1
|
Ho BHT, Spicer BA, Dunstone MA. Action of the Terminal Complement Pathway on Cell Membranes. J Membr Biol 2025:10.1007/s00232-025-00343-6. [PMID: 40122920 DOI: 10.1007/s00232-025-00343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
The complement pathway is one of the most ancient elements of the host's innate response and includes a set of protein effectors that rapidly react against pathogens. The late stages of the complement reaction are broadly categorised into two major outcomes. Firstly, C5a receptors, expressed on membranes of host cells, are activated by C5a to generate pro-inflammatory responses. Secondly, target cells are lysed by a hetero-oligomeric pore known as the membrane attack complex (MAC) that punctures the cellular membrane, causing ion and osmotic flux. Generally, several membrane-bound and soluble inhibitors protect the host membrane from complement damage. This includes inhibitors against the MAC, such as clusterin and CD59. This review addresses the most recent molecular and structural insights behind the activation and modulation of the integral membrane proteins, the C5a receptors (C5aR1 and C5aR2), as well as the regulation of MAC assembly. The second aspect of the review focuses on the molecular basis behind inflammatory diseases that are reflective of failure to regulate the terminal complement effectors. Although each arm is unique in its function, both pathways may share similar outcomes in these diseases. As such, the review outlines potential synergy and crosstalk between C5a receptor activation and MAC-mediated cellular responses.
Collapse
Affiliation(s)
- Bill H T Ho
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Bradley A Spicer
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Michelle A Dunstone
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Yadav GP, Wang H, Ouwendijk J, Cross S, Wang Q, Qin F, Verkade P, Zhu MX, Jiang QX. Chromogranin B (CHGB) is dimorphic and responsible for dominant anion channels delivered to cell surface via regulated secretion. Front Mol Neurosci 2023; 16:1205516. [PMID: 37435575 PMCID: PMC10330821 DOI: 10.3389/fnmol.2023.1205516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/26/2023] [Indexed: 07/13/2023] Open
Abstract
Regulated secretion is conserved in all eukaryotes. In vertebrates granin family proteins function in all key steps of regulated secretion. Phase separation and amyloid-based storage of proteins and small molecules in secretory granules require ion homeostasis to maintain their steady states, and thus need ion conductances in granule membranes. But granular ion channels are still elusive. Here we show that granule exocytosis in neuroendocrine cells delivers to cell surface dominant anion channels, to which chromogranin B (CHGB) is critical. Biochemical fractionation shows that native CHGB distributes nearly equally in soluble and membrane-bound forms, and both reconstitute highly selective anion channels in membrane. Confocal imaging resolves granular membrane components including proton pumps and CHGB in puncta on the cell surface after stimulated exocytosis. High pressure freezing immuno-EM reveals a major fraction of CHGB at granule membranes in rat pancreatic β-cells. A cryo-EM structure of bCHGB dimer of a nominal 3.5 Å resolution delineates a central pore with end openings, physically sufficient for membrane-spanning and large single channel conductance. Together our data support that CHGB-containing (CHGB+) channels are characteristic of regulated secretion, and function in granule ion homeostasis near the plasma membrane or possibly in other intracellular processes.
Collapse
Affiliation(s)
- Gaya P. Yadav
- Departments of Microbiology and Cell Science and of Medicinal Chemistry, University of Florida, Gainesville, FL, United States
- Departments of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, United States
- Laboratory of Molecular Physiology and Biophysics, Hauptman-Woodward Medical Research Institute, Buffalo, NY, United States
| | - Haiyuan Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Joke Ouwendijk
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Stephen Cross
- Wolfson Bioimaging facility, University of Bristol, Bristol, United Kingdom
| | - Qiaochu Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Feng Qin
- Departments of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, United States
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Qiu-Xing Jiang
- Departments of Microbiology and Cell Science and of Medicinal Chemistry, University of Florida, Gainesville, FL, United States
- Departments of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, United States
- Laboratory of Molecular Physiology and Biophysics, Hauptman-Woodward Medical Research Institute, Buffalo, NY, United States
- Cryo-EM Center, Laoshan Laboratory, Qingdao, Shandong, China
| |
Collapse
|
3
|
Fishelson Z, Kirschfink M. Complement C5b-9 and Cancer: Mechanisms of Cell Damage, Cancer Counteractions, and Approaches for Intervention. Front Immunol 2019; 10:752. [PMID: 31024572 PMCID: PMC6467965 DOI: 10.3389/fimmu.2019.00752] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/20/2019] [Indexed: 01/14/2023] Open
Abstract
The interactions of cancer cells with components of the complement system are highly complex, leading to an outcome that is either favorable or detrimental to cancer cells. Currently, we perceive only the "tip of the iceberg" of these interactions. In this review, we focus on the complement terminal C5b-9 complex, known also as the complement membrane attack complex (MAC) and discuss the complexity of its interaction with cancer cells, starting with a discussion of its proposed mode of action in mediating cell death, and continuing with a portrayal of the strategies of evasion exhibited by cancer cells, and closing with a proposal of treatment approaches targeted at evasion strategies. Upon intense complement activation and membrane insertion of sufficient C5b-9 complexes, the afflicted cells undergo regulated necrotic cell death with characteristic damage to intracellular organelles, including mitochondria, and perforation of the plasma membrane. Several pro-lytic factors have been proposed, including elevated intracellular calcium ion concentrations and activated JNK, Bid, RIPK1, RIPK3, and MLKL; however, further research is required to fully characterize the effective cell death signals activated by the C5b-9 complexes. Cancer cells over-express a multitude of protective measures which either block complement activation, thus reducing the number of membrane-inserted C5b-9 complexes, or facilitate the elimination of C5b-9 from the cell surface. Concomitantly, cancer cells activate several protective pathways that counteract the death signals. Blockage of complement activation is mediated by the complement membrane regulatory proteins CD46, CD55, and CD59 and by soluble complement regulators, by proteases that cleave complement proteins and by protein kinases, like CK2, which phosphorylate complement proteins. C5b-9 elimination and inhibition of cell death signals are mediated by caveolin and dynamin, by Hsp70 and Hsp90, by the mitochondrial stress protein mortalin, and by the protein kinases PKC and ERK. It is conceivable that various cancers and cancers at different stages of development will utilize distinct patterns of these and other MAC resistance strategies. In order to enhance the impact of antibody-based therapy on cancer, novel precise reagents that block the most effective protective strategies will have to be designed and applied as adjuvants to the therapeutic antibodies.
Collapse
Affiliation(s)
- Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
4
|
Heesterbeek DA, Bardoel BW, Parsons ES, Bennett I, Ruyken M, Doorduijn DJ, Gorham RD, Berends ET, Pyne AL, Hoogenboom BW, Rooijakkers SH. Bacterial killing by complement requires membrane attack complex formation via surface-bound C5 convertases. EMBO J 2019; 38:e99852. [PMID: 30643019 PMCID: PMC6376327 DOI: 10.15252/embj.201899852] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
The immune system kills bacteria by the formation of lytic membrane attack complexes (MACs), triggered when complement enzymes cleave C5. At present, it is not understood how the MAC perturbs the composite cell envelope of Gram-negative bacteria. Here, we show that the role of C5 convertase enzymes in MAC assembly extends beyond the cleavage of C5 into the MAC precursor C5b. Although purified MAC complexes generated from preassembled C5b6 perforate artificial lipid membranes and mammalian cells, these components lack bactericidal activity. In order to permeabilize both the bacterial outer and inner membrane and thus kill a bacterium, MACs need to be assembled locally by the C5 convertase enzymes. Our data indicate that C5b6 rapidly loses the capacity to form bactericidal pores; therefore, bacterial killing requires both in situ conversion of C5 and immediate insertion of C5b67 into the membrane. Using flow cytometry and atomic force microscopy, we show that local assembly of C5b6 at the bacterial surface is required for the efficient insertion of MAC pores into bacterial membranes. These studies provide basic molecular insights into MAC assembly and bacterial killing by the immune system.
