1
|
Gao G, Shao T, Li T, Wang S. Harnessing optical forces with advanced nanophotonic structures: principles and applications. DISCOVER NANO 2025; 20:76. [PMID: 40317364 PMCID: PMC12049358 DOI: 10.1186/s11671-025-04252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/09/2025] [Indexed: 05/07/2025]
Abstract
Non-contact mechanical control of light has given rise to optical manipulation, facilitating diverse light-matter interactions and enabling pioneering applications like optical tweezers. However, the practical adoption of versatile optical tweezing systems remains constrained by the complexity and bulkiness of their optical setups, underscoring the urgent requirement for advancements in miniaturization and functional integration. In this paper, we present innovations in optical manipulation within the nanophotonic domain, including fiber-based and metamaterial tweezers, as well as their emerging applications in manipulating cells and artificial micro-nano robots. Furthermore, we explore interdisciplinary on-chip devices that integrate photonic crystals and optofluidics. By merging optical manipulation with the dynamism of nanophotonics and metamaterials, this work seeks to chart a transformative pathway for the future of optomechanics and beyond.
Collapse
Affiliation(s)
- Geze Gao
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Tianhua Shao
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Tianyue Li
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China.
| | - Shuming Wang
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
2
|
Dong Y, Wang Y, He D, Wang T, Zeng J, Wang J. Nearfield observation of spin-orbit interactions at nanoscale using photoinduced force microscopy. SCIENCE ADVANCES 2024; 10:eadp8460. [PMID: 39705359 DOI: 10.1126/sciadv.adp8460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/15/2024] [Indexed: 12/22/2024]
Abstract
Optical spin and orbital angular momenta are intrinsic characteristics of light determined by its polarization and spatial degrees of freedom, respectively. At the nanoscale, sharply focused structured light carries coupled spin-orbital angular momenta with complex 3D nearfield structures, crucial for manipulating multidimensional information of light in nanophotonics. However, characterizing these interactions faces challenges with conventional farfield-based methods, which typically lack the essential accuracy and resolution to interrogate the structured nearfield with high fidelity. To address this challenge, we experimentally observe spin-orbit interactions at the nanoscale using photoinduced force microscopy. Such interactions are enabled through sharply focused circularly polarized optical vortices, which are then mapped by nearfield optical forces in high resolution. Because the optical forces can reveal both longitudinal and transverse nearfield structures with high fidelity, the spin-orbit interactions are eventually evaluated quantitatively at the nearfield, as an important inspiration to use the coupled momenta in dense optical nano-device systems.
Collapse
Affiliation(s)
- Yajuan Dong
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
- Optics Valley Laboratory, Wuhan 430074, Hubei, China
| | - Yu Wang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
- Optics Valley Laboratory, Wuhan 430074, Hubei, China
| | - Dengji He
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
- Optics Valley Laboratory, Wuhan 430074, Hubei, China
| | - Tao Wang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
- Optics Valley Laboratory, Wuhan 430074, Hubei, China
| | - Jinwei Zeng
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
- Optics Valley Laboratory, Wuhan 430074, Hubei, China
| | - Jian Wang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
- Optics Valley Laboratory, Wuhan 430074, Hubei, China
| |
Collapse
|
3
|
Lai C, Shi Y, Huang H, Yi W, Mazzulla A, Cipparrone G, Zu Y, Ding W, Li H, Song Q, Wu PC, Wang Z, Qiu CW, Cheng X. Observation of Intricate Chiral Optical Force in a Spin-Curl Light Field. PHYSICAL REVIEW LETTERS 2024; 133:233802. [PMID: 39714648 DOI: 10.1103/physrevlett.133.233802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/28/2024] [Indexed: 12/24/2024]
Abstract
Harnessing chiral optical forces facilitates numerous applications in enantioselective sorting and sensing. To date, significant challenges persist in substantiating the holistic complex theorem of these forces as experimental demonstrations employ common light waves (e.g., Gaussian beams and evanescent waves), showcasing the reversal of optical force against handedness (light's or particle's). Here, we elucidate the cooperative significance of incorporating multiple optical forces to generate an intricate chiral optical force in a complex spin-curl field. The interplay of distinct light properties (the transverse spin, Belinfante spin momentum, and energy vortex) is found to induce abnormal phenomena. For instance, this intriguing total force not only reverses its sign with particle handedness but also correlates strongly with particle size and light helicity. Experimental measurements of quasi-achiral and chirality-determined forces manifest our research as a paradigm for testing the holistic optical-force theorem on chiral particles, which is unattainable by previous reports that only affirm a specific type of chiral optical forces. Our study offers wide applications in chiral sensing, sorting, spintronics, metamaterials, etc.
