasive Physical Plasma. Cancers (Basel) 2023; 15:cancers15041073. [PMID: 36831415 PMCID: PMC9953794 DOI: 10.3390/cancers15041073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Over the past 15 years, investigating the efficacy of non-invasive physical plasma (NIPP) in cancer treatment as a safe oxidative stress inducer has become an active area of research. So far, most studies focused on the NIPP-induced apoptotic death of tumor cells. However, whether NIPP plays a role in the anti-tumor immune responses need to be deciphered in detail. In this review, we summarized the current knowledge of the potential effects of NIPP on immune cells, tumor-immune interactions, and the immunosuppressive tumor microenvironment. In general, relying on their inherent anti-oxidative defense systems, immune cells show a more resistant character than cancer cells in the NIPP-induced apoptosis, which is an important reason why NIPP is considered promising in cancer management. Moreover, NIPP treatment induces immunogenic cell death of cancer cells, leading to maturation of dendritic cells and activation of cytotoxic CD8+ T cells to further eliminate the cancer cells. Some studies also suggest that NIPP treatment may promote anti-tumor immune responses via other mechanisms such as inhibiting tumor angiogenesis and the desmoplasia of tumor stroma. Though more evidence is required, we expect a bright future for applying NIPP in clinical cancer management.
Collapse
Affiliation(s)
- Sarah Förster
- Department of Pathology, University Hospital Bonn, 35127 Bonn, Germany
| | - Yuequn Niu
- Department of Pathology, University Hospital Bonn, 35127 Bonn, Germany
| | - Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, 53111 Bonn, Germany
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, University Hospital Bonn, 53111 Bonn, Germany
| | - Franz-Josef Kramer
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, 53111 Bonn, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
- Correspondence: ; Tel.: +49-228-287-11361
| |
Collapse
|
23
|
Argon Humidification Exacerbates Antimicrobial and Anti-MRSA kINPen Plasma Activity. Life (Basel) 2023; 13:life13020257. [PMID: 36836614 PMCID: PMC9968137 DOI: 10.3390/life13020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Gas plasma is a medical technology with antimicrobial properties. Its main mode of action is oxidative damage via reactive species production. The clinical efficacy of gas plasma-reduced bacterial burden has been shown to be hampered in some cases. Since the reactive species profile produced by gas plasma jets, such as the kINPen used in this study, are thought to determine antimicrobial efficacy, we screened an array of feed gas settings in different types of bacteria. Antimicrobial analysis was performed by single-cell analysis using flow cytometry. We identified humidified feed gas to mediate significantly greater toxicity compared to dry argon and many other gas plasma conditions. The results were confirmed by inhibition zone analysis on gas-plasma-treated microbial lawns grown on agar plates. Our results may have vital implications for clinical wound management and potentially enhance antimicrobial efficacy of medical gas plasma therapy in patient treatment.
Collapse
|
24
|
Miebach L, Mohamed H, Wende K, Miller V, Bekeschus S. Pancreatic Cancer Cells Undergo Immunogenic Cell Death upon Exposure to Gas Plasma-Oxidized Ringers Lactate. Cancers (Basel) 2023; 15:319. [PMID: 36612315 PMCID: PMC9818580 DOI: 10.3390/cancers15010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Survival rates among patients with pancreatic cancer, the most lethal gastrointestinal cancer, have not improved compared to other malignancies. Early tumor dissemination and a supportive, cancer-promoting tumor microenvironment (TME) limit therapeutic options and consequently impede tumor remission, outlining an acute need for effective treatments. Gas plasma-oxidized liquid treatment showed promising preclinical results in other gastrointestinal and gynecological tumors by targeting the tumor redox state. Here, carrier solutions are enriched with reactive oxygen (ROS) and nitrogen (RNS) species that can cause oxidative distress in tumor cells, leading to a broad range of anti-tumor effects. Unfortunately, clinical relevance is often limited, as many studies have forgone the use of medical-grade solutions. This study investigated the efficacy of gas plasma-oxidized Ringer's lactate (oxRilac), a physiological solution often used in clinical practice, on two pancreatic cancer cell lines to induce tumor toxicity and provoke immunogenicity. Tumor toxicity of the oxRilac solutions was further confirmed in three-dimensional tumor spheroids monitored over 72 h and in ovo using stereomicroscope imaging of excised GFP-expressing tumors. We demonstrated that cell death signaling was induced in a dose-dependent fashion in both cell lines and was paralleled by the increased surface expression of key markers of immunogenic cell death (ICD). Nuclear magnetic resonance (NMR) spectroscopy analysis suggested putative reaction pathways that may cause the non-ROS related effects. In summary, our study suggests gas plasma-deposited ROS in clinically relevant liquids as an additive option for treating pancreatic cancers via immune-stimulating and cytotoxic effects.