Collapse
Affiliation(s)
- Dani Ac Heesterbeek
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bart W Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Edward S Parsons
- London Centre for Nanotechnology, University College London, London, UK
| | - Isabel Bennett
- London Centre for Nanotechnology, University College London, London, UK
| | - Maartje Ruyken
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dennis J Doorduijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ronald D Gorham
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Evelien Tm Berends
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Alice Lb Pyne
- London Centre for Nanotechnology, University College London, London, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Suzan Hm Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Morgan BP, Walters D, Serna M, Bubeck D. Terminal complexes of the complement system: new structural insights and their relevance to function. Immunol Rev 2016; 274:141-151. [PMID: 27782334 DOI: 10.1111/imr.12461] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Complement is a key component of innate immunity in health and a powerful driver of inflammation and tissue injury in disease. The biological and pathological effects of complement activation are mediated by activation products. These come in two flavors: (i) proteolytic fragments of complement proteins (C3, C4, C5) generated during activation that bind specific receptors on target cells to mediate effects; (ii) the multimolecular membrane attack complex generated from the five terminal complement proteins that directly binds to and penetrates target cell membranes. Several recent publications have described structural insights that have changed perceptions of the nature of this membrane attack complex. This review will describe these recent advances in understanding of the structure of the membrane attack complex and its by-product the fluid-phase terminal complement complex and relate these new structural insights to functional consequences and cell responses to complement membrane attack.
Collapse
Affiliation(s)
- Bryan Paul Morgan
- Systems Immunity Research Institute, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
| | - David Walters
- Systems Immunity Research Institute, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Marina Serna
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College, London, UK
| | - Doryen Bubeck
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College, London, UK
| |
Collapse
|
6
|
Wiese A, Gutsmann T, Seydel U. Review: Towards antibacterial strategies: studies on the mechanisms of interaction between antibacterial peptides and model membranes. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519030090020101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lipopolysaccharides (LPSs) play a dual role as inflammation-inducing and as membrane-forming molecules. The former role attracts significantly more attention from scientists, possibly because it is more closely related to sepsis and septic shock. This review aims to focus the reader's attention to the other role, the function of LPS as the major constituent of the outer layer of the outer membrane of Gram-negative bacteria, in particular those of enterobacterial strains. In this function, LPS is a necessary component of the cell envelope and guarantees survival of the bacterial organism. At the same time, it represents the first target for attacking molecules which may either be synthesized by the host's innate or adaptive immune system or administered to the human body. The interaction of these molecules with the outer membrane may not only directly cause the death of the bacterial organism, but may also lead to the release of LPS into the circulation. Here, we review membrane model systems and their application for the study of molecular mechanisms of interaction of peptides such as those of the human complement system, the bactericidal/permeability-increasing protein (BPI), cationic antibacterial peptide 18 kDa (CAP18) as an example of cathelicidins, defensins, and polymyxin B (PMB). Emphasis is on electrical measurements with a reconstitution system of the lipid matrix of the outer membrane which was established in the authors' laboratory as a planar asymmetric bilayer with one leaflet being composed solely of LPS and the other of the natural phospholipid mixture. The main conclusion, which can be drawn from these investigations, is that LPS and in general its negative charges are the dominant determinants for specific peptide—membrane interactions. However, the detailed mechanisms of interaction, which finally lead to bacterial killing, may involve further steps and differ for different antibacterial peptides.
Collapse
Affiliation(s)
- Andre Wiese
- Division of Biophysics, Research Center Borstel, Borstel, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Borstel, Germany
| | - Ulrich Seydel
- Division of Biophysics, Research Center Borstel, Borstel, Germany,
| |
Collapse
|
7
|
Veselkina OS, Solovtsova IL, Petrishchev NN, Galebskaya LV, Borovitov ME, Nilov DI, Solov’eva MA, Vorob’ev EA, Len’shina KS. Influence of N,N′-Substituted Piperazines on Cytolysis. Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1363-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Alenghat FJ, Golan DE. Membrane protein dynamics and functional implications in mammalian cells. CURRENT TOPICS IN MEMBRANES 2013; 72:89-120. [PMID: 24210428 PMCID: PMC4193470 DOI: 10.1016/b978-0-12-417027-8.00003-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The organization of the plasma membrane is both highly complex and highly dynamic. One manifestation of this dynamic complexity is the lateral mobility of proteins within the plane of the membrane, which is often an important determinant of intermolecular protein-binding interactions, downstream signal transduction, and local membrane mechanics. The mode of membrane protein mobility can range from random Brownian motion to immobility and from confined or restricted motion to actively directed motion. Several methods can be used to distinguish among the various modes of protein mobility, including fluorescence recovery after photobleaching, single-particle tracking, fluorescence correlation spectroscopy, and variations of these techniques. Here, we present both a brief overview of these methods and examples of their use to elucidate the dynamics of membrane proteins in mammalian cells-first in erythrocytes, then in erythroblasts and other cells in the hematopoietic lineage, and finally in non-hematopoietic cells. This multisystem analysis shows that the cytoskeleton frequently governs modes of membrane protein motion by stably anchoring the proteins through direct-binding interactions, by restricting protein diffusion through steric interactions, or by facilitating directed protein motion. Together, these studies have begun to delineate mechanisms by which membrane protein dynamics influence signaling sequelae and membrane mechanical properties, which, in turn, govern cell function.
Collapse
Affiliation(s)
- Francis J. Alenghat
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - David E. Golan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Hematology Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Karnchanaphanurach P, Mirchev R, Ghiran I, Asara JM, Papahadjopoulos-Sternberg B, Nicholson-Weller A, Golan DE. C3b deposition on human erythrocytes induces the formation of a membrane skeleton-linked protein complex. J Clin Invest 2009; 119:788-801. [PMID: 19258706 DOI: 10.1172/jci36088] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 01/07/2009] [Indexed: 11/17/2022] Open
Abstract
Decay-accelerating factor (DAF, also known as CD55), a glycosylphosphatidylinositol-linked (GPI-linked) plasma membrane protein, protects autologous cells from complement-mediated damage by inhibiting complement component 3 (C3) activation. An important physical property of GPI-anchored complement regulatory proteins such as DAF is their ability to translate laterally in the plasma membrane. Here, we used single-particle tracking and tether-pulling experiments to measure DAF lateral diffusion, lateral confinement, and membrane skeletal associations in human erythrocyte membranes. In native membranes, most DAF molecules exhibited Brownian lateral diffusion. Fluid-phase complement activation caused deposition of C3b, one of the products of C3 cleavage, onto erythrocyte glycophorin A (GPA). We then determined that DAF, C3b, GPA, and band 3 molecules were laterally immobilized in the membranes of complement-treated cells, and GPA was physically associated with the membrane skeleton. Mass spectrometry analysis further showed that band 3, alpha-spectrin, beta-spectrin, and ankyrin were present in a complex with C3b and GPA in complement-treated cells. C3b deposition was also associated with a substantial increase in erythrocyte membrane stiffness and/or viscosity. We therefore suggest that complement activation stimulates the formation of a membrane skeleton-linked DAF-C3b-GPA-band 3 complex on the erythrocyte surface. This complex may promote the removal of senescent erythrocytes from the circulation.