Collapse
Affiliation(s)
- Chengxing Lai
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Haiyang Huang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | - Weicheng Yi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | | | | | | | | | | | | | | | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| | | | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Xu X, Nieto-Vesperinas M, Zhou Y, Zhang Y, Li M, Rodríguez-Fortuño FJ, Yan S, Yao B. Gradient and curl optical torques. Nat Commun 2024; 15:6230. [PMID: 39043631 PMCID: PMC11266349 DOI: 10.1038/s41467-024-50440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
Optical forces and torques offer the route towards full degree-of-freedom manipulation of matter. Exploiting structured light has led to the discovery of gradient and curl forces, and nontrivial optomechanical manifestations, such as negative and lateral optical forces. Here, we uncover the existence of two fundamental torque components, which originate from the reactive helicity gradient and momentum curl of light, and which represent the rotational analogues to the gradient and curl forces, respectively. Based on the two components, we introduce and demonstrate the concept of lateral optical torques, which act transversely to the spin of illumination. The orbital angular momentum of vortex beams is shown to couple to the curl torque, promising a path to extreme torque enhancement or achieving negative optical torques. These results highlight the intersection between the areas of structured light, Mie-tronics and rotational optomechanics, even inspiring new paths of manipulation in acoustics and hydrodynamics.
Collapse
Affiliation(s)
- Xiaohao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Manuel Nieto-Vesperinas
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Yuan Zhou
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Zhang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manman Li
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francisco J Rodríguez-Fortuño
- Department of Physics, King's College London, Strand, London, WC2R 2LS, UK
- London Centre for Nanotechnology, Department of Physics, King's College London, Strand, London, WC2R 2LS, UK
| | - Shaohui Yan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Baoli Yao
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Liu C, Huang Z, Huang S, Zhang Y, Li B, Nan F, Zheng Y. Robotic Nanomanipulation Based on Spatiotemporal Modulation of Optical Gradients. ACS NANO 2024; 18:19391-19400. [PMID: 38904270 DOI: 10.1021/acsnano.4c06596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Robotic nanomanipulation emerges as a cutting-edge technique pivotal for in situ nanofabrication, advanced sensing, and comprehensive material characterization. In this study, we develop an optical robotic platform (ORP) for the dynamic manipulation of colloidal nanoparticles (NPs). The ORP incorporates a human-in-the-loop control mechanism enhanced by real-time visual feedback. This feature enables the generation of custom optical landscapes with adjustable intensity and phase configurations. Based on the ORP, we achieve the parallel and reconfigurable manipulation of multiple NPs. Through the application of spatiotemporal phase gradient-reversals, our platform demonstrates capabilities in trapping, binding, rotating, and transporting NPs across custom trajectories. This presents a previously unidentified paradigm in the realm of in situ nanomanipulation. Additionally, the ORP facilities a "capture-and-print" assembly process, utilizing a strategic interplay of phase and intensity gradients. This process operates under a constant laser power setting, streamlining the assembly of NPs into any targeted configuration. With its precise positioning and manipulation capabilities, underpinned by the spatiotemporal modulation of optical gradients, the ORP will facilitate the development of colloid-based sensors and on-demand fabrication of nanodevices.
Collapse
Affiliation(s)
- Chenchen Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Zongpeng Huang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Siyuan Huang
- Walker Department of Mechanical Engineering, Texas Materials Institute, and Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yao Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Fan Nan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, Texas Materials Institute, and Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Zhang Y, Li Z, Che Z, Zhang W, Zhang Y, Lin Z, Lv Z, Wu C, Han L, Tang J, Zhu W, Xiao Y, Zheng H, Zhong Y, Chen Z, Yu J. Dynamics of polarization-tuned mirror symmetry breaking in a rotationally symmetric system. Nat Commun 2024; 15:5586. [PMID: 38961090 PMCID: PMC11222497 DOI: 10.1038/s41467-024-49696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 06/11/2024] [Indexed: 07/05/2024] Open
Abstract
Lateral momentum conservation is typically kept in a non-absorptive rotationally symmetric system through mirror symmetry via Noether's theorem when illuminated by a homogeneous light wave. Therefore, it is still very challenging to break the mirror symmetry and generate a lateral optical force (LOF) in the rotationally symmetric system. Here, we report a general dynamic action in the SO(2) rotationally symmetric system, originating from the polarization-tuned mirror symmetry breaking (MSB) of the light scattering. We demonstrate theoretically and experimentally that MSB can be generally applied to the SO(2) rotationally symmetric system and tuned sinusoidally by polarization orientation, leading to a highly tunable and highly efficient LOF (9.22 pN/mW/μm-2) perpendicular to the propagation direction. The proposed MSB mechanism and LOF not only complete the sets of MSB of light-matter interaction and non-conservative force only using a plane wave but also provide extra polarization manipulation freedom.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhibin Li
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhen Che
- Guangdong Science and Technology Infrastructure Center, Guangzhou, 510033, China
| | - Wang Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yusen Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Ziqi Lin
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhan Lv
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Chunling Wu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Longwei Han
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Jieyuan Tang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Wenguo Zhu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yi Xiao
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Huadan Zheng
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yongchun Zhong
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhe Chen
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Jianhui Yu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
7
|
Sun C, Pi H, Kiang KS, Georgescu TS, Ou JY, Ulbricht H, Yan J. Tunable on-chip optical traps for levitating particles based on single-layer metasurface. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2791-2801. [PMID: 39635254 PMCID: PMC11501761 DOI: 10.1515/nanoph-2023-0873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/06/2024] [Indexed: 12/07/2024]
Abstract
Optically levitated multiple nanoparticles have emerged as a platform for studying complex fundamental physics such as non-equilibrium phenomena, quantum entanglement, and light-matter interaction, which could be applied for sensing weak forces and torques with high sensitivity and accuracy. An optical trapping landscape of increased complexity is needed to engineer the interaction between levitated particles beyond the single harmonic trap. However, existing platforms based on spatial light modulators for studying interactions between levitated particles suffered from low efficiency, instability at focal points, the complexity of optical systems, and the scalability for sensing applications. Here, we experimentally demonstrated that a metasurface which forms two diffraction-limited focal points with a high numerical aperture (∼0.9) and high efficiency (31 %) can generate tunable optical potential wells without any intensity fluctuations. A bistable potential and double potential wells were observed in the experiment by varying the focal points' distance, and two nanoparticles were levitated in double potential wells for hours, which could be used for investigating the levitated particles' nonlinear dynamics, thermal dynamics and optical binding. This would pave the way for scaling the number of levitated optomechanical devices or realizing paralleled levitated sensors.
