1
|
Fu R, Feng H. Deciphering Bacterial Chemorepulsion: The Complex Response of Microbes to Environmental Stimuli. Microorganisms 2024; 12:1706. [PMID: 39203548 PMCID: PMC11357200 DOI: 10.3390/microorganisms12081706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Bacterial motility relying on flagella is characterized by several modes, including swimming, swarming, twitching, and gliding. This motility allows bacteria to adapt remarkably well to hostile environments. More than 50% of bacteria naturally contain flagella, which are crucial for bacterial chemotaxis motility. Chemotaxis can be either positive, where bacteria move towards a chemical source, or negative, known as chemorepulsion, where bacteria move away from the source. Although much is known about the mechanisms driving chemotaxis towards attractants, the molecular mechanisms underlying chemorepulsion remain elusive. Chemotaxis plays an important role in the colonization of the rhizosphere by rhizobacteria. Recently, researchers have systematically studied the identification and recognition mechanisms of chemoattractants. However, the mechanisms underlying chemorepellents remain unclear. Systematically sorting and analyzing research on chemorepellents could significantly enhance our understanding of how these compounds help probiotics evade harmful environments or drive away pathogens.
Collapse
Affiliation(s)
- Ruixin Fu
- School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
| | - Haichao Feng
- College of Agriculture, Henan University, Kaifeng 475004, China
- Food Laboratory of Zhongyuan, Henan University, Luohe 462300, China
| |
Collapse
|
2
|
Suzuki S, Yokota K, Igimi S, Kajikawa A. Negative chemotaxis of Ligilactobacillus agilis BKN88 against gut-derived substances. Sci Rep 2023; 13:15632. [PMID: 37730901 PMCID: PMC10511705 DOI: 10.1038/s41598-023-42840-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023] Open
Abstract
Ligilactobacillus agilis is a motile lactic acid bacterium found in the gastrointestinal tracts of animals. The findings of our previous study suggest that the motility of L. agilis BKN88 enables gut colonization in murine models. However, the chemotactic abilities of motile lactobacilli remain unknown. This study aimed to identify the gut-derived chemoeffectors and their corresponding chemoreceptors in L. agilis BKN88. Chemotaxis assays with chemotactic and non-chemotactic (ΔcheA) L. agilis strains revealed that low pH, organic acids, and bile salts served as repellents. L. agilis BKN88 was more sensitive to bile and acid than the gut-derived non-motile lactobacilli, implying that L. agilis might utilize motility and chemotaxis instead of exhibiting stress tolerance/resistance. L. agilis BKN88 contains five putative chemoreceptor genes (mcp1-mcp5). Chemotaxis assays using a series of chemoreceptor mutants revealed that each of the five chemoreceptors could sense multiple chemoeffectors and that these chemoreceptors were functionally redundant. Mcp2 and Mcp3 sensed all tested chemoeffectors. This study provides further insights into the interactions between chemoreceptors and ligands of motile lactobacilli and the unique ecological and evolutionary features of motile lactobacilli, which may be distinct from those of non-motile lactobacilli.
Collapse
Affiliation(s)
- Shunya Suzuki
- Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kenji Yokota
- Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Shizunobu Igimi
- Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Akinobu Kajikawa
- Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan.
| |
Collapse
|
3
|
Ji F, Wu Y, Pumera M, Zhang L. Collective Behaviors of Active Matter Learning from Natural Taxes Across Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203959. [PMID: 35986637 DOI: 10.1002/adma.202203959] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Taxis orientation is common in microorganisms, and it provides feasible strategies to operate active colloids as small-scale robots. Collective taxes involve numerous units that collectively perform taxis motion, whereby the collective cooperation between individuals enables the group to perform efficiently, adaptively, and robustly. Hence, analyzing and designing collectives is crucial for developing and advancing microswarm toward practical or clinical applications. In this review, natural taxis behaviors are categorized and synthetic microrobotic collectives are discussed as bio-inspired realizations, aiming at closing the gap between taxis strategies of living creatures and those of functional active microswarms. As collective behaviors emerge within a group, the global taxis to external stimuli guides the group to conduct overall tasks, whereas the local taxis between individuals induces synchronization and global patterns. By encoding the local orientations and programming the global stimuli, various paradigms can be introduced for coordinating and controlling such collective microrobots, from the viewpoints of fundamental science and practical applications. Therefore, by discussing the key points and difficulties associated with collective taxes of different paradigms, this review potentially offers insights into mimicking natural collective behaviors and constructing intelligent microrobotic systems for on-demand control and preassigned tasks.