Collapse
Affiliation(s)
- Pallop Karnchanaphanurach
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Bhakdi S, Tranum-Jensen J. Damage to mammalian cells by proteins that form transmembrane pores. Rev Physiol Biochem Pharmacol 2005; 107:147-223. [PMID: 3303271 DOI: 10.1007/bfb0027646] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Okamoto K, Wang W, Rounds J, Chambers E, Jacobs DO. Sublytic complement attack increases intracellular sodium in rat skeletal muscle. J Surg Res 2000; 90:174-82. [PMID: 10792960 DOI: 10.1006/jsre.2000.5880] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although excessive complement activation and deranged sodium homeostasis in skeletal muscle are characteristic in sepsis, their relationship has not been examined. This study was designed to determine if sublytic complement activation can directly mediate changes in myocellular sodium content. MATERIALS AND METHODS Fast-twitch extensor digitorum longus muscles were freshly isolated from infant rats. Unsensitized muscles were incubated at 30 degrees C for 60 min in the media containing 10% human or rat serum under conditions of no complement activation, activation by zymosan, inactivation by heat, C7 or C9 deficiency, selective inhibition of complement pathway, and inhibition of Na(+)-K(+) ATPase by ouabain. Intracellular sodium ([Na(+)](i)) and potassium ([K(+)](i)) contents of the muscles, myocellular ATP, and LDH release from the muscles were then determined. RESULTS Normal human serum significantly increased [Na(+)](i) and the [Na(+)](i)/[K(+)](i) ratio in the muscles as well as zymosan-activated serum. Heat inactivation, C7 deficiency, and inhibition of the alternative pathway completely abolished the cationic changes. Average LDH release was identical in all groups and less than 6%. Complement activation did not impair ouabain-sensitive Na(+)-K(+) ATPase activity in the muscles or alter myocellular ATP. Thus, the observed alterations are not likely due to dysfunction of Na(+)-K(+) pump or depletion of myocellular energy. Instead, alterations in [Na(+)](i) were dependent upon the amount of C9 added to C9-deficient serum, which suggests that the alterations are likely dependent on transmembrane pores created by membrane attack complexes (MAC). CONCLUSIONS Sublytic amounts of MAC formed as a result of complement activation can directly alter [Na(+)](i) in ex vivo skeletal muscle.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Complement C9/metabolism
- Complement Membrane Attack Complex/metabolism
- Complement Pathway, Alternative/drug effects
- Complement Pathway, Alternative/immunology
- Complement Pathway, Classical/drug effects
- Complement Pathway, Classical/immunology
- Enzyme Inhibitors/pharmacology
- L-Lactate Dehydrogenase/metabolism
- Male
- Muscle Fibers, Fast-Twitch/immunology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/immunology
- Organ Size
- Ouabain/pharmacology
- Potassium/metabolism
- Rats
- Rats, Wistar
- Sodium/metabolism
Collapse
Affiliation(s)
- K Okamoto
- Laboratories for Surgical Metabolism and Nutrition, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
12
|
Wiese A, Brandenburg K, Ulmer AJ, Seydel U, Müller-Loennies S. The dual role of lipopolysaccharide as effector and target molecule. Biol Chem 1999; 380:767-84. [PMID: 10494826 DOI: 10.1515/bc.1999.097] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipopolysaccharides (LPS) are major integral components of the outer membrane of Gram-negative bacteria being exclusively located in its outer leaflet facing the bacterial environment. Chemically they consist in different bacterial strains of a highly variable O-specific chain, a less variable core oligosaccharide, and a lipid component, termed lipid A, with low structural variability. LPS participate in the physiological membrane functions and are, therefore, essential for bacterial growth and viability. They contribute to the low membrane permeability and increase the resistance towards hydrophobic agents. They are also the primary target for the attack of antibacterial drugs and proteins such as components of the host's immune response. When set free LPS elicit, in higher organisms, a broad spectrum of biological activities. They play an important role in the manifestation of Gram-negative infection and are therefore termed endotoxins. Physico-chemical parameters such as the molecular conformation and the charges of the lipid A portion, which is responsible for endotoxin-typical biological activities and is therefore termed the 'endotoxic principle' of LPS, are correlated with the biological activity of chemically different LPS.
Collapse
Affiliation(s)
- A Wiese
- Research Center Borstel, Center for Medicine and Biosciences, Germany
| | | | | | | | | |
Collapse
|
13
|
The transient pore formed by homologous terminal complement complexes functions as a bidirectional route for the transport of autocrine and paracrine signals across human cell membranes. Mol Med 1997. [PMID: 8972490 DOI: 10.1007/bf03401659] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We have previously shown that the membrane attack complex (MAC) of complement stimulates cell proliferation and that insertion of homologous MAC into the membranes of endothelial cells results in the release of potent mitogens, including basic fibroblast growth factor (bFGF). The mechanism of secretion of bFGF and other polypeptides devoid of signal peptides, such as interleukin 1 (IL-1) is still an open problem in cell biology. We have hypothesized that the homologous MAC pore itself could constitute a transient route for the diffusion of biologically active macromolecules in and out of the target cells. MATERIALS AND METHODS Human red blood cell ghosts and artificial lipid vesicles were loaded with labeled growth factors, cytokines and IgG, and exposed to homologous MAC. The release of the 125I-macromolecules was followed as a function of time. The incorporation of labeled polypeptides and fluorescent dextran (MW: 10,000) was measured in MAC-impacted human red blood cells and human umbilical endothelial cells (HUVEC), respectively. RESULTS Homologous MAC insertion into HUVEC resulted in the massive uptake of 10-kD dextran and induced the release of bFGF, in the absence of any measurable lysis. Red blood cell ghosts preloaded with bFGF, IL-1 beta, and the alpha-chain of interferon-gamma (IFN-gamma) released the polypeptides upon MAC insertion, but they did not release preloaded IgG. MAC-impacted ghosts took up radioactive IFN-gamma from the extracellular medium. Vesicles loaded with IL-I released the polypeptide when exposed to MAC. CONCLUSIONS The homologous MAC pore in its nonlytic form allows for the export of cytosolic proteins devoid of signal peptides that are not secreted through the classical endoplasmic reticulum/Golgi exocytotic pathways. Our results suggest that the release, and perhaps the uptake, of biologically active macromolecules through the homologous MAC pore is a novel biological function of the complement system in mammals.
Collapse
|
14
|
Acosta JA, Benzaquen LR, Goldstein DJ, Tosteson MT, Halperin JA. The transient pore formed by homologous terminal complement complexes functions as a bidirectional route for the transport of autocrine and paracrine signals across human cell membranes. Mol Med 1996; 2:755-65. [PMID: 8972490 PMCID: PMC2230132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND We have previously shown that the membrane attack complex (MAC) of complement stimulates cell proliferation and that insertion of homologous MAC into the membranes of endothelial cells results in the release of potent mitogens, including basic fibroblast growth factor (bFGF). The mechanism of secretion of bFGF and other polypeptides devoid of signal peptides, such as interleukin 1 (IL-1) is still an open problem in cell biology. We have hypothesized that the homologous MAC pore itself could constitute a transient route for the diffusion of biologically active macromolecules in and out of the target cells. MATERIALS AND METHODS Human red blood cell ghosts and artificial lipid vesicles were loaded with labeled growth factors, cytokines and IgG, and exposed to homologous MAC. The release of the 125I-macromolecules was followed as a function of time. The incorporation of labeled polypeptides and fluorescent dextran (MW: 10,000) was measured in MAC-impacted human red blood cells and human umbilical endothelial cells (HUVEC), respectively. RESULTS Homologous MAC insertion into HUVEC resulted in the massive uptake of 10-kD dextran and induced the release of bFGF, in the absence of any measurable lysis. Red blood cell ghosts preloaded with bFGF, IL-1 beta, and the alpha-chain of interferon-gamma (IFN-gamma) released the polypeptides upon MAC insertion, but they did not release preloaded IgG. MAC-impacted ghosts took up radioactive IFN-gamma from the extracellular medium. Vesicles loaded with IL-I released the polypeptide when exposed to MAC. CONCLUSIONS The homologous MAC pore in its nonlytic form allows for the export of cytosolic proteins devoid of signal peptides that are not secreted through the classical endoplasmic reticulum/Golgi exocytotic pathways. Our results suggest that the release, and perhaps the uptake, of biologically active macromolecules through the homologous MAC pore is a novel biological function of the complement system in mammals.