Collapse
Affiliation(s)
- Chuang Sun
- University of Southampton, Southampton, UK
| | - Hailong Pi
- University of Southampton, Southampton, UK
| | | | | | - Jun-Yu Ou
- University of Southampton, Southampton, UK
| | | | - Jize Yan
- University of Southampton, Southampton, UK
| |
Collapse
|
8
|
Zhang Y, Li M, Yan S, Zhou Y, Gao W, Niu R, Xu X, Yao B. Enantioselective Optical Trapping of Multiple Pairs of Enantiomers by Focused Hybrid Polarized Beams. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309395. [PMID: 38196155 DOI: 10.1002/smll.202309395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/13/2023] [Indexed: 01/11/2024]
Abstract
Enantiomers (opposite chiral molecules) usually exhibit different effects when interacting with chiral agents, thus the identification and separation of enantiomers are of importance in pharmaceuticals and agrochemicals. Here an optical approach is proposed to enantioselective trapping of multiple pairs of enantiomers by a focused hybrid polarized beam. Numerical results indicate that such a focused beam shows multiple local optical chirality of opposite signs in the focal plane, and can trap the corresponding enantiomers near the extreme value of optical chirality density according to the handedness of enantiomers. The number and positions of trapped enantiomers can be changed by altering the value and sign of polarization orders of hybrid polarized beams, respectively. The key to realizing enantioselective optical trapping of enantiomers is that the chiral optical force exerted on enantiomers in this focused field is stronger than the achiral optical force. The results provide insight into the optical identification and separation of multiple pairs of enantiomers and will find applications in chiral detection and sensing.
Collapse
Affiliation(s)
- Yanan Zhang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manman Li
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Shaohui Yan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Yuan Zhou
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyu Gao
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruixin Niu
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Baoli Yao
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Olivo J, Ferrari H, Cuevas M. Surface recoil force on dielectric nanoparticle enhancement via graphene acoustic surface plasmon excitation: non-local effect consideration. OPTICS LETTERS 2024; 49:1249-1252. [PMID: 38426985 DOI: 10.1364/ol.511071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024]
Abstract
Controlling optomechanical interactions at sub-wavelength levels is of great importance in academic science and nanoparticle manipulation technologies. This Letter focuses on the improvement of the recoil force on nanoparticles placed close to a graphene-dielectric-metal structure. The momentum conservation involving the non-symmetric excitation of acoustic surface plasmons (ASPs), via near-field circularly polarized dipolar scattering, implies the occurrence of a huge momentum kick on the nanoparticle. Owing to the high wave vector values entailed in the near-field scattering process, it has been necessary to consider the non-locality of the graphene electrical conductivity to explore the influence of the scattering loss on this large wave vector region, which is neglected by the semiclassical model. Surprisingly, the contribution of ASPs to the recoil force is negligibly modified when the non-local effects are incorporated through the graphene conductivity. On the contrary, our results show that the contribution of the non-local scattering loss to this force becomes dominant when the particle is placed very close to the graphene sheet and that it is mostly independent of the dielectric thickness layer. Our work can be helpful for designing new and better performing large plasmon momentum optomechanical structures using scattering highly dependent on the polarization for moving dielectric nanoparticles.