Collapse
Affiliation(s)
- Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Yilin Wu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Martin Pumera
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| |
Collapse
|
4
|
Gu Y, Tran L, Lee S, Zhang J, Bishop KJM. Convection Confounds Measurements of Osmophoresis for Lipid Vesicles in Solute Gradients. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:942-948. [PMID: 36623209 DOI: 10.1021/acs.langmuir.2c02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lipid vesicles immersed in solute gradients are predicted to migrate from regions of high to low solute concentration due to osmotic flows induced across their semipermeable membranes. This process─known as osmophoresis─is potentially relevant to biological processes such as vesicle trafficking and cell migration; however, there exist significant discrepancies (several orders of magnitude) between experimental observations and theoretical predictions for the vesicle speed. Here, we seek to reconcile predictions of osmophoresis with observations of vesicle motion in osmotic gradients. We prepare quasi-steady solute gradients in a microfluidic chamber using density-matched solutions of sucrose and glucose to eliminate buoyancy-driven flows. We quantify the motions of giant DLPC vesicles and Brownian tracer particles in such gradients using Bayesian analysis of particle tracking data. Despite efforts to mitigate convective flows, we observe directed motion of both lipid vesicles and tracer particles in a common direction at comparable speeds of order 10 nm/s. These observations are not inconsistent with models of osmophoresis, which predict slower motion at ca. 1 nm/s; however, experimental uncertainty and the confounding effects of fluid convection prohibit a quantitative comparison. In contrast to previous reports, we find no evidence for anomalously fast osmophoresis of lipid vesicles when fluid convection is mitigated and quantified. We discuss strategies for enhancing the speed of osmophoresis using high permeability membranes and geometric confinement.
Collapse
Affiliation(s)
- Yang Gu
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Lisa Tran
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Department of Physics, Utrecht University, 3584 CS, Utrecht, The Netherlands
| | - Soojung Lee
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jiayu Zhang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Kyle J M Bishop
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
5
|
Doan VS, Saingam P, Yan T, Shin S. A Trace Amount of Surfactants Enables Diffusiophoretic Swimming of Bacteria. ACS NANO 2020; 14:14219-14227. [PMID: 33000940 DOI: 10.1021/acsnano.0c07502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
From birth to health, surfactants play an essential role in our lives. Due to the importance, their environmental impacts are well understood. One of the aspects that has been extensively studied is their impact on bacteria, particularly on their motility. Here, we uncover an alternate chemotactic strategy triggered by surfactants-diffusiophoresis. We show that even a trace amount of ionic surfactants, down to a single ppm level, can promote the bacterial diffusiophoresis by boosting the surface charge of the cells. Because diffusiophoresis is driven by the surface-solute interactions, surfactant-enhanced diffusiophoresis is observed regardless of the types of bacteria. Whether Gram-positive or -negative, flagellated or nonflagellated, the surfactants enable fast migration of freely suspended bacteria, suggesting a ubiquitous locomotion mechanism that has been largely overlooked. We also demonstrate the implication of surfactant-enhanced bacterial diffusiophoresis on the rapid formation of biofilms in flow networks, suggesting environmental and biomedical implications.
Collapse
Affiliation(s)
- Viet Sang Doan
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Prakit Saingam
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Sangwoo Shin
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
6
|
Menon SN, Varuni P, Menon GI. Information integration and collective motility in phototactic cyanobacteria. PLoS Comput Biol 2020; 16:e1007807. [PMID: 32352961 PMCID: PMC7237038 DOI: 10.1371/journal.pcbi.1007807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/19/2020] [Accepted: 03/20/2020] [Indexed: 11/19/2022] Open
Abstract
Cells in microbial colonies integrate information across multiple spatial and temporal scales while sensing environmental cues. A number of photosynthetic cyanobacteria respond in a directional manner to incident light, resulting in the phototaxis of individual cells. Colonies of such bacteria exhibit large-scale changes in morphology, arising from cell-cell interactions, during phototaxis. These interactions occur through type IV pili-mediated physical contacts between cells, as well as through the secretion of complex polysaccharides (‘slime’) that facilitates cell motion. Here, we describe a computational model for such collective behaviour in colonies of the cyanobacterium Synechocystis. The model is designed to replicate observations from recent experiments on the emergent response of the colonies to varied light regimes. It predicts the complex colony morphologies that arise as a result. We ask if changes in colony morphology during phototaxis can be used to infer if cells integrate information from multiple light sources simultaneously, or respond to these light sources separately at each instant of time. We find that these two scenarios cannot be distinguished from the shapes of colonies alone. However, we show that tracking the trajectories of individual cyanobacteria provides a way of determining their mode of response. Our model allows us to address the emergent nature of this class of collective bacterial motion, linking individual cell response to the dynamics of colony shape. Microbial colonies in the wild often consist of large groups of heterogeneous cells that coordinate and integrate information across multiple spatio-temporal scales. We describe a computational model for one such collective behaviour, phototaxis, in colonies of the cyanobacterium Synechocystis that move in response to light. The model replicates experimental observations of the response of cyanobacterial colonies to varied light regimes, and predicts the complex colony morphologies that arise as a result. The results suggest that tracking the trajectories of individual cyanobacteria may provide a way of determining their mode of information integration. Our model allows us to address the emergent nature of this class of collective bacterial motion, linking individual cell response to the large scale dynamics of the colony.