Collapse
Affiliation(s)
- J A Acosta
- Laboratory for Membrane Transport, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
15
|
Moayeri M, Welch RA. Effects of temperature, time, and toxin concentration on lesion formation by the Escherichia coli hemolysin. Infect Immun 1994; 62:4124-34. [PMID: 7927666 PMCID: PMC303086 DOI: 10.1128/iai.62.10.4124-4134.1994] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We performed osmotic protection experiments to test the hypothesis that the Escherichia coli hemolysin forms a discrete-size pore in erythrocyte membranes. The effects of toxin concentration, assay time, temperature, and protectant concentrations were examined. The results we present here raise doubts about the existing model of pore formation by hemolysin. We demonstrate that osmotic protection by various sugars of different sizes is a function of hemolysin concentration and assay time. The data indicate that under various conditions, lesion sizes with a diameter ranging from < 0.6 to > 1.2 nm can be inferred. Quantification of hemolysin permitted the estimation of the number of HlyA structural protein molecules required per erythrocyte for lysis in the presence of each protectant. It appears that hemolysin induces heterogeneous erythrocyte lesions which increase in size over time. Influx experiments utilizing radioactive sugar markers indicated that time-dependent osmotic protection patterns are independent of the diffusion rates of individual protectants. We demonstrate that the rate of the putative growth in the size of hemolysin-mediated lesions is temperature dependent. The erythrocyte membrane lesions formed at 37 degrees C can be stabilized in size when shifted to 4 degrees C. On the basis of these data, new models for the nature of the hemolysin-mediated erythrocyte membrane lesions are presented.
Collapse
Affiliation(s)
- M Moayeri
- Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, Madison 53706
| | | |
Collapse
|
16
|
Halperin JA, Taratuska A, Nicholson-Weller A. Terminal complement complex C5b-9 stimulates mitogenesis in 3T3 cells. J Clin Invest 1993; 91:1974-8. [PMID: 8486768 PMCID: PMC288194 DOI: 10.1172/jci116418] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The membrane attack complex of complement (MAC) can induce reversible changes in cell membrane permeability resulting in significant but transient intracellular ionic changes in the absence of cell lysis. Because ion fluxes and cytosolic ionic changes are integral steps in the signaling cascade initiated when growth factors bind to their receptors, we hypothesized that the MAC-induced reversible changes in membrane permeability could stimulate cell proliferation. Using purified terminal complement components we have documented a mitogenic effect of the MAC for quiescent murine 3T3 cells. The MAC enhances the mitogenic effects of serum and PDGF, and also stimulates cell proliferation in the absence of other exogenous growth factors. MAC-induced mitogenesis represents a novel effect of the terminal complement complex that could contribute to focal tissue repair or pathological cell proliferation locally at sites of complement activation.
Collapse
Affiliation(s)
- J A Halperin
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
17
|
Mangel A, Leitão JM, Batel R, Zimmermann H, Müller WE, Schröder HC. Purification and characterization of a pore-forming protein from the marine sponge Tethya lyncurium. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:499-507. [PMID: 1281099 DOI: 10.1111/j.1432-1033.1992.tb17448.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A pore-forming protein was detected and purified for the first time from a marine sponge (Tethya lyncurium). The purified protein has a polypeptide molecular mass of 21 kDa and a pI of 6.4. Tethya pore-forming protein (also called Tethya hemolysin) rapidly lysed erythrocytes from a variety of organisms. After binding to target membranes, the hemolysin resisted elution with EDTA, salt or solutions of low ionic strength and hence resembled an integral membrane protein. Erythrocytes could be protected from hemolysis induced by Tethya hemolysin by addition of 30 mM dextran 4 (4-6 kDa; equivalent hydrodynamic diffusion radius, 1.75-2.3 nm) to the extracellular medium, but not by addition of uncharged molecules of smaller size [sucrose, raffinose and poly(ethylene glycol) 1550; equivalent hydrodynamic diffusion radii, 0.46, 0.57 and 1.2 nm, respectively]. This result indicates that hemolysin is able to form stable transmembrane pores with an effective diameter of about 2-3 nm. Treatment of osmotically protected erythrocytes with Tethya hemolysin caused a rapid efflux of intracellular K+ and ATP, and a rapid influx of extracellularly added Ca2+ and sucrose. In negative-staining electron microscopy, target erythrocyte membranes exposed to purified Tethya hemolysin displayed ultrastructural lesions but without visible pores.
Collapse
Affiliation(s)
- A Mangel
- Institut für Physiologische Chemie, Universität Mainz, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
18
|
Shiver JW, Dankert JR, Esser AF. Formation of ion-conducting channels by the membrane attack complex proteins of complement. Biophys J 1991; 60:761-9. [PMID: 1720679 PMCID: PMC1260127 DOI: 10.1016/s0006-3495(91)82110-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The effects of sequential additions of purified human complement proteins C5b-6, C7, C8, and C9 to assemble the C5b-9 membrane attack complex (MAC) of complement on electrical properties of planar lipid bilayers have been analyzed. The high resistance state of such membranes was impaired after assembly of large numbers of C5b-8 complexes as indicated by the appearance of rapidly fluctuating membrane currents. The C5b-8 induced conductance was voltage dependent and rectifying at higher voltages. Addition of C9 to membranes with very few C5b-8 complexes caused appearance of few discrete single channels of low conductance (5-25 pS) but after some time very large (greater than 0.5 nS) jumps in conductance could be monitored. This high macroscopic conductance state was dominated by 125-pS channels having a lifetime of approximately 1 s. The high conductance state was not stable and declined again after a period of 1-3 h. Incorporation of MAC extracted from complement-lysed erythrocytes into liposomes and subsequent transformation of such complexes into planar bilayers via an intermediate monolayer state resulted in channels with characteristics similar to the ones produced by sequential assembly of C5b-9. Comparison of the high-conductance C5b-9 channel characteristics (lifetime, ion preference, ionic-strength dependence) with those produced by poly(C9) (the circular or tubular aggregation product of C9) as published by Young, J.D.-E., Z.A. Cohn, and E.R. Podack. (1986. Science [Wash. DC]. 233:184-190.) indicates that the two are significantly different.
Collapse
Affiliation(s)
- J W Shiver
- Department of Comparative and Experimental Pathology, University of Florida, Gainesville 32610
| | | | | |
Collapse
|
19
|
Schürholz T, Wilimzig M, Katsiou E, Eichenlaub R. Anion channel forming activity from the plant pathogenic bacterium Clavibacter michiganense ssp. nebraskense. J Membr Biol 1991; 123:1-8. [PMID: 1723101 DOI: 10.1007/bf01993957] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The plant pathogenic bacterium Clavibacter michiganense ssp. nebraskense secretes an anion channel forming activity (CFA) into the culture field. The CFA inserts spontaneously into planar lipid membranes when culture fluid of this species is added to the aqueous phase of the bilayer chamber. The channels formed are highly anion selective. The conductance decreases for larger anions (Cl- greater than SCN- greater than SO2-(4] and is practically zero for gluconate. The channels show a unique voltage dependence: (i) The single-channel conductance increases linearly with voltage up to 200 mV saturating at 250 mV with 25 +/- 1 pS (300 mM KCl). The channel is closed at negative voltage relative to the side of insertion (diode-type I-V curve). (ii) The average number of open channels also increases with voltage. The Poisson distribution of channel numbers indicates independent opening of the channels. Channel activity can be abolished by protease treatment of the planar bilayer. The channels can be blocked by indanyloxyacetic acid (IAA-94) and by pH greater than 10. The CFA was purified yielding one major band on the SDS gel with a relative molecular mass of 65,000. The putative involvement of the CFA in the toxicity of this plant pathogen is discussed and compared to other toxins like colicins and to the diptheria toxin group.