Collapse
|
10
|
Wang Q, Xia ZC, Zhao JH, Zhang X, Tu CH, Li YN, Wang HT. Tailoring nonuniform local orbital angular momentum density. OPTICS LETTERS 2024; 49:746-749. [PMID: 38300105 DOI: 10.1364/ol.512269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
As is well known, a light beam with a helical phase carries an optical orbital angular momentum (OAM), which can cause the orbital motion of trapped microparticles around the beam axis. Usually, the speed of the orbital motion is uniform along the azimuthal direction and depends on the amount of OAM and the light intensity. Here, we present the reverse customized method to tailor the nonuniform local OAM density along the azimuthal direction of the focal field, which has a hybrid polarization distribution and maintains a doughnut-shaped intensity profile. Theoretical analysis and experimental results about the orbital motion of the trapped polystyrene sphere show that the nonuniform local OAM density can be tailored by manipulating the polarization states of the focal field. Our results provide an ingenious way to control the local tangential optical force and the speed of the orbital motion of particles driven by the local OAM density and will promote exciting possibilities for exploring ways to control the mechanical dynamics of microparticles in optical trapping and microfluidics.
Collapse
|
11
|
Li Y, Yu X, Qu T, Ng J, Lin Z, Zhang L, Chen J. Optomechanical effects caused by non-zero field quantities in multiple evanescent waves. OPTICS EXPRESS 2023; 31:44004-44018. [PMID: 38178482 DOI: 10.1364/oe.506758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024]
Abstract
Evanescent waves, with their high energy density, intricate local momentum, and spatial distribution of spins, have been the subject of extensive recent study. These waves offer promising applications in near-field particle manipulation. Consequently, it becomes imperative to gain a deeper understanding of the impacts of scattering and gradient forces on particles in evanescent waves to enhance and refine the manipulation capabilities. In this study, we employ the multipole expansion theory to present analytical expressions for the scattering and gradient forces exerted on an isotropic sphere of any size and composition in multiple evanescent waves. The investigation of these forces reveals several unusual optomechanical phenomena. It is well known that the scattering force does not exist in counter-propagating homogeneous plane waves. Surprisingly, in multiple pairs of counter-propagating evanescent waves, the scattering force can arise due to the nonzero orbital momentum (OM) density and/or the curl part of the imaginary Poynting momentum (IPM) density. More importantly, it is found that the optical scattering force can be switched on and off by simply tuning the polarization. Furthermore, optical forces typically vary with spatial position in an interference field. However, in the interference field generated by evanescent waves, the gradient force becomes a spatial constant in the propagating plane as the particle's radius increases. This is attributed to the decisive role of the non-interference term of the electromagnetic energy density gradient. Our study establishes a comprehensive and rigorous theoretical foundation, propelling the advancement and optimization of optical manipulation techniques harnessed through multiple evanescent waves. Specifically, these insights hold promise in elevating trapping efficiency through precise control and manipulation of optical scattering and gradient forces, stimulating further explorations.
Collapse
|
12
|
Li X, Dan D, Yu X, Zhou Y, Zhang Y, Gao W, Li M, Xu X, Yan S, Yao B. Concentric ring optical traps for orbital rotation of particles. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4507-4517. [PMID: 39634702 PMCID: PMC11501139 DOI: 10.1515/nanoph-2023-0600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2024]
Abstract
Optical vortices (OVs), as eigenmodes of optical orbital angular momentum, have been widely used in particle micro-manipulation. Recently, perfect optical vortices (POVs), a subclass of OVs, are gaining increasing interest and becoming an indispensable tool in optical trapping due to their unique property of topological charge-independent vortex radius. Here, we expand the concept of POVs by proposing concentric ring optical traps (CROTs) and apply them to trapping and rotating particles. A CROT consists of a series of concentric rings, each being a vortex whose radius and topological charge can be controlled independently with respect to the other rings. Quantitative results show that the generated CROTs have weak sidelobes, good uniformity, and relatively high diffraction efficiency. In experiments, CROTs are observed to trap multiple dielectric particles simultaneously on different rings and rotate these particles with the direction and speed of rotation depending on the topological charge sign and value of each individual ring. In addition, gold particles are observed to be trapped and rotate in the dark region between two bright rings. As a novel tool, CROTs may find potential applications in fields like optical manipulation and microfluidic viscosity measurements.