Collapse
Affiliation(s)
- Shakti N. Menon
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, Tamil Nadu, India
| | - P. Varuni
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, Tamil Nadu, India
| | - Gautam I. Menon
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, Tamil Nadu, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
- Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, India
- * E-mail:
| |
Collapse
|
7
|
Bi S, Jin F, Sourjik V. Inverted signaling by bacterial chemotaxis receptors. Nat Commun 2018; 9:2927. [PMID: 30050034 PMCID: PMC6062612 DOI: 10.1038/s41467-018-05335-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/02/2018] [Indexed: 11/09/2022] Open
Abstract
Microorganisms use transmembrane sensory receptors to perceive a wide range of environmental factors. It is unclear how rapidly the sensory properties of these receptors can be modified when microorganisms adapt to novel environments. Here, we demonstrate experimentally that the response of an Escherichia coli chemotaxis receptor to its chemical ligands can be easily inverted by mutations at several sites along receptor sequence. We also perform molecular dynamics simulations to shed light on the mechanism of the transmembrane signaling by E. coli chemoreceptors. Finally, we use receptors with inverted signaling to map determinants that enable the same receptor to sense multiple environmental factors, including metal ions, aromatic compounds, osmotic pressure, and salt ions. Our findings demonstrate high plasticity of signaling and provide further insights into the mechanisms of stimulus sensing and processing by bacterial chemoreceptors. Bacteria use chemotaxis receptors to perceive environmental factors. Here, the authors show that mutations in a chemotaxis receptor can invert the sensory response, e.g. from attractant to repellent, and use these mutants to map regions that enable the receptor to sense multiple environmental factors.
Collapse
Affiliation(s)
- Shuangyu Bi
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, 35043, Germany
| | - Fan Jin
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, 35043, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, 35043, Germany.
| |
Collapse
|
8
|
Showalter GM, Deming JW. Low-temperature chemotaxis, halotaxis and chemohalotaxis by the psychrophilic marine bacterium Colwellia psychrerythraea 34H. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:92-101. [PMID: 29235725 DOI: 10.1111/1758-2229.12610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
A variety of ecologically important processes are driven by bacterial motility and taxis, yet these basic bacterial behaviours remain understudied in cold habitats. Here, we present a series of experiments designed to test the chemotactic ability of the model marine psychrophilic bacterium Colwellia psychrerythraea 34H, when grown at optimal temperature and salinity (8°C, 35 ppt) or its original isolation conditions (-1°C, 35 ppt), towards serine and mannose at temperatures from -8°C to 27°C (above its upper growth temperature of 18°C), and at salinities of 15, 35 and 55 ppt (at 8°C and -1°C). Results indicate that C. psychrerythraea 34H is capable of chemotaxis at all temperatures tested, with strongest chemotaxis at the temperature at which it was first grown, whether 8°C or -1°C. This model marine psychrophile also showed significant halotaxis towards 15 and 55 ppt solutions, as well as strong substrate-specific chemohalotaxis. We suggest that such patterns of taxis may enable bacteria to colonize sea ice, position themselves optimally within its extremely cold, hypersaline and temporally fluctuating microenvironments, and respond to various chemical signals therein.
Collapse
Affiliation(s)
- G M Showalter
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - J W Deming
- School of Oceanography, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Varuni P, Menon SN, Menon GI. Phototaxis as a Collective Phenomenon in Cyanobacterial Colonies. Sci Rep 2017; 7:17799. [PMID: 29259320 PMCID: PMC5736714 DOI: 10.1038/s41598-017-18160-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/05/2017] [Indexed: 01/16/2023] Open
Abstract
Cyanobacteria are a diverse group of photosynthetic bacteria that exhibit phototaxis, or motion in response to light. Cyanobacteria such as Synechocystis sp. secrete a mixture of complex polysaccharides that facilitate cell motion, while their type 4 pili allow them to physically attach to each other. Even though cells can respond individually to light, colonies are observed to move collectively towards the light source in dense finger-like projections. We present an agent-based model for cyanobacterial phototaxis that accounts for slime deposition as well as for direct physical links between bacteria, mediated through their type 4 pili. We reproduce the experimentally observed aggregation of cells at the colony boundary as a precursor to finger formation. Our model also describes the changes in colony morphology that occur when the location of the light source is abruptly changed. We find that the overall motion of cells toward light remains relatively unimpaired even if a fraction of them do not sense light, allowing heterogeneous populations to continue to mount a robust collective response to stimuli. Our work suggests that in addition to bio-chemical signalling via diffusible molecules in the context of bacterial quorum-sensing, short-ranged physical interactions may also contribute to collective effects in bacterial motility.
Collapse
Affiliation(s)
- P Varuni
- The Institute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Gautam I Menon
- The Institute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai, 600113, Tamil Nadu, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, Maharashtra, India.
| |
Collapse
|
10
|
Abstract
Bacterial motility, and in particular repulsion or attraction toward specific chemicals, has been a subject of investigation for over 100 years, resulting in detailed understanding of bacterial chemotaxis and the corresponding sensory network in many bacterial species. For Escherichia coli most of the current understanding comes from the experiments with low levels of chemotactically active ligands. However, chemotactically inactive chemical species at concentrations found in the human gastrointestinal tract produce significant changes in E. coli's osmotic pressure and have been shown to lead to taxis. To understand how these nonspecific physical signals influence motility, we look at the response of individual bacterial flagellar motors under stepwise changes in external osmolarity. We combine these measurements with a population swimming assay under the same conditions. Unlike for chemotactic response, a long-term increase in swimming/motor speeds is observed, and in the motor rotational bias, both of which scale with the osmotic shock magnitude. We discuss how the speed changes we observe can lead to steady-state bacterial accumulation.