Collapse
Affiliation(s)
- T Schürholz
- Fakultät für Chemie, Lehrstuhl Biophysikalische Chemie, Universität Bielefeld, Federal Republic of Germany
| | | | | | | |
Collapse
|
20
|
Schröder G, Brandenburg K, Brade L, Seydel U. Pore formation by complement in the outer membrane of gram-negative bacteria studied with asymmetric planar lipopolysaccharide/phospholipid bilayers. J Membr Biol 1990; 118:161-70. [PMID: 2266547 DOI: 10.1007/bf01868473] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The interaction of complement with an asymmetric planar lipopolysaccharide/phospholipid bilayer system as a model for the lipid matrix of the outer membrane of Gram-negative bacteria has been studied. The addition of whole human serum to the aqueous solution at the lipopolysaccharide side of the asymmetric membrane resulted in a rapid increase of the bilayer conductance in discrete steps, indicating the formation of transmembrane pores, which were not observed in the case of pure phospholipid membranes. The amplitudes of the discrete conductance steps varied over a range of more than one order of magnitude. The mean single step conductance was (0.39 +/- 0.24) nS for a subphase containing (in mM): 100 KCl, 5 MgCl2 and 5 HEPES buffer. The steps were grouped into bursts of typically 9 +/- 3 events per burst and the conductance change within one burst was (8.25 +/- 4.00) nS. The pore-forming activity of serum at the asymmetric membrane system was independent of the presence of specific antibodies against the lipopolysaccharide but was dependent on calcium ions. Furthermore, the pore-forming activity required complement component C9. A model for the mode of pore formation by complement is proposed: The complement pore is generated in discrete steps by insertion of C9 monomers into the membrane and their irreversible aggregation to water-filled channels with a diameter of approximately 7 nm assuming a circular geometry.
Collapse
Affiliation(s)
- G Schröder
- Forschungsinstitut Borstel, Federal Republic of Germany
| | | | | | | |
Collapse
|
21
|
Yonemura Y, Kawakita M, Koito A, Kawaguchi T, Nakakuma H, Kagimoto T, Schichishima T, Terasawa T, Akagaki Y, Inai S. Paroxysmal nocturnal haemoglobinuria with coexisting deficiency of the ninth component of complement: lack of massive haemolytic attack. Br J Haematol 1990; 74:108-13. [PMID: 2310692 DOI: 10.1111/j.1365-2141.1990.tb02546.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A 47-year-old woman with paroxysmal nocturnal haemoglobinuria (PNH) was found to have an inherited deficiency in the ninth complement component (C9). In complement-sensitivity lysis tests, 80% of her erythrocytes were markedly complement-sensitive (PNH-III). Laser cytofluorimetry with a monoclonal antibody against decay-accelerating factor (DAF) revealed that 95% of her erythrocytes were DAF-negative. Surprisingly, she has suffered only mild haemolysis and has never experienced massive spontaneous haemolysis. Gross haemoglobinuria and jaundice occurred only after receiving postoperative transfusion of whole blood. In her serum, C9 was not detectable either by immunological or by functional assays. Both the Ham test and the sugar water test using normal human serum or plasma yielded marked haemolysis of the patient's erythrocytes. When the patient's serum or plasma was used, only a trace of lysis was detected. Addition of purified human C9 to her plasma fully restored haemolysis. These observations indicated that C9 may play a critical role in haemolytic attacks in patients with PNH and that characteristic haemolysis in PNH may be tempered by coexisting C9 deficiency.
Collapse
Affiliation(s)
- Y Yonemura
- Second Department of Internal Medicine, Kumamoto University Medical School, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Van der Meer BW, Fugate RD, Sims PJ. Complement proteins C5b-9 induce transbilayer migration of membrane phospholipids. Biophys J 1989; 56:935-46. [PMID: 2605304 PMCID: PMC1280592 DOI: 10.1016/s0006-3495(89)82739-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transbilayer migration of membrane phospholipid arising from membrane insertion of the terminal human complement proteins has been investigated. Asymmetric vesicles containing pyrene-labeled phosphatidylcholine (pyrenePC) concentrated in the inner monolayer were prepared by outer monolayer exchange between pyrenePC-containing large unilamellar vesicles and excess (unlabeled) small unilamellar vesicles, using bovine liver phosphatidylcholine-specific exchange protein. After depletion of pyrenePC from the outer monolayer, the asymmetric large unilamellar vesicles were isolated by gel filtration and exposed to the purified C5b-9 proteins at 37 degrees C. Transbilayer exchange of phospholipid between inner and outer monolayers during C5b-9 assembly was monitored by changes in pyrene excimer and monomer fluorescence. Membrane deposition of the C5b67 complex (by incubation with C5b6 + C7) caused no change in pyrenePC fluorescence. Addition of C8 to the C5b67 vesicles resulted in a dose-dependent decrease in the excimer/monomer ratio. This change was observed both in the presence and absence of complement C9. No change in fluorescence was observed for control vesicles exposed to C8 (in the absence of membrane C5b67), or upon C5b-9 addition to vesicles containing pyrenePC symmetrically distributed between inner and outer monolayers. These data suggest that a transbilayer exchange of phospholipid between inner and outer monolayers is initiated upon C8 binding to C5b67. The fluorescence data were analyzed according to a "random walk" model for excimer formation developed for the case where pyrenePC is asymmetrically distributed between lipid bilayers. Based on this analysis, we estimate that a net transbilayer migration of approximately 1% of total membrane phospholipid is initiated upon C8 binding to C5b67. The potential significance of this transbilayer exchange of membrane phospholipid to the biological activity of the terminal complement proteins is considered.
Collapse
Affiliation(s)
- B W Van der Meer
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City 73104
| | | | | |
Collapse
|
23
|
Halperin JA, Nicholson-Weller A, Brugnara C, Tosteson DC. Complement induces a transient increase in membrane permeability in unlysed erythrocytes. J Clin Invest 1988; 82:594-600. [PMID: 3403718 PMCID: PMC303553 DOI: 10.1172/jci113637] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The effects of low concentrations of human serum on antibody-sensitized sheep erythrocytes (EA) were studied. We report that exposure to low concentrations of serum induced a large but transient increase in the membrane permeability of those EA that do not lyse. This change in the permeability of the erythrocyte membrane resulted in net uptake of Na+ and decrease in cell K+, without affecting the total internal cation content. Although exposure to serum also allowed for net uptake of larger molecules like L-glucose, it did not lead to cell swelling. Experiments with sera genetically deficient in one of the terminal complement components showed that C8, but not C9, was required to produce the observed change in membrane permeability. Therefore, we propose that the C5b-8 complex can mediate the transient increase in permeability observed in unlysed erythrocytes during complement activation by whole serum.
Collapse
Affiliation(s)
- J A Halperin
- Department of Physiology and Biophysics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
24
|
Vanguri P, Shin ML. Hydrolysis of myelin basic protein in human myelin by terminal complement complexes. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68632-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
|
26
|
Bhakdi S, Kuller G, Muhly M, Fromm S, Seibert G, Parrisius J. Formation of transmural complement pores in serum-sensitive Escherichia coli. Infect Immun 1987; 55:206-10. [PMID: 3539803 PMCID: PMC260303 DOI: 10.1128/iai.55.1.206-210.1987] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The binding of C9 at 0 and 37 degrees C to viable Escherichia coli K-12 cells carrying C5b-8 complexes was quantified. At low temperature, limited average binding of only 1 to 1.4 molecules of C9 per C8 molecule occurred, whereas 6 to 8 C9 molecules were bound per C8 molecule at 37 degrees C. Despite incorporation of C9 into C5b-9 complexes at 0 degrees C, these terminal complexes caused no loss of bacterial viability even when present in very large numbers (1,000 to 1,500 per CFU) on the bacterial cells. In contrast, generation of 50 to 100 C5b-9 complexes carrying multiple C9 molecules per CFU caused loss of viability. The failure of C5b-81C91 complexes to generate transmural pores was confirmed by measurements of o-nitrophenyl-beta-D-galactoside influx into the cells. Whereas treatment of C5b-8-laden cells with C9 at 32 degrees C caused virtually instantaneous influx of the marker, almost no influx was registered in cells receiving C9 at 0 degrees C. When cells carrying C5b-7 were brought into the stationary phase and given C8 and C9 at 32 degrees C, a C9-dependent disruption of the outer membrane permeability barrier immediately occurred as demonstrated by cleavage of a chromogenic substrate by periplasmic beta-lactamase. In sharp contrast, o-nitrophenyl-beta-D-galactoside influx was markedly retarded over a prolonged period, with abrupt permeability increases of the inner membrane toward this molecule being noted just before bacterial cell division occurred. We conclude that killing of E. coli requires binding of C5b-9 complexes containing C9 oligomers to the outer membrane and suggest that formation of pores in the inner membrane occurs when these complexes are "hit" by transiently forming zones of bioadhesion. Formation of the latter may be a dynamic process that is accentuated during cell division and quiescent during the stationary phase.