Collapse
Affiliation(s)
- Xing Li
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an710119, China
- University of Chinese Academy of Sciences, Beijing101408, China
| | - Dan Dan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an710119, China
- University of Chinese Academy of Sciences, Beijing101408, China
| | - Xianghua Yu
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an710119, China
- University of Chinese Academy of Sciences, Beijing101408, China
| | - Yuan Zhou
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an710119, China
- University of Chinese Academy of Sciences, Beijing101408, China
| | - Yanan Zhang
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an710119, China
- University of Chinese Academy of Sciences, Beijing101408, China
| | - Wenyu Gao
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an710119, China
- University of Chinese Academy of Sciences, Beijing101408, China
| | - Manman Li
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an710119, China
| | - Xiaohao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an710119, China
| | - Shaohui Yan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an710119, China
- University of Chinese Academy of Sciences, Beijing101408, China
| | - Baoli Yao
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an710119, China
- University of Chinese Academy of Sciences, Beijing101408, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan030006, China
| |
Collapse
|
13
|
Chen Y, Zhou J, Xie X, Ma H, Zhang S, Xie Z, Min C, Zhang Y, Yuan X. Switchable rotation of metal nanostructures in an intensity chirality-invariant focus field. OPTICS LETTERS 2023; 48:6328-6331. [PMID: 38039259 DOI: 10.1364/ol.503217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/30/2023] [Indexed: 12/03/2023]
Abstract
Light-induced rotation is a fundamental motion form that is of great significance for flexible and multifunctional manipulation modes. However, current optical rotation by a single optical field is mostly unidirectional, where switchable rotation manipulation is still challenging. To address this issue, we demonstrate a switchable rotation of non-spherical nanostructures within a single optical focus field. Interestingly, the intensity of the focus field is chiral invariant. The rotation switch is a result of the energy flux reversal in front and behind the focal plane. We quantitatively analyze the optical force exerted on a metal nanorod at different planes, as well as the surrounding energy flux. Our experimental results indicate that the direct switchover of rotational motion is achievable by adjusting the relative position of the nanostructure to the focal plane. This result enriches the basic motion mode of micro-manipulation and is expected to create potential opportunities in many application fields, such as biological cytology and optical micromachining.
Collapse
|
14
|
Zhu L, Zhang X, Rui G, He J, Gu B, Zhan Q. Optical skipping rope induced transverse OAM for particle orbital motion parallel to the optical axis. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4351-4359. [PMID: 39634721 PMCID: PMC11501131 DOI: 10.1515/nanoph-2023-0551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2024]
Abstract
In structured light tweezers, it is a challenging technical issue to realize the complete circular motion of the trapped particles parallel to the optical axis. Herein, we propose and generate a novel optical skipping rope via combining beam shaping technology, Fourier shift theorem, and beam grafting technology. This optical skipping rope can induce the transverse orbital angular momentum (OAM) (i.e., nominal OAM, whose direction is perpendicular to the optical axis) and transfer it to the particles, so that the particles have a transverse torque, thereby causing the particles to rotate parallel to the optical axis. Experimentally, our optical tweezers validate that the designed optical skipping rope realizes the orbital motion of polystyrene particles parallel to the optical axis. Additionally, the experiments also demonstrate that the optical skipping ropes manipulate particles to move along the oblique coil trajectory and three-dimensional (3D) cycloidal trajectory. Using the laser beam induced OAM, this innovative technology increases the degree of freedom for manipulating particles, which is of great significance for the application of optical tweezers in optical manipulation, micromechanics, and mimicry of celestial orbits.
Collapse
Affiliation(s)
- Liuhao Zhu
- Advanced Photonics Center, School of Electronic Science & Engineering, Southeast University, Nanjing210096, China
| | - Xiaohe Zhang
- School of Automatic, Nanjing University of Information Science & Technology, Nanjing210044, China
| | - Guanghao Rui
- Advanced Photonics Center, School of Electronic Science & Engineering, Southeast University, Nanjing210096, China
| | - Jun He
- School of Physics and Electronics, Central South University, Changsha410012, China
| | - Bing Gu
- Advanced Photonics Center, School of Electronic Science & Engineering, Southeast University, Nanjing210096, China
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan250358, China
| | - Qiwen Zhan
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai200093, China
| |
Collapse
|
15
|
Muñoz-Pérez FM, Ferrando V, Furlan WD, Castro-Palacio JC, Arias-Gonzalez JR, Monsoriu JA. Multiplexed vortex beam-based optical tweezers generated with spiral phase mask. iScience 2023; 26:107987. [PMID: 37860775 PMCID: PMC10582355 DOI: 10.1016/j.isci.2023.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/08/2023] [Accepted: 09/16/2023] [Indexed: 10/21/2023] Open
Abstract
The design and implementation of a multiplexed spiral phase mask in an experimental optical tweezers setup are presented. This diffractive optical element allows the generation of multiple concentric vortex beams with independent topological charges and without amplitude modulation. The generalization of the phase mask for multiple concentric vortices is also shown. The design for a phase mask of two multiplexed vortices with different topological charges is developed. We experimentally show the transfer of angular momentum to the optically trapped microparticles by enabling nearly independent orbiting dynamics around the optical axis within each vortex. The angular velocity of the confined particles versus the optical power in the focal region is also discussed for different combinations of topological charges.