Collapse
Affiliation(s)
- Lea Miebach
- Department of General, Thoraxic, Vascular, and Visceral Surgery, Greifswald University Medical Center, 17489 Greifswald, Germany
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Hager Mohamed
- Emergex Vaccines Holding Limited, Doylestown, PA 18902, USA
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Vandana Miller
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
25
|
Yu H, Song X, Yang F, Wang J, Sun M, Liu G, Ahmad N, Zhou Y, Zhang Y, Shi G, Zhang R, Liu J, Jiang X, Fu P, Chen G, Li J, Zhuang J, Sun M. Combined effects of vitamin C and cold atmospheric plasma-conditioned media against glioblastoma via hydrogen peroxide. Free Radic Biol Med 2023; 194:1-11. [PMID: 36436726 DOI: 10.1016/j.freeradbiomed.2022.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Glioblastoma is the most lethal intracranial malignant tumor, for which the five-year overall survival rate is approximately 5%. Here we explored the therapeutic combination of vitamin C and plasma-conditioned medium on glioblastoma cells in culture and as subcutaneous or intracranial xenografts in mice. The combination treatment reduced cell viability and proliferation while promoting apoptosis, and the effects were significantly stronger than with either treatment on its own. Similar results were obtained in the two xenograft models. Vitamin C appeared to upregulate aquaporin-3 and enhance the uptake of extracellular H2O2, while the combination treatment increased intracellular levels of reactive oxygen species including H2O2 and activated the JNK signaling pathway. The cytotoxic effects of the combination treatment were partially reversed by the specific JNK signaling inhibitor SP600125. Our results suggest that the combination of vitamin C and plasma-conditioned medium has therapeutic potential against glioblastoma, and they provide mechanistic insights that may help investigate this and other potential therapies in greater depth.
Collapse
Affiliation(s)
- Huidan Yu
- School of Life Sciences, Changchun University of Science and Technology, Changchun, 130022, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Xueyan Song
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Fan Yang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jun Wang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Mingjian Sun
- Measurement and Control Research Center Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Guangxin Liu
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Nafees Ahmad
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Yuanshuai Zhou
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yina Zhang
- Neurological Department, Helios-Amper Clinic, Dachau, Germany
| | - Guohua Shi
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Ruobing Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jianping Liu
- Integrated Cardio Metabolic Centre, Karolinska Institute, Huddinge, Sweden
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingmei Li
- School of Life Sciences, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Jie Zhuang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Minxuan Sun
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
26
|
da Silva Brito WA, Singer D, Miebach L, Saadati F, Wende K, Schmidt A, Bekeschus S. Comprehensive in vitro polymer type, concentration, and size correlation analysis to microplastic toxicity and inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158731. [PMID: 36108827 DOI: 10.1016/j.scitotenv.2022.158731] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
The ubiquitous nature of microplastic particles (MP) is a growing environmental and ecological concern due to their impact on aquatic and terrestrial systems and potentially on human health. The potential impact on human health may be due to MP daily exposure by several routes, but little is known about the cellular effects. Previous in vitro and in vivo studies have described inflammation, oxidative stress, and metabolic disruption upon plastic exposure, while the effect of individual plastic parameters is not fully unraveled. To this end, we investigated plastic exposure to different polymer types, sizes, and concentrations in three human cell lines (A549, HEK293, and HeLa). Particles were polystyrene (PS) or polymethylmethacrylate (PMMA) in three sizes and concentrations, and amine-modified PS served as positive control. After MP size validation using dynamic light scattering, a high-throughput high-content imaging-based and algorithm-driven multi-z-stack analysis was established to quantify intracellular fluorescent particle accumulation in 3D objects and cell maximum intensity projections. MP uptake correlated with concentration and for PS with size (1.040 μm), while for PMMA it was maximal for 400 nm MP. Uptake increased in HEK cells independent of MP parameters. Except for positive controls, no major effect on metabolic activity, viability, and cell cycle was observed, while intracellular thiol content and cytokine secretion were affected to a considerable extent. Interestingly, particle uptake was correlated significantly with particle size and concentration, underlining the dependence of MP parameters on biological effects.