Collapse
|
27
|
Shirazi Y, Imagawa DK, Shin ML. Release of leukotriene B4 from sublethally injured oligodendrocytes by terminal complement complexes. J Neurochem 1987; 48:271-8. [PMID: 3025367 DOI: 10.1111/j.1471-4159.1987.tb13158.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the present study, the interaction of the terminal complement complexes with oligodendrocytes was investigated for observation of its effect on membrane lipid hydrolysis. [14C]Arachidonic acid was incorporated into the membrane lipids of cultured oligodendrocytes before sensitization with anti-galactocerebroside antiserum. Cells were then exposed to excess C6-deficient rabbit serum reconstituted with limiting doses of C6 to form various numbers of C5b-9 complexes. Qualitative analysis of the supernatants by HPLC revealed the presence of compounds that coeluted with arachidonic acid and its oxygenated derivatives, prostaglandin E2, leukotrienes E4 and B4, and 15-hydroxyeicosatetraenoic acid. The kinetics of leukotriene B4 release by excess C5b-8 was quantitated by radioimmunoassay. Leukotriene B4 release approached a maximum around 30 min, and C6 dose-response studies performed at 1 h showed that maximal levels of leukotriene B4 were detected over a range of sublytic C5b-9 attack. Maximal release of leukotriene B4 was also achieved by C5b-8 without further enhancement by addition of lytic doses of C9. Results indicate that sublytic attack of oligodendrocytes by complement induces release of lipid-derived inflammatory mediators.
Collapse
|
28
|
Young JD, Cohn ZA. Cellular and humoral mechanisms of cytotoxicity: structural and functional analogies. Adv Immunol 1987; 41:269-332. [PMID: 2891261 DOI: 10.1016/s0065-2776(08)60033-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
MESH Headings
- Animals
- Antibody-Dependent Cell Cytotoxicity
- Antigens, Differentiation, T-Lymphocyte/physiology
- CD3 Complex
- Cell Line
- Cell Membrane/physiology
- Colloids
- Complement Membrane Attack Complex
- Complement System Proteins/immunology
- Cytoplasmic Granules/physiology
- Cytotoxicity Tests, Immunologic
- Cytotoxicity, Immunologic
- Cytotoxins/metabolism
- Entamoeba histolytica/physiology
- Enzymes/physiology
- Exocytosis
- Graft Rejection
- Immunity, Cellular
- Immunologic Surveillance
- Ion Channels
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphotoxin-alpha/physiology
- Membrane Glycoproteins
- Membrane Proteins/physiology
- Osmotic Pressure
- Peptides/physiology
- Perforin
- Pore Forming Cytotoxic Proteins
- Protozoan Proteins
- Receptors, Antigen, T-Cell/physiology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- J D Young
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York 10021
| | | |
Collapse
|
29
|
Young JD, Cohn ZA, Podack ER. The ninth component of complement and the pore-forming protein (perforin 1) from cytotoxic T cells: structural, immunological, and functional similarities. Science 1986; 233:184-90. [PMID: 2425429 DOI: 10.1126/science.2425429] [Citation(s) in RCA: 201] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ninth component of complement (C9) and the pore-forming protein (PFP or perforin) from cytotoxic T lymphocytes polymerize to tubular lesions having an internal diameter of 100 A and 160 A, respectively, when bound to lipid bilayers. Polymerized C9, assembled by slow spontaneous or rapid Zn2+-induced polymerization, and polyperforin, which is assembled only in the presence of Ca2+, constitute large aqueous pores that are stable, nonselective for solutes, and insensitive to changes of membrane potential. Monospecific polyclonal antibodies to purified C9 and PFP show cross-reactivity, suggesting structural homology between the two molecules. The structural and functional homologies between these two killer molecules imply an active role for pore formation during cell lysis.
Collapse
|
30
|
Shiver JW, Dankert JR, Donovan JJ, Esser AF. The ninth component of human complement (C9). Functional activity of the b fragment. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67560-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Bashford CL, Alder GM, Menestrina G, Micklem KJ, Murphy JJ, Pasternak CA. Membrane damage by hemolytic viruses, toxins, complement, and other cytotoxic agents. A common mechanism blocked by divalent cations. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67654-9] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
32
|
Tarrab-Hazdai R, Sagi-Eisenberg R, Brenner V, Arnon R. Ion fluxes changes during early stages of Schistosoma mansoni. Evaluation of complement effect. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 154:563-8. [PMID: 3948868 DOI: 10.1111/j.1432-1033.1986.tb09436.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The relationship between the average membrane potential (delta psi av) and sensitivity to complement action of the Schistosoma mansoni parasite was explored. The average membrane potential was estimated by measuring the uptake of [3H]tetraphenyl phosphonium ([3H]Ph4P+). The parasites take up Ph4P+ indicating the existence of a negative internal plasma potential which is in part dependent on the transmembrane K+ gradient, maintained by an active Na+/K+-ATPase. Values for Ph4P+ uptake could be corrected for mitochondrial accumulation by employing the protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP), which collapses the mitochondrial potential. The plasma membrane potential derived by this technique was in the range of -60 mV. Transformation of this parasite, from its early cercaria stage to the adult worm, was associated with changes in the average membrane potential. The apparent hyperpolarization, which accompanies transformation, may be related to changes in ionic permeability and morphology which occur concomitantly. Complement acting through both the classical and alternative pathways was found to affect the potential of the parasite in its early development stages. The correlation between effects on delta psi av and sensitivity to complement action, indicates that the complement-induced changes in delta psi av are indeed tightly associated with its mode of action. Treatment of the parasite with complement resulted in net hyperpolarization of the membrane indicating that hyperpolarization rather than depolarization of the membrane is linked to the primary non-lethal action of complement.
Collapse
|
33
|
Benz R, Schmid A, Wiedmer T, Sims PJ. Single-channel analysis of the conductance fluctuations induced in lipid bilayer membranes by complement proteins C5b-9. J Membr Biol 1986; 94:37-45. [PMID: 2433454 DOI: 10.1007/bf01901011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Single-channel analysis of electrical fluctuations induced in planar bilayer membranes by the purified human complement proteins C5b6, C7, C8, and C9 have been analyzed. Reconstitution experiments with lipid bilayer membranes showed that the C5b-9 proteins formed pores only if all proteins were present at one side of the membrane. The complement pores had an average single-channel conductance of 3.1 nS at 0.15 M KCl. The histogram of the complement pores suggested a substantial variation of the size of the single channel. The linear relationship between single-channel conductance at fixed ionic strength and the aqueous mobility of the ions in the bulk aqueous phase indicated that the ions move inside the complement pore in a manner similar to the way they move in the aqueous phase. The minimum diameter of the pores as judged from the conductance data is approximately 3 nm. The complement channels showed no apparent voltage control or regulation up to transmembrane potentials of 100 mV. At neutral pH the pore is three to four times more permeable for alkali ions than for chloride, which may be explained by the existence of fixed negatively charged groups in or near the pore. The significance of these observations to current molecular models of the membrane lesion formed by these cytolytic serum proteins is considered.