Collapse
|
11
|
An Aversive Response to Osmotic Upshift in Caenorhabditis elegans. eNeuro 2017; 4:eN-NWR-0282-16. [PMID: 28451641 PMCID: PMC5399755 DOI: 10.1523/eneuro.0282-16.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Environmental osmolarity presents a common type of sensory stimulus to animals. While behavioral responses to osmotic changes are important for maintaining a stable intracellular osmolarity, the underlying mechanisms are not fully understood. In the natural habitat of Caenorhabditis elegans, changes in environmental osmolarity are commonplace. It is known that the nematode acutely avoids shocks of extremely high osmolarity. Here, we show that C. elegans also generates gradually increased aversion of mild upshifts in environmental osmolarity. Different from an acute avoidance of osmotic shocks that depends on the function of a transient receptor potential vanilloid channel, the slow aversion to osmotic upshifts requires the cGMP-gated sensory channel subunit TAX-2. TAX-2 acts in several sensory neurons that are exposed to body fluid to generate the aversive response through a motor network that underlies navigation. Osmotic upshifts activate the body cavity sensory neuron URX, which is known to induce aversion upon activation. Together, our results characterize the molecular and cellular mechanisms underlying a novel sensorimotor response to osmotic stimuli and reveal that C. elegans engages different behaviors and the underlying mechanisms to regulate responses to extracellular osmolarity.
Collapse
|
12
|
Suh S, Traore MA, Behkam B. Bacterial chemotaxis-enabled autonomous sorting of nanoparticles of comparable sizes. LAB ON A CHIP 2016; 16:1254-1260. [PMID: 26940033 DOI: 10.1039/c6lc00059b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High throughput sorting of micro/nanoparticles of similar sizes is of significant interest in many biological and chemical applications. In this work, we report a simple and cost-effective sorting technique for separation of similarly-sized particles of dissimilar surface properties within a diffusion-based microfluidic platform using chemotaxis in Escherichia coli bacteria. Differences in surface chemistry of two groups of similarly-sized nanoparticles in a mixture were exploited to selectively assemble one particle group onto motile E. coli, through either specific or non-specific adhesion, and separate them from the remaining particle group via chemotaxis of the attached bacteria. To enable optimal operation of the sorting platform, the chemotaxis behavior of E. coli bacteria in response to casamino acids, the chemoeffector of choice was first characterized. The chemical concentration gradient range within which the bacteria exhibit a positive chemotactic response was found to be within 0.25 × 10(-7)-1.0 × 10(-3) g ml(-1) mm(-1). We demonstrate that at the optimum concentration gradient of 5.0 × 10(-4) g ml(-1) mm(-1), a sorting efficiency of up to 81% at a throughput of 2.4 × 10(5) particles per min can be achieved. Sensitivity of the sorting efficiency to the adhesion mechanism and particle size in the range of 320-1040 nm was investigated.
Collapse
Affiliation(s)
- SeungBeum Suh
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Mahama A Traore
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
13
|
Bi S, Lai L. Bacterial chemoreceptors and chemoeffectors. Cell Mol Life Sci 2015; 72:691-708. [PMID: 25374297 PMCID: PMC11113376 DOI: 10.1007/s00018-014-1770-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/05/2014] [Accepted: 10/23/2014] [Indexed: 01/11/2023]
Abstract
Bacteria use chemotaxis signaling pathways to sense environmental changes. Escherichia coli chemotaxis system represents an ideal model that illustrates fundamental principles of biological signaling processes. Chemoreceptors are crucial signaling proteins that mediate taxis toward a wide range of chemoeffectors. Recently, in deep study of the biochemical and structural features of chemoreceptors, the organization of higher-order clusters in native cells, and the signal transduction mechanisms related to the on-off signal output provides us with general insights to understand how chemotaxis performs high sensitivity, precise adaptation, signal amplification, and wide dynamic range. Along with the increasing knowledge, bacterial chemoreceptors can be engineered to sense novel chemoeffectors, which has extensive applications in therapeutics and industry. Here we mainly review recent advances in the E. coli chemotaxis system involving structure and organization of chemoreceptors, discovery, design, and characterization of chemoeffectors, and signal recognition and transduction mechanisms. Possible strategies for changing the specificity of bacterial chemoreceptors to sense novel chemoeffectors are also discussed.
Collapse
Affiliation(s)
- Shuangyu Bi
- Center for Quantitative Biology, Peking University, Beijing, 100871 China
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Luhua Lai
- Center for Quantitative Biology, Peking University, Beijing, 100871 China
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
14
|
|
15
|
Abstract
After a childhood in Germany and being a youth in Grand Forks, North Dakota, I went to Harvard University, then to graduate school in biochemistry at the University of Wisconsin. Then to Washington University and Stanford University for postdoctoral training in biochemistry and genetics. Then at the University of Wisconsin, as a professor in the Department of Biochemistry and the Department of Genetics, I initiated research on bacterial chemotaxis. Here, I review this research by me and by many, many others up to the present moment. During the past few years, I have been studying chemotaxis and related behavior in animals, namely in Drosophila fruit flies, and some of these results are presented here. My current thinking is described.