Collapse
Affiliation(s)
- Francisco M. Muñoz-Pérez
- Centro de Tecnologías Físicas, Universitat Politècnica de València, 46022 València, Spain
- Laboratorio de Fibra Óptica, Universidad Politécnica de Tulancingo, División de Posgrado, Hidalgo C.P. 43629, México
| | - Vicente Ferrando
- Centro de Tecnologías Físicas, Universitat Politècnica de València, 46022 València, Spain
| | - Walter D. Furlan
- Departamento de Óptica y Optometría y Ciencias de la Visión, Universitat de València, 46100 Burjassot, Spain
| | - Juan C. Castro-Palacio
- Centro de Tecnologías Físicas, Universitat Politècnica de València, 46022 València, Spain
| | | | - Juan A. Monsoriu
- Centro de Tecnologías Físicas, Universitat Politècnica de València, 46022 València, Spain
| |
Collapse
|
16
|
Nan F, Rodríguez-Fortuño FJ, Yan S, Kingsley-Smith JJ, Ng J, Yao B, Yan Z, Xu X. Creating tunable lateral optical forces through multipolar interplay in single nanowires. Nat Commun 2023; 14:6361. [PMID: 37821466 PMCID: PMC10567843 DOI: 10.1038/s41467-023-42076-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
The concept of lateral optical force (LOF) is of general interest in optical manipulation as it releases the constraint of intensity gradient in tightly focused light, yet such a force is normally limited to exotic materials and/or complex light fields. Here, we report a general and controllable LOF in a nonchiral elongated nanoparticle illuminated by an obliquely incident plane wave. Through computational analysis, we reveal that the sign and magnitude of LOF can be tuned by multiple parameters of the particle (aspect ratio, material) and light (incident angle, direction of linear polarization, wavelength). The underlying physics is attributed to the multipolar interplay in the particle, leading to a reduction in symmetry. Direct experimental evidence of switchable LOF is captured by polarization-angle-controlled manipulation of single Ag nanowires using holographic optical tweezers. This work provides a minimalist paradigm to achieve interface-free LOF for optomechanical applications, such as optical sorting and light-driven micro/nanomotors.
Collapse
Affiliation(s)
- Fan Nan
- Guangdong Provincial Key Laboratory of Nanophotonics Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China.
| | - Francisco J Rodríguez-Fortuño
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London, WC2R 2LS, United Kingdom
| | - Shaohui Yan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 710119, Xi'an, China.
| | - Jack J Kingsley-Smith
- Department of Physics and London Centre for Nanotechnology, King's College London, Strand, London, WC2R 2LS, United Kingdom
| | - Jack Ng
- Department of Physics, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Baoli Yao
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 710119, Xi'an, China
| | - Zijie Yan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Xiaohao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 710119, Xi'an, China.
| |
Collapse
|
17
|
Balestrieri S, Zito G, Iodice M, Coppola G. Optimized array nanostructure for plasmonically induced motion force generation. OPTICS EXPRESS 2023; 31:33945-33962. [PMID: 37859163 DOI: 10.1364/oe.489583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/06/2023] [Indexed: 10/21/2023]
Abstract
The growing demand to manipulate objects with long-range techniques has increasingly called for the development of techniques capable of intensifying and spatially concentrating electromagnetic fields with the aim of improving the electromagnetic forces acting on objects. In this context, one of the most interesting techniques is based on the use of plasmonic phenomena that have the ability to amplify and structure the electric field in very small areas. In this paper, we report the simulation analysis of a plasmonic nanostructure useful for optimizing the profile of the induced plasmonic field distribution and thus the motion dynamics of a nanoparticle, overcoming some limitations observed in the literature for similar structures. The elementary cell of the proposed nanostructure consists of two gold scalene trapezoids forming a planar V-groove. The spatial replication of this elementary cell to form linear or circular array sequences is used to improve the final nanoparticle velocity. The effect of the geometry variation on the plasmonic behaviour and consequently on the force generated, was analyzed in detail. The results suggest that this optimized plasmonic structure has the potential to efficiently propel macroscopic objects, with implications for various fields such as aerospace and biomedical research.
Collapse
|
18
|
Xiong J, Shi Y, Pan T, Lu D, He Z, Wang D, Li X, Zhu G, Li B, Xin H. Wake-Riding Effect-Inspired Opto-Hydrodynamic Diatombot for Non-Invasive Trapping and Removal of Nano-Biothreats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301365. [PMID: 37012610 PMCID: PMC10288256 DOI: 10.1002/advs.202301365] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Contamination of nano-biothreats, such as viruses, mycoplasmas, and pathogenic bacteria, is widespread in cell cultures and greatly threatens many cell-based bio-analysis and biomanufacturing. However, non-invasive trapping and removal of such biothreats during cell culturing, particularly many precious cells, is of great challenge. Here, inspired by the wake-riding effect, a biocompatible opto-hydrodynamic diatombot (OHD) based on optical trapping navigated rotational diatom (Phaeodactylum tricornutum Bohlin) for non-invasive trapping and removal of nano-biothreats is reported. Combining the opto-hydrodynamic effect and optical trapping, this rotational OHD enables the trapping of bio-targets down to sub-100 nm. Different nano-biothreats, such as adenoviruses, pathogenic bacteria, and mycoplasmas, are first demonstrated to be effectively trapped and removed by the OHD, without affecting culturing cells including precious cells such as hippocampal neurons. The removal efficiency is greatly enhanced via reconfigurable OHD array construction. Importantly, these OHDs show remarkable antibacterial capability, and further facilitate targeted gene delivery. This OHD serves as a smart micro-robotic platform for effective trapping and active removal of nano-biothreats in bio-microenvironments, and especially for cell culturing of many precious cells, with great promises for benefiting cell-based bio-analysis and biomanufacturing.