Collapse
|
34
|
Tirosh R, Berke G. Immune cytolysis viewed as a stimulatory process of the target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1985; 184:473-92. [PMID: 3898757 DOI: 10.1007/978-1-4684-8326-0_31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Humoral and cellular mechanisms of immune cytolysis, as effected by antibody and complement (Ab + C') or by cytolytic T lymphocytes (CTL), have traditionally been considered the end result of early but terminal membrane damage, in turn causing colloid-osmotic lysis of the target cell. A comprehensive theory explaining and relating known prelytic cellular events to subsequent membrane damage is lacking, nor is there a specific picture as to the role and mode of action of Ca2+, which appears to be involved in both complement- and cell-mediated cytolysis (C'MC and CMC, respectively). Recent studies are in support of the view that both Ab + C' and CTL induce a comparable series of prelytic events, in the TC, initiated by membrane depolarization, which in turn bring about voltage-dependent Ca2+ influx or its intracellular release. Persistent elevation of cytosolic Ca2+ can induce massive stimulation of cellular ATPases (actomyosin, Ca2+) and cause exhaustive depletion of ATP. Consequently, Na+-pumping is slowed down and colloid-osmotic lysis ensues. Hence, in our view, membrane damage in immune cytolysis is the result rather than the cause of intracellular events culminating in lysis.
Collapse
|
35
|
Whitlow MB, Ramm LE, Mayer MM. Penetration of C8 and C9 in the C5b-9 complex across the erythrocyte membrane into the cytoplasmic space. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(20)71199-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Bhakdi S, Tranum-Jensen J. Formation of protein channels in target membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1985; 184:3-21. [PMID: 3898753 DOI: 10.1007/978-1-4684-8326-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Thompson M, Krull UJ, Bendell-Young LI. 711—Surface aggregate modulation of lipid membrane ion permeability. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/0302-4598(84)87030-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Bhakdi S, Tranum-Jensen J. Mechanism of complement cytolysis and the concept of channel-forming proteins. Philos Trans R Soc Lond B Biol Sci 1984; 306:311-24. [PMID: 6149576 DOI: 10.1098/rstb.1984.0092] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Complement damages membranes via the terminal reaction sequence that leads to the formation of membrane-bound, macromolecular C5b-9(m) protein complexes. These complexes represent C5b-8 monomers to which varying numbers of C9 molecules can be bound. Complexes carrying high numbers of C9 (ca. 6/8-12/16?) exhibit the morphology of hollow protein channels. Because they are embedded within the lipid bilayer, aqueous transmembrane pores are generated that represent the primary lesions caused by complement in the target cell membrane. Many other proteins damage membranes by forming channels in a manner analogous to the C5b-9(m) complex. Two prototypes of bacterial exotoxins, Staphylococcus aureus alpha-toxin and streptolysin-O, are discussed in this context, and attention is drawn to the numerous analogies existing among these protein systems. Common to all is the process of self-association of the native proteins to form supramolecular complexes. This event is in turn accompanied by a unique transition of the molecules from a hydrophilic to an amphiphilic state.
Collapse
|
39
|
Sims PJ, Wiedmer T. The influence of electrochemical gradients of Na+ and K+ upon the membrane binding and pore forming activity of the terminal complement proteins. J Membr Biol 1984; 78:169-76. [PMID: 6716452 DOI: 10.1007/bf01869204] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The hemolytic activity of the terminal complement proteins (C5b-9) towards erythrocytes containing high potassium concentration has been reported to be dramatically increased when extracellular Na+ is substituted isotonically by K+ (Dalmasso, A.P., et al., 1975, J. Immunol. 115:63-68). This phenomenon was now further investigated using resealed human erythrocyte ghosts (ghosts), which can be maintained at a nonlytic osmotic steady state subsequent to C5b-9 binding: (1) The functional state of C5b-9-treated ghosts was studied from their ability to retain trapped [14C]-sucrose or [3H]-inulin when suspended either in the presence of Na+ or K+. A dramatic increase in the permeability of the ghost membrane to both nonelectrolytes - in the absence of significant hemoglobin release - was observed for C5b-9 assembly in the presence of external K+. (2) The physical binding of the individual 125I-labeled terminal complement proteins to ghost membranes was directly measured as a function of intra- and extracellular K+ and Na+. The uptake of 125I-C7, 125I-C8, and 125I-C9 into membrane C5b-9 was unaltered by substitution of Na+ by K+. (3) The binding of the terminal complement proteins to ghosts subjected to a transient membrane potential generated by the K+-ionophore valinomycin (in the presence of K+ concentration gradients) was measured. No significant change in membrane binding of any of the C5b-9 proteins was detected under the influence of both depolarizing and hyperpolarizing membrane potentials.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
40
|
|
41
|
O'Boyle KP, Siddiqi FA, Tien HT. Antigen-antibody-complement reaction studies on micro bilayer lipid membranes. IMMUNOLOGICAL COMMUNICATIONS 1984; 13:85-103. [PMID: 6086499 DOI: 10.3109/08820138409025453] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ion permeability of lipid membranes formed on Millipore and Nuclepore filters has been found to exhibit stepwise reductions in electrical resistance in the presence of Forssman antigen, appropriate antiserum and complement. The results appear to support the "hydrophobic doughnut" or transmembrane channel hypothesis, which envisions several polypeptide chains anchoring from more than one terminal complement component to interact with one another within the lipid bilayer. Channel formation in these artificial membranes is believed to be due to the insertion of complement proteins. Concentrations and temperature studies were carried out to ascertain that the electrical responses were owing to the generation of stable channels by complement across the membrane. The diameter of these channels was estimated to be in the order of 100 A.
Collapse
|
42
|
Abstract
Recent studies on the functional activities of the membrane attack complex of complement, C5b-9, are reviewed. A new speculative hypothesis has been advanced to account for the ability of complement to mediate lysis of various targets. This hypothesis has three major elements: 1) that the membrane attack complex is an enzyme; 2) that the substrate for this putative enzyme is a membrane constituent; 3) that the substrate specificity of the putative enzyme is dependent on the species source of individual complement components within the C5b-9 complex.
Collapse
|
43
|
Abstract
The structure and membrane insertion of the human C5b-9(m) complex, generated by lysis of antibody-coated sheep erythrocytes with whole human serum under conditions where high numbers of classical ring-shaped lesions form, were studied in single and complementary freeze-fracture replicas prepared by unidirectional and rotary shadowing. The intramembrane portion of the C5b-9(m) cylinder was seen on EF-faces as an elevated, circular structure. In nonetched fractures it appeared as a solid stub; in etched fractures a central pit confirmed the existence of a central, water-filled pore in the molecule. Complementary replicas showed that each EF-face ring corresponded to a hole in the lipid plateau of the PF-face. Etched fractures of proteolytically stripped membranes revealed the extramembrane annulus of the C5b-9(m) cylinder on ES-faces and putative internal openings on PS-faces. Allowing for the measured thickness of deposited Pt/C, the dimensions of EF-face rings and ES-face annuli conformed to anticipations derived from negatively stained preparations. Our results support the concept that the hollow cylindrical C5b-9(m) complex penetrates into the inner leaflet of the target erythrocyte membrane bilayer, forming a stable transmembrane protein channel.