Collapse
Affiliation(s)
- Julius Adler
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA.
| |
Collapse
|
16
|
The MscS Cytoplasmic Domain and Its Conformational Changes on the Channel Gating. CURRENT TOPICS IN MEMBRANES 2007. [DOI: 10.1016/s1063-5823(06)58011-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Barros VC, Oliveira JS, Melo MN, Gontijo NF. Leishmania amazonensis: Chemotaxic and osmotaxic responses in promastigotes and their probable role in development in the phlebotomine gut. Exp Parasitol 2006; 112:152-7. [PMID: 16313904 DOI: 10.1016/j.exppara.2005.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 10/04/2005] [Accepted: 10/20/2005] [Indexed: 10/25/2022]
Abstract
Taxic responses may play a role in development of Leishmania in their phlebotomine sand fly vectors. They are possibly responsible for movement of the parasites towards the anterior regions of the gut, from where they would be transmitted to the vertebrate host. A methodology capable to distinguish chemotaxic from osmotaxic responses was described and used to characterise taxic responses in Leishmania promastigotes. These were able to respond to chemotaxic as well as to osmotaxic stimuli. Like bacteria, promastigotes were capable to undergo "adaptation," a phenomenon by which they stop responding to a continuos stimulus. A model capable to explain how a relatively small number of different receptors works to perceive gradients in chemotaxic responses was proposed. According to this model, these receptors possess low specificity and a wide range of affinities varying from high to low. A low specificity makes the same receptor able to bind to a large number of different but structurally related molecules and; a wide range of affinities (considering a population of receptors), implies that the number of receptors "occupied" by attractant molecules along a gradient would go growing step by step.
Collapse
Affiliation(s)
- V C Barros
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
18
|
Leslie G, Barrett M, Burchmore R. Leishmania mexicana: promastigotes migrate through osmotic gradients. Exp Parasitol 2002; 102:117-20. [PMID: 12706748 DOI: 10.1016/s0014-4894(03)00031-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During the insect phase of the parasite lifecycle, Leishmania promastigotes move from the midgut to the anterior regions of the alimentary tract of their sandfly vector. Chemotaxis of Leishmania promastigotes towards sugars has been reported, and the putative presence of sugar gradient in the insect foregut has been suggested to play a role in promastigote development in the insect. We have further investigated the potential of Leishmania mexicana promastigotes to respond to chemical stimulii. We find that promastigotes move towards concentrations of all substances tested and that this taxis requires the presence of an osmotic gradient. Our results indicate that behaviour that has previously been interpreted as chemotaxis is better understood as osmotaxis. The implications of this observation are discussed in the context of promastigote development.
Collapse
Affiliation(s)
- Graham Leslie
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, Scotland G12 8QQ, Glasgow, UK
| | | | | |
Collapse
|
19
|
Affiliation(s)
- F Garcia-Pichel
- Department of Microbiology, Arizona State University, Tempe, Arizona 85287, USA.
| | | |
Collapse
|
20
|
Barak R, Eisenbach M. Chemotactic-like response of Escherichia coli cells lacking the known chemotaxis machinery but containing overexpressed CheY. Mol Microbiol 1999; 31:1125-37. [PMID: 10096080 DOI: 10.1046/j.1365-2958.1999.01251.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe a chemotactic-like response of Escherichia coli strains lacking most of the known chemotaxis machinery but containing high levels of the response regulator CheY. The bacteria accumulated in aspartate-containing capillaries, they formed rings on tryptone-containing semisolid agar, and the probability of counterclockwise flagellar rotation transiently increased in response to stimulation with aspartate (10(-10)-10(-5) M; the response was inverted at > 10(-4) M). The temporal response was partial and delayed, as was the response of a control wild-type strain having a high CheY level. alpha-Methyl-DL-aspartate, a non-metabolizable analogue of aspartate as well as other known attractants of E. Coli, glucose and, to a lesser extent, galactose, maltose and serine caused a similar response. So did low concentrations of acetate and benzoate (which, at higher concentrations, act as repellents for wild-type E. coli). Other tested repellents such as indole, Ni2+ and CO2+ increased the clockwise bias. These observations raise the possibility that, at least when the conventional signal transduction components are missing, a non-conventional chemotactic signal transduction pathway might be functional in E. coli. Potential molecular mechanisms are discussed.
Collapse
Affiliation(s)
- R Barak
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
21
|
Zhulin IB, Rowsell EH, Johnson MS, Taylor BL. Glycerol elicits energy taxis of Escherichia coli and Salmonella typhimurium. J Bacteriol 1997; 179:3196-201. [PMID: 9150214 PMCID: PMC179097 DOI: 10.1128/jb.179.10.3196-3201.1997] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Escherichia coli and Salmonella typhimurium show positive chemotaxis to glycerol, a chemical previously reported to be a repellent for E. coli. The threshold of the attractant response in both species was 10(-6) M glycerol. Glycerol chemotaxis was energy dependent and coincident with an increase in membrane potential. Metabolism of glycerol was required for chemotaxis, and when lactate was present to maintain energy production in the absence of glycerol, the increases in membrane potential and chemotactic response upon addition of glycerol were abolished. Methylation of a chemotaxis receptor was not required for positive glycerol chemotaxis in E. coli or S. typhimurium but is involved in the negative chemotaxis of E. coli to high concentrations of glycerol. We propose that positive chemotaxis to glycerol in E. coli and S. typhimurium is an example of energy taxis mediated via a signal transduction pathway that responds to changes in the cellular energy level.