Collapse
Affiliation(s)
- Jianyun Xiong
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Yang Shi
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Ting Pan
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Dengyun Lu
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Ziyi He
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Danning Wang
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Xing Li
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Guoshuai Zhu
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Hongbao Xin
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| |
Collapse
|
19
|
Hu Y, Kingsley-Smith JJ, Nikkhou M, Sabin JA, Rodríguez-Fortuño FJ, Xu X, Millen J. Structured transverse orbital angular momentum probed by a levitated optomechanical sensor. Nat Commun 2023; 14:2638. [PMID: 37149678 PMCID: PMC10164142 DOI: 10.1038/s41467-023-38261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/19/2023] [Indexed: 05/08/2023] Open
Abstract
The momentum carried by structured light fields exhibits a rich array of surprising features. In this work, we generate transverse orbital angular momentum (TOAM) in the interference field of two parallel and counter-propagating linearly-polarised focused beams, synthesising an array of identical handedness vortices carrying intrinsic TOAM. We explore this structured light field using an optomechanical sensor, consisting of an optically levitated silicon nanorod, whose rotation is a probe of the optical angular momentum, which generates an exceptionally large torque. This simple creation and direct observation of TOAM will have applications in studies of fundamental physics, the optical manipulation of matter and quantum optomechanics.
Collapse
Affiliation(s)
- Yanhui Hu
- Department of Physics, King's College London, Strand, London, WC2R 2LS, United Kingdom
- London Centre for Nanotechnology, Department of Physics, King's College London, Strand, London, WC2R 2LS, United Kingdom
| | - Jack J Kingsley-Smith
- Department of Physics, King's College London, Strand, London, WC2R 2LS, United Kingdom
- London Centre for Nanotechnology, Department of Physics, King's College London, Strand, London, WC2R 2LS, United Kingdom
| | - Maryam Nikkhou
- Department of Physics, King's College London, Strand, London, WC2R 2LS, United Kingdom
- London Centre for Nanotechnology, Department of Physics, King's College London, Strand, London, WC2R 2LS, United Kingdom
| | - James A Sabin
- Department of Physics, King's College London, Strand, London, WC2R 2LS, United Kingdom
- London Centre for Nanotechnology, Department of Physics, King's College London, Strand, London, WC2R 2LS, United Kingdom
| | - Francisco J Rodríguez-Fortuño
- Department of Physics, King's College London, Strand, London, WC2R 2LS, United Kingdom
- London Centre for Nanotechnology, Department of Physics, King's College London, Strand, London, WC2R 2LS, United Kingdom
| | - Xiaohao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China.
| | - James Millen
- Department of Physics, King's College London, Strand, London, WC2R 2LS, United Kingdom.
- London Centre for Nanotechnology, Department of Physics, King's College London, Strand, London, WC2R 2LS, United Kingdom.
| |
Collapse
|
20
|
Lu J, Ginis V, Qiu CW, Capasso F. Polarization-Dependent Forces and Torques at Resonance in a Microfiber-Microcavity System. PHYSICAL REVIEW LETTERS 2023; 130:183601. [PMID: 37204895 DOI: 10.1103/physrevlett.130.183601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/20/2023] [Indexed: 05/21/2023]
Abstract
Spin-orbit interactions in evanescent fields have recently attracted significant interest. In particular, the transfer of the Belinfante spin momentum perpendicular to the propagation direction generates polarization-dependent lateral forces on particles. However, it is still elusive as to how the polarization-dependent resonances of large particles synergize with the incident light's helicity and resultant lateral forces. Here, we investigate these polarization-dependent phenomena in a microfiber-microcavity system where whispering-gallery-mode resonances exist. This system allows for an intuitive understanding and unification of the polarization-dependent forces. Contrary to previous studies, the induced lateral forces at resonance are not proportional to the helicity of incident light. Instead, polarization-dependent coupling phases and resonance phases generate extra helicity contributions. We propose a generalized law for optical lateral forces and find the existence of optical lateral forces even when the helicity of incident light is zero. Our work provides new insights into these polarization-dependent phenomena and an opportunity to engineer polarization-controlled resonant optomechanical systems.