Collapse
Affiliation(s)
- Walison Augusto da Silva Brito
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina, Brazil
| | - Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Fariba Saadati
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Department of Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| |
Collapse
|
27
|
Dai X, Thompson EW, Ostrikov K(K. Receptor-Mediated Redox Imbalance: An Emerging Clinical Avenue against Aggressive Cancers. Biomolecules 2022; 12:biom12121880. [PMID: 36551308 PMCID: PMC9775490 DOI: 10.3390/biom12121880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer cells are more vulnerable to abnormal redox fluctuations due to their imbalanced antioxidant system, where cell surface receptors sense stress and trigger intracellular signal relay. As canonical targets of many targeted therapies, cell receptors sensitize the cells to specific drugs. On the other hand, cell target mutations are commonly associated with drug resistance. Thus, exploring effective therapeutics targeting diverse cell receptors may open new clinical avenues against aggressive cancers. This paper uses focused case studies to reveal the intrinsic relationship between the cell receptors of different categories and the primary cancer hallmarks that are associated with the responses to external or internal redox perturbations. Cold atmospheric plasma (CAP) is examined as a promising redox modulation medium and highly selective anti-cancer therapeutic modality featuring dynamically varying receptor targets and minimized drug resistance against aggressive cancers.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Erik W. Thompson
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kostya (Ken) Ostrikov
- School of Chemistry, Physics and Center for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
28
|
Clemen R, Arlt K, Miebach L, von Woedtke T, Bekeschus S. Oxidized Proteins Differentially Affect Maturation and Activation of Human Monocyte-Derived Cells. Cells 2022; 11:cells11223659. [PMID: 36429087 PMCID: PMC9688260 DOI: 10.3390/cells11223659] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
In cancer, antigen-presenting cells (APC), including dendritic cells (DCs), take up and process proteins to mount adaptive antitumor immune responses. This often happens in the context of inflamed cancer, where reactive oxygen species (ROS) are ubiquitous to modify proteins. However, the inflammatory consequences of oxidized protein uptake in DCs are understudied. To this end, we investigated human monocyte-derived cell surface marker expression and cytokine release profiles when exposed to oxidized and native proteins. Seventeen proteins were analyzed, including viral proteins (e.g., CMV and HBV), inflammation-related proteins (e.g., HO1 and HMGB1), matrix proteins (e.g., Vim and Coll), and vastly in the laboratory used proteins (e.g., BSA and Ova). The multifaceted nature of inflammation-associated ROS was mimicked using gas plasma technology, generating reactive species cocktails for protein oxidation. Fourteen oxidized proteins led to elevated surface marker expression levels of CD25, CD40, CD80, CD86, and MHC-II as well as strongly modified release of IL6, IL8, IL10, IL12, IL23, MCP-1, and TNFα compared to their native counterparts. Especially IL8, heme oxygenase 2, and vimentin oxidation gave pronounced effects. Furthermore, protein kinase phospho-array studies in monocyte-derived cells pulsed with native vs. oxidized IL8 and insulin showed enhanced AKT and RSK2 phosphorylation. In summary, our data provide for the first time an overview of the functional consequences of oxidized protein uptake by human monocyte-derived cells and could therefore be a starting point for exploiting such principle in anticancer therapy in the future.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Kevin Arlt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Correspondence:
| |
Collapse
|
29
|
Mrochen DM, Miebach L, Skowski H, Bansemer R, Drechsler CA, Hofmanna U, Hein M, Mamat U, Gerling T, Schaible U, von Woedtke T, Bekeschus S. Toxicity and virucidal activity of a neon-driven micro plasma jet on eukaryotic cells and a coronavirus. Free Radic Biol Med 2022; 191:105-118. [PMID: 36041652 PMCID: PMC9420207 DOI: 10.1016/j.freeradbiomed.2022.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Plasma medicine is a developing field that utilizes the effects of cold physical plasma on biological substrates for therapeutic purposes. Approved plasma technology is frequently used in clinics to treat chronic wounds and skin infections. One mode of action responsible for beneficial effects in patients is the potent antimicrobial activity of cold plasma systems, which is linked to their unique generation of a plethora of reactive oxygen and nitrogen species (ROS). During the SARS-CoV-2 pandemic, it became increasingly clear that societies need novel ways of passive and active protection from viral airway infections. Plasma technology may be suitable for superficial virus inactivation. Employing an optimized neon-driven micro plasma jet, treatment time-dependent ROS production and cytotoxic effects to different degrees were found in four different human cell lines with respect to their metabolic activity and viability. Using the murine hepatitis virus (MHV), a taxonomic relative of human coronaviruses, plasma exposure drastically reduced the number of infected murine fibroblasts by up to 3000-fold. Direct plasma contact (conductive) with the target maximized ROS production, cytotoxicity, and antiviral activity compared to non-conductive treatment with the remote gas phase only. Strikingly, antioxidant pretreatment reduced but not abrogated conductive plasma exposure effects, pointing to potential non-ROS-related mechanisms of antiviral activity. In summary, an optimized micro plasma jet showed antiviral activity and cytotoxicity in human cells, which was in part ROS-dependent. Further studies using more complex tissue models are needed to identify a safe dose-effect window of antiviral activity at modest toxicity.