Collapse
Affiliation(s)
- I B Zhulin
- Department of Microbiology and Molecular Genetics, Loma Linda University, California 92350, USA
| | | | | | | |
Collapse
|
22
|
Bespalov VA, Zhulin IB, Taylor BL. Behavioral responses of Escherichia coli to changes in redox potential. Proc Natl Acad Sci U S A 1996; 93:10084-9. [PMID: 8816755 PMCID: PMC38340 DOI: 10.1073/pnas.93.19.10084] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Escherichia coli bacteria sensed the redox state in their surroundings and they swam to a niche that had a preferred reduction potential. In a spatial redox gradient of benzoquinone/benzoquinol, E. coli cells migrated to form a sharply defined band. Bacteria swimming out of either face of the band tumbled and returned to the preferred conditions at the site of the band. This behavioral response was named redox taxis. Redox molecules, such as substituted quinones, that elicited redox taxis, interact with the bacterial electron transport system, thereby altering electron transport and the proton motive force. The magnitude of the behavioral response was dependent on the reduction potential of the chemoeffector. The Tsr, Tar, Trg, Tap, and CheR proteins, which have a role in chemotaxis, were not essential for redox taxis. A cheB mutant had inverted responses in redox taxis, as previously demonstrated in aerotaxis. A model is proposed in which a redox effector molecule perturbs the electron transport system, and an unknown sensor in the membrane detects changes in the proton motive force or the redox status of the electron transport system, and transduces this information into a signal that regulates phosphorylation of the CheA protein. A similar mechanism has been proposed for aerotaxis. Redox taxis may play an important role in the distribution of bacterial species in natural environments.
Collapse
Affiliation(s)
- V A Bespalov
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, CA 92350
| | | | | |
Collapse
|
23
|
Benov L, Fridovich I. Escherichia coli exhibits negative chemotaxis in gradients of hydrogen peroxide, hypochlorite, and N-chlorotaurine: products of the respiratory burst of phagocytic cells. Proc Natl Acad Sci U S A 1996; 93:4999-5002. [PMID: 8643518 PMCID: PMC39395 DOI: 10.1073/pnas.93.10.4999] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Escherichia coli can respond to gradients of specific compounds, moving up gradients of attractants and down gradients of repellents. Stimulated phagocytic leukocytes produce H2O2, OCl-, and N-chlorotaurine in a response termed the respiratory burst. E. coli is actively repelled by these compounds. Catalase in the suspending medium eliminated the effect of H2O2. Repulsion by H2O2 could be demonstrated with 1 microM H2O2, which is far below the level that caused overt toxicity. Strains with defects in the biosynthesis of glutathione or lacking hydroperoxidases I and II retained this response to H2O2, and 2.0 mM CN- did not interfere with it. Mutants with defects in any one of the four known methyl-accepting chemotaxis proteins also retained the ability to respond to H2O2, but a "gutted" mutant that was deleted for all four methyl-accepting chemotaxis proteins, as well as for CheA, CheW, CheR, CheB, CheY, and CheZ, did not respond to H2O2. Hypochlorite and N-chlorotaurine were also strongly repellent. Chemotaxis down gradients of H2O2, OCl-, and N-chlorotaurine may contribute to the survival of commensal or pathogenic microorganisms.
Collapse
Affiliation(s)
- L Benov
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
24
|
Wong LS, Johnson MS, Sandberg LB, Taylor BL. Amino acid efflux in response to chemotactic and osmotic signals in Bacillus subtilis. J Bacteriol 1995; 177:4342-9. [PMID: 7635819 PMCID: PMC177182 DOI: 10.1128/jb.177.15.4342-4349.1995] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We observed a large efflux of nonvolatile radioactivity from Bacillus subtilis in response to the addition of 31 mM butyrate or the withdrawal of 0.1 M aspartate in a flow assay. The major nonvolatile components effluxed were methionine, proline, histidine, and lysine. In studies of the release of volatile radioactivity in chemotaxis by B. subtilis cells that had been labeled with [3H]methionine, the breakdown of methionine to methanethiol can contribute substantially to the volatile radioactivity in fractions following addition of 0.1 M aspartate. However, methanol was confirmed to be released after aspartate addition and, in lesser quantities, after aspartate withdrawal. Methanol and methanethiol were positively identified by derivitization with 3,5-dinitro-benzoylchloride. Amino acid efflux but not methanol release was observed in response to 0.1 M aspartate stimulation of a cheR mutant of B. subtilis that lacks the chemotaxis methylesterase. The amino acid efflux could be reproduced by withdrawal of 0.1 M NaCl, 0.2 M sucrose, or 0.2 M xylitol and is probably the result of changes in osmolarity. Chemotaxis to 10 mM alanine or 10 mM proline resulted in methanol release but not efflux of amino acids. In behavioral studies, B. subtilis tumbled for 16 to 18 s in response to a 200 mosM upshift and for 14 s after a 20 mosM downshift in osmolarity when the bacteria were in perfusion buffer (40 mosM). The pattern of methanol release was similar to that observed in chemotaxis. This is consistent with osmotaxis in B. subtilis away from an increase or decrease in the osmolarity of the incubation medium. The release of methanol suggests that osmotaxis is correlated with methylation of a methyl-accepting chemotaxis protein.