Collapse
Affiliation(s)
- Jinsheng Lu
- Harvard John A. Paulson School of Engineering and Applied Sciences, 9 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Vincent Ginis
- Harvard John A. Paulson School of Engineering and Applied Sciences, 9 Oxford Street, Cambridge, Massachusetts 02138, USA
- Data Lab and Applied Physics, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Federico Capasso
- Harvard John A. Paulson School of Engineering and Applied Sciences, 9 Oxford Street, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
21
|
Zhao X, Lin H, Chen H, Zheng H, Ng J. Back-propagation-assisted inverse design of structured light fields for given profiles of optical force. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2019-2027. [PMID: 39635695 PMCID: PMC11614335 DOI: 10.1515/nanoph-2023-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/19/2023] [Indexed: 12/07/2024]
Abstract
Designing a monochromatic spatially-structured light field that recovers the pre-specified profile of optical force (OF) exerted on a particle is an inverse problem. It usually requires high dimensional optimization and involves lengthy calculations, thus remaining little studied despite decades of research on OF. We report here the first attempt to attack this inverse design problem. The modus operandi relies on the back-propagation algorithm, which is facilitated by the currently available machine learning framework, and, in particular, by an exact and efficient expression of OF that shows only polynomial and trigonometric functional dependence on the engineered parameters governing the structured light field. Two illustrative examples are presented in which the inversely designed structured light fields reproduce, respectively, a predefined spatial pattern of OF and a negative longitudinal OF in a transversely trapping area.
Collapse
Affiliation(s)
- Xiaoshu Zhao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, China
| | - Haoze Lin
- Department of Computer Science, Columbia University, New York, NY10027, USA
| | - Huajin Chen
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi545006, China
- Guangxi Colleges and Universities Key Laboratory of Microwave Communication and Micro-Nano Photoelectric Technology, Liuzhou, Guangxi545006, China
| | - Hongxia Zheng
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, China
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi545006, China
- Guangxi Colleges and Universities Key Laboratory of Microwave Communication and Micro-Nano Photoelectric Technology, Liuzhou, Guangxi545006, China
| | - Jack Ng
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| |
Collapse
|
22
|
Wang X, Wu M, Ni B, Peng Z, Shen D, Zheng ZG. Collecting, transporting and sorting micro-particles via the optical slings generated by a liquid crystal q(φ)-plate. OPTICS EXPRESS 2023; 31:5736-5746. [PMID: 36823846 DOI: 10.1364/oe.482494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
We disclose a transporting/collecting optical sling generated by a liquid crystal geometric phase optical element with spatial variant topological charge, which shows the intriguing repelling/indrawing effect on the micro-particle along the spiral orbit. Two proof-of-concept prototypes, i.e., an optical conveyor and a particle collector, are demonstrated. Based on the distinct dynamic characteristics of the micro-particles in different sizes, we conceptually propose a design for particle sorting. Thus, our proposed method to generate a spiral optical sling with spatial variant orbital angular momentum for on-demand collecting, transporting and sorting micro-particles is substantiated, which can find extensive applications in bio-medicine, micro-biology, etc.
Collapse
|
23
|
Tao Y, Yokoyama T, Ishihara H. Rotational dynamics of indirect optical bound particle assembly under a single tightly focused laser. OPTICS EXPRESS 2023; 31:3804-3820. [PMID: 36785364 DOI: 10.1364/oe.479643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
The optical binding of many particles has the potential to achieve the wide-area formation of a "crystal" of small materials. Unlike conventional optical binding, where the entire assembly of targeted particles is directly irradiated with light, if remote particles can be indirectly manipulated using a single trapped particle through optical binding, the degrees of freedom to create ordered structures can be enhanced. In this study, we theoretically investigate the dynamics of the assembly of gold nanoparticles that are manipulated using a single trapped particle by a focused laser. We demonstrate the rotational motion of particles through an indirect optical force and analyze it in terms of spin-orbit coupling and the angular momentum generation of light. The rotational direction of bound particles can be switched by the numerical aperture. These results pave the way for creating and manipulating ordered structures with a wide area and controlling local properties using scanning laser beams.
Collapse
|
24
|
Li T, Kingsley-Smith JJ, Hu Y, Xu X, Yan S, Wang S, Yao B, Wang Z, Zhu S. Reversible lateral optical force on phase-gradient metasurfaces for full control of metavehicles. OPTICS LETTERS 2023; 48:255-258. [PMID: 36638431 DOI: 10.1364/ol.478979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Photonics is currently undergoing an era of miniaturization thanks in part to two-dimensional (2D) optical metasurfaces. Their ability to sculpt and redirect optical momentum can give rise to an optical force, which acts orthogonally to the direction of light propagation. Powered by a single unfocused light beam, these lateral optical forces (LOFs) can be used to drive advanced metavehicles and are controlled via the incident beam's polarization. However, the full control of a metavehicle on a 2D plane (i.e. forward, backward, left, and right) with a sign-switchable LOF remains a challenge. Here we present a phase-gradient metasurface route for achieving such full control while also increasing efficiency. The proposed metasurface is able to deflect a normally incident plane wave in a traverse direction by modulating the plane wave's polarization, and results in a sign-switchable recoil LOF. When applied to a metavehicle, this LOF enables a level of motion control that was previously unobtainable.
Collapse
|