Collapse
|
44
|
Koski CL, Ramm LE, Hammer CH, Mayer MM, Shin ML. Cytolysis of nucleated cells by complement: cell death displays multi-hit characteristics. Proc Natl Acad Sci U S A 1983; 80:3816-20. [PMID: 6602341 PMCID: PMC394143 DOI: 10.1073/pnas.80.12.3816] [Citation(s) in RCA: 112] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Lysis of nucleated cells by complement was studied to determine whether the lytic process by C5b-9 conforms to a one-hit mechanism as in the case of erythrocytes. Two nucleated cell lines, Molt 4 and U937, derived from human T lymphocytes and histiocytes, respectively, were employed as targets. The antibody-sensitized cells were used to develop the titration curves, measuring cell death as a function of limiting quantities of human C6 or C5,6 complex in the presence of an excess of other complement components. The cytolysis curves generated in both experiments were sigmoidal, in sharp contrast to the monotonic curves observed in lysis of erythrocytes treated similarly. The sigmoidal curves of cytolysis indicate a cooperative action of several molecules of C6 or acid-activated C5,6 complex, C(56)a. In contrast to the multi-hit characteristics of cytolysis, dose-response measurements of the release of 86Rb indicated that only one effective molecule of C6 per cell is required for assembly of a 86Rb-releasing channel. This divergence indicates that lysis requires formation of several channels or, alternatively, assembly of large channels that are formed by several molecules of C6. Because prior studies with erythrocyte ghosts have shown that only a single effective molecule of C6 is required for assembly of a transmembrane channel, regardless of size, we prefer to interpret the multi-hit characteristics of nucleated cell lysis as an indication of a multi-channel requirement, rather than channel enlargement.
Collapse
|
45
|
Bhakdi S, Tranum-Jensen J. Molecular composition of the terminal membrane and fluid-phase C5b-9 complexes of rabbit complement. Absence of disulphide-bonded C9 dimers in the membrane complex. Biochem J 1983; 209:753-61. [PMID: 6870789 PMCID: PMC1154154 DOI: 10.1042/bj2090753] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The terminal membrane C5b-9(m) and fluid-phase SC5b-9 complexes of rabbit complement were isolated from target sheep erythrocyte membranes and from inulin-activated rabbit serum respectively. In the electron microscope, rabbit C5b-9(m) was observed as a hollow protein cylinder, a structure identical with that of human C5b-9(m). Monodispersed rabbit C5b-9(m) exhibited an apparent sedimentation coefficient of 29 S in deoxycholate-containing sucrose density gradients, corresponding to a composite protein-detergent molecular-weight of approx. 1.4 X 10(6). Protein subunits corresponding to human C5b-C9 were found on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. By densitometry, there were consistently six molecules of monomeric C9 present for each monomeric C5b-8 complex. Fluid-phase rabbit SC5b-9 was a hydrophilic 23 S ma macromolecule that differed in subunit composition from its membrane counterpart in that it contained S-protein and only two to three molecules of C9 per monomer complex. The data are in accord with the previous report on human C5b-9 that C5b-9(m) contains more C9 molecules than SC5b-9 [Ware & Kolb (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 6426-6430]. They corroborate the previous molecular-weight estimate of approx. 10(6) for C5b-9(m) and thus support the concept that the fully assembled, unit lesion of complement is a C5b-9 monomer [Bhakdi & Tranum-Jensen (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 1818-1822]. They also show that C9 dimer formation is not required for assembly of the rabbit C5b-9(m) protein cylinder, or for expression of its membrane-damaging function.
Collapse
|
46
|
Weinstein JN, Blumenthal R, van Renswoude J, Kempf C, Klausner RD. Charge clusters and the orientation of membrane proteins. J Membr Biol 1982; 66:203-12. [PMID: 6808138 DOI: 10.1007/bf01868495] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
47
|
Young JD, Young TM, Lu LP, Unkeless JC, Cohn ZA. Characterization of a membrane pore-forming protein from Entamoeba histolytica. J Exp Med 1982; 156:1677-90. [PMID: 6294211 PMCID: PMC2186882 DOI: 10.1084/jem.156.6.1677] [Citation(s) in RCA: 113] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We describe the partial purification and characterization of a pore-forming material (PEM) from Entamoeba histolytica. The formation of ion channels by PFM was examined in three systems. (a) PFM depolarizes J774 macrophages and mouse spleen lymphocytes as measured by [3H]TPP+ uptake. (b) PFM induces rapid monovalent cation flux across the membrane of phosphatidylcholine-cholesterol vesicles. (c) PFM confers a voltage-dependent conductance to artificial planar bilayers, which is resolved as a summation of opening of individually conducting steps of 67 pS in 0.1 M KCl. Monomers of PFM are functional; however, a preferential aggregation occurs in the planar bilayer. Activity is pronase, trypsin, and heat sensitive and is stable between pH 5-8. PFM is not secreted by unstimulated amoebae but after exposure to the calcium ionophore A23187, concanavalin A, and E. coli lipopolysaccharide, 5-10% of the total cell content of PFM is released into the medium within 5-10 min. High-performance gel filtration results in an approximately 1,000-fold purification of PFM and gives an Mr of 30,000. This protein may play a role in the cytotoxicity mediated by E. histolytica.
Collapse
|
48
|
Bhakdi S, Tranum-Jensen J. Terminal membrane C5b-9 complex of human complement: transition from an amphiphilic to a hydrophilic state through binding of the S protein from serum. J Cell Biol 1982; 94:755-9. [PMID: 7130282 PMCID: PMC2112234 DOI: 10.1083/jcb.94.3.755] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The membrane-damaging C5b-9(m) complex of complement is a cylindrically structured, amphiphilic molecule that is generated on a target membrane during complement attack. Isolated C5b-9(m) complexes are shown here to possess the capacity of binding a protein, termed "S"-protein, that is present in human plasma. Binding of this protein apparently shields the apolar surfaces of C5b-9(m), since the resulting "SC5b-9(m)" complex is hydrophilic and no longer aggregates in detergentfree solution. Dispersed SC5b-9(m) complexes exhibit an apparent sedimentation coefficient of 29S in sucrose density gradients, corresponding to a molecular weight of approximately 1.4 million. SDS PAGE analyses indicate binding of 3-4 molecules of S-protein per C5b-9(m) complex. These data are consistent with a monomer nature and molecular weight of 1-1.1 million of the C5b-9(m) complex. Ultrastructural analysis of SC5b-9(m) shows preservation of the hollow cylindrical C5b-9(m) structure. Additional material, probably representing the S-protein itself, can be visualized attached to the originally membrane-embedded portion of the macromolecule. The topography of apolar surfaces on a molecule thus appears directly probed and visualized through the binding of a serum protein.
Collapse
|
49
|
Ramm LE, Whitlow MB, Mayer MM. Transmembrane channel formation by complement: functional analysis of the number of C5b6, C7, C8, and C9 molecules required for a single channel. Proc Natl Acad Sci U S A 1982; 79:4751-5. [PMID: 6289316 PMCID: PMC346755 DOI: 10.1073/pnas.79.15.4751] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Earlier studies have shown that sequential treatment of resealed erythrocyte ghosts with C5b6, C7, C8, and C9 leads to insertion of hydrophobic peptides from these complement proteins into the membrane and assembly of transmembrane channels. The number of molecules of each of the proteins required for assembly of the membrane-associated channel structure was evaluated by measuring the quantitative relationship between the doses of the individual proteins and the release of two trapped markers, sucrose and inulin, from ghosts after channel formation. The incubation period was sufficient to attain equilibrium of marker distribution between the ghosts and the extracellular fluid. Two markers of different size (sucrose and inulin, 0.9 and 3 nm molecular diameter, respectively) were used in order to develop information on the molecular composition of small and large channels, respectively. We found that participation of C5b6, C7, and C8 in channel formation displayed one-hit characteristics, regardless of marker size. By contrast, the participation of C9 was one-hit with respect to the sucrose marker, whereas with respect to the inulin marker the C9 reaction was multi-hit. Our results are compatible with the view that these markers are released through a channel structure in the membrane that is a monomer of C5b--9 of the composition C5b61 C71C81C9n, in which n = 1 for channels permitting passage of sucrose and n = 2 for channels allowing transit of inulin.
Collapse
|
50
|
|