Collapse
Affiliation(s)
- L S Wong
- Department of Microbiology and Molecular Genetics, Loma Linda University, California 92350, USA
| | | | | | | |
Collapse
|
25
|
Shi W, Lentz MJ, Adler J. Behavioral responses of Escherichia coli to changes in temperature caused by electric shock. J Bacteriol 1993; 175:5785-90. [PMID: 8376326 PMCID: PMC206656 DOI: 10.1128/jb.175.18.5785-5790.1993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The behavioral response of Escherichia coli to electric shock in 10(-2) M potassium phosphate plus 10(-4) M potassium EDTA was studied. When presented with a 150-V/cm electric shock that lasted 250 ms, the bacteria at first exclusively ran, then exclusively tumbled, and finally returned to their original running and tumbling. This response is due to increased temperature caused by the electric shock, i.e., to thermotaxis, and it is mediated by the chemotaxis machinery. A more severe electric shock, 150 V/cm for 550 ms, caused cells to tumble immediately, and then they went back to their original running and tumbling. The mechanism of that response is unknown since, unlike known thermotaxis, it does not require the chemotaxis machinery.
Collapse
Affiliation(s)
- W Shi
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| | | | | |
Collapse
|
26
|
Abstract
Behavioral responses to osmotic upshift were characterized by temporal assays of free-swimming cells of Escherichia coli. Small osmotic upshifts (200 to 300 mosM) elicited tumble responses which were chemotaxis dependent, while large osmotic upshifts (400 to 500 mosM) elicited stopping followed by pseudotumbling which was chemotaxis independent.
Collapse
Affiliation(s)
- C Li
- Program in Cell and Molecular Biology, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| | | |
Collapse
|
27
|
Li C, Louise CJ, Shi W, Adler J. Adverse conditions which cause lack of flagella in Escherichia coli. J Bacteriol 1993; 175:2229-35. [PMID: 8385664 PMCID: PMC204508 DOI: 10.1128/jb.175.8.2229-2235.1993] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Wild-type Escherichia coli was not motile when grown in tryptone broth under the following adverse conditions: the presence of high temperature [J. Adler and B. Templeton, J. Gen. Microbiol. 46:175-184, 1967; R. B. Morrison and J. McCapra, Nature (London) 192:774-776, 1961; K. Ogiuti, Jpn. J. Exp. Med. 14:19-28, 1936], high concentrations of salts, high concentrations of carbohydrates, high concentrations of low-molecular-weight alcohols, or the pressure of gyrase inhibitors. Under all these conditions, growth was necessary for the loss of motility. This loss of motility was correlated with a reduction in the amount of cellular flagellin. We isolated and studied mutants that are resistant to suppression of motility by some of these conditions, because of the ability to synthesize flagella under these conditions. The mutations were mapped to 42 min, a region of the chromosome where many of the flagellar genes map. We also studied the effect of a preexisting gyrA mutation which allowed flagellar formation in the presence of nalidixate.
Collapse
Affiliation(s)
- C Li
- Program in Cell and Molecular Biology, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
28
|
Shi W, Li C, Louise CJ, Adler J. Mechanism of adverse conditions causing lack of flagella in Escherichia coli. J Bacteriol 1993; 175:2236-40. [PMID: 8468283 PMCID: PMC204509 DOI: 10.1128/jb.175.8.2236-2240.1993] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Escherichia coli lacks flagella when grown in tryptone broth in the presence of various adverse conditions (C. Li, C. J. Louise, W. Shi, and J. Adler, J. Bacteriol. 175:2229-2235, 1993). Now, the synthesis, rather than the degradation, of flagellin was shown to be inhibited. Studies of transcriptional fusions of flagellar operons to the lacZ gene revealed that transcription of the flagellar genes was reduced in cells grown under these adverse conditions. Increasing gene dosage of the flhD operon by a plasmid partially suppressed the nonflagellation caused by some adverse conditions. The signal which shuts off the synthesis of flagella under adverse conditions remains to be discovered. This shutting-off process does not result from catabolite repression or from signals from the chemotaxis system.
Collapse
Affiliation(s)
- W Shi
- Department of Genetics, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
29
|
Tisa LS, Olivera BM, Adler J. Inhibition of Escherichia coli chemotaxis by omega-conotoxin, a calcium ion channel blocker. J Bacteriol 1993; 175:1235-8. [PMID: 8444785 PMCID: PMC193206 DOI: 10.1128/jb.175.5.1235-1238.1993] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Escherichia coli chemotaxis was inhibited by omega-conotoxin, a calcium ion channel blocker. With Tris-EDTA-permeabilized cells, nanomolar levels of omega-conotoxin inhibited chemotaxis without loss of motility. Cells treated with omega-conotoxin swam with a smooth bias, i.e., tumbling was inhibited.