Collapse
Affiliation(s)
- Daniel M Mrochen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of General, Visceral, Vascular, and Thoracic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Henry Skowski
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Robert Bansemer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Chiara A Drechsler
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of Obstetrics and Gynecology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Ulfilas Hofmanna
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Manuel Hein
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany
| | - Uwe Mamat
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany; Leibniz Research Alliance INFECTIONS, Germany
| | - Torsten Gerling
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Ulrich Schaible
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany; Leibniz Research Alliance INFECTIONS, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany.
| |
Collapse
|
30
|
Miebach L, Berner J, Bekeschus S. In ovo model in cancer research and tumor immunology. Front Immunol 2022; 13:1006064. [PMID: 36248802 PMCID: PMC9556724 DOI: 10.3389/fimmu.2022.1006064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Considering cancer not only as malignant cells on their own but as a complex disease in which tumor cells interact and communicate with their microenvironment has motivated the establishment of clinically relevant 3D models in past years. Technological advances gave rise to novel bioengineered models, improved organoid systems, and microfabrication approaches, increasing scientific importance in preclinical research. Notwithstanding, mammalian in vivo models remain closest to mimic the patient’s situation but are limited by cost, time, and ethical constraints. Herein, the in ovo model bridges the gap as an advanced model for basic and translational cancer research without the need for ethical approval. With the avian embryo being a naturally immunodeficient host, tumor cells and primary tissues can be engrafted on the vascularized chorioallantoic membrane (CAM) with high efficiencies regardless of species-specific restrictions. The extraembryonic membranes are connected to the embryo through a continuous circulatory system, readily accessible for manipulation or longitudinal monitoring of tumor growth, metastasis, angiogenesis, and matrix remodeling. However, its applicability in immunoncological research is largely underexplored. Dual engrafting of malignant and immune cells could provide a platform to study tumor-immune cell interactions in a complex, heterogenic and dynamic microenvironment with high reproducibility. With some caveats to keep in mind, versatile methods for in and ex ovo monitoring of cellular and molecular dynamics already established in ovo are applicable alike. In this view, the present review aims to emphasize and discuss opportunities and limitations of the chicken embryo model for pre-clinical research in cancer and cancer immunology.
Collapse
Affiliation(s)
- Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Julia Berner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Greifswald, Germany
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Greifswald, Germany
- *Correspondence: Sander Bekeschus,
| |
Collapse
|
31
|
Zhuang J, Zhu C, Han R, Steuer A, Kolb JF, Shi F. Uncertainty Quantification and Sensitivity Analysis for the Electrical Impedance Spectroscopy of Changes to Intercellular Junctions Induced by Cold Atmospheric Plasma. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185861. [PMID: 36144597 PMCID: PMC9503961 DOI: 10.3390/molecules27185861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
The influence of pertinent parameters of a Cole-Cole model in the impedimetric assessment of cell-monolayers was investigated with respect to the significance of their individual contribution. The analysis enables conclusions on characteristics, such as intercellular junctions. Especially cold atmospheric plasma (CAP) has been proven to influence intercellular junctions which may become a key factor in CAP-related biological effects. Therefore, the response of rat liver epithelial cells (WB-F344) and their malignant counterpart (WB-ras) was studied by electrical impedance spectroscopy (EIS). Cell monolayers before and after CAP treatment were analyzed. An uncertainty quantification (UQ) of Cole parameters revealed the frequency cut-off point between low and high frequency resistances. A sensitivity analysis (SA) showed that the Cole parameters, R0 and α were the most sensitive, while Rinf and τ were the least sensitive. The temporal development of major Cole parameters indicates that CAP induced reversible changes in intercellular junctions, but not significant changes in membrane permeability. Sustained changes of τ suggested that long-lived ROS, such as H2O2, might play an important role. The proposed analysis confirms that an inherent advantage of EIS is the real time observation for CAP-induced changes on intercellular junctions, with a label-free and in situ method manner.
Collapse
Affiliation(s)
- Jie Zhuang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 215000, China
| | - Cheng Zhu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 215000, China
| | - Rui Han
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 215000, China
| | - Anna Steuer
- Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Juergen F. Kolb
- Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Fukun Shi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Correspondence: ; Tel.: +86-051269588135
| |
Collapse
|