Collapse
Affiliation(s)
- L S Tisa
- Department of Biochemistry, University of Wisconsin-Madison 53706-1569
| | | | | |
Collapse
|
30
|
Walderhaug MO, Polarek JW, Voelkner P, Daniel JM, Hesse JE, Altendorf K, Epstein W. KdpD and KdpE, proteins that control expression of the kdpABC operon, are members of the two-component sensor-effector class of regulators. J Bacteriol 1992; 174:2152-9. [PMID: 1532388 PMCID: PMC205833 DOI: 10.1128/jb.174.7.2152-2159.1992] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Kdp system of Escherichia coli, a transport ATPase with high affinity for potassium, is expressed when turgor pressure is low. Expression requires KdpD, a 99-kDa membrane protein, and KdpE, a 25-kDa soluble cytoplasmic protein. The sequences of KdpD and KdpE show they are members of the sensor-effector class of regulatory proteins: the C-terminal half of KdpD is homologous to sensors such as EnvZ and PhoR, and KdpE is homologous to effectors such as OmpR and PhoB. The predicted structure of KdpD suggests that it is anchored to the membrane by four membrane-spanning segments near its middle, with both C- and N-terminal portions in the cytoplasm. Subcellular fractionation confirms the expected location of the protein in the inner membrane. The N-terminal region has no homology to known proteins and is the site of mutations that make Kdp expression partially constitutive; this portion may serve to sense turgor pressure. Since several other sensor-effectors have been shown to mediate control through phosphorylation, this mechanism is proposed to control expression of Kdp.
Collapse
Affiliation(s)
- M O Walderhaug
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | | | | | | | | | | | |
Collapse
|
31
|
Martinac B, Delcour AH, Buechner M, Adler J, Kung C. Mechanosensitive Ion Channels in Bacteria. ADVANCES IN COMPARATIVE AND ENVIRONMENTAL PHYSIOLOGY 1992. [DOI: 10.1007/978-3-642-76690-9_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
32
|
Affiliation(s)
- M D Manson
- Department of Biology, Texas A&M University, College Station 77843-3258
| |
Collapse
|
33
|
Jones CJ, Aizawa S. The bacterial flagellum and flagellar motor: structure, assembly and function. Adv Microb Physiol 1991; 32:109-72. [PMID: 1882727 DOI: 10.1016/s0065-2911(08)60007-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The bacterial flagellum is a complex multicomponent structure which serves as the propulsive organelle for many species of bacteria. Rotation of the helical flagellar filament, driven by a proton-powered motor embedded in the cell wall, enables the flagellum to function as a screw propeller. It seems likely that almost all of the genes required for flagellar formation and function have been identified. Continuing analysis of the portions of the genome containing these genes may reveal the existence of a few more. Transcription of the flagellar genes is under the control of the products of a single operon, and so these genes constitute a regulon. Other controls, both transcriptional and post-transcriptional, have been identified. Many of these genes have been sequenced, and the information obtained will aid in the design of experiments to clarify the various regulatory mechanisms of the flagellar regulon. The flagellum is composed of several substructures. The long helical filament is connected via the flexible hook to the complex basal body which is located in the cell wall. The filament is composed of many copies of a single protein, and can adopt a number of distinct helical forms. Structural analyses of the filament are adding to our understanding of this dynamic polymer. The component proteins of the hook and filament have all been identified. Continuing studies on the structure of the basal body have revealed the presence of several hitherto unknown basal-body proteins, whose identities and functions have yet to be elucidated. The proteins essential for energizing the motor, the Mot and switch proteins, are thought to exist as multisubunit complexes peripheral to the basal body. These complexes have yet to be identified biochemically or morphologically. Not surprisingly, flagellar assembly is a complex process, occurring in several stages. Assembly occurs in a proximal-to-distal fashion; the basal body is assembled before the hook, and the hook before the filament. This pattern is also maintained within the filament, with monomers added at the distal end of the polymer; the same is presumably true of the other axial components. An exception to this general pattern is assembly of the Mot proteins into the motor, which appears to be possible at any time during flagellar assembly. With the identification of the genes encoding many of the flagellar proteins, the roles of these proteins in assembly is understood, but the function of a number of gene products in flagellar formation remains unknown.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C J Jones
- ERATO, Research Development Corporation of Japan, Ibaraki
| | | |
Collapse
|
34
|
|
35
|
Chapter 12 Mechano-Sensitive Ion Channels in Microbes and the Early Evolutionary Origin of Solvent Sensing. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/s0070-2161(08)60174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Abstract
Escherichia coli is attracted to a variety of salts. This attraction is highly reduced in mutants missing a known transducer, the methyl-accepting chemotaxis protein I; there is a smaller role for another transducer, the methyl-accepting chemotaxis protein II. We discuss the relation of salt taxis to osmotaxis.
Collapse
Affiliation(s)
- Y L Qi
- Department of Biochemistry, University of Wisconsin-Madison 53706
| | | |
Collapse
|