1
|
Llona I, Farías P, Troc-Gajardo JL. Early Postnatal Development of Somastostatinergic Systems in Brainstem Respiratory Network. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:131-144. [DOI: 10.1007/978-3-319-62817-2_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
2
|
Magableh A, Lundy R. Somatostatin and corticotrophin releasing hormone cell types are a major source of descending input from the forebrain to the parabrachial nucleus in mice. Chem Senses 2014; 39:673-82. [PMID: 25086873 DOI: 10.1093/chemse/bju038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pontine parabrachial nucleus (PBN) receives substantial descending input from higher order forebrain regions that exerts inhibitory and excitatory influences on taste-evoked responses. Somatostatin (Sst) and corticotrophin releasing hormone (Crh) reporter mice were used in conjunction with injection of the retrograde tracer CTb-488 into the caudal PBN to determine the extent to which Sst and Crh cell types contribute to the descending pathways originating in the lateral hypothalamus (LH), central nucleus of the amygdala (CeA), bed nucleus of the stria terminalis (BNST), and insular cortex (IC). Five to 7 days following injections, the animals were euthanized and tissue sections prepared for confocal microscopy. Crh cell types in each forebrain site except IC project to the PBN with the greatest percentage originating in the BNST. For Sst cell types, the largest percentage of double-labeled cells was found in the CeA followed by the BNST. Few retrogradely labeled cells in the LH coexpressed Sst, whereas no double-labeled cells were observed in IC. The present results suggest that Sst and Crh cell types are a substantial component of the descending pathways from the amygdala and/or BNST to the PBN and are positioned to exert neuromodulatory effects on central taste processing.
Collapse
Affiliation(s)
- Ali Magableh
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Robert Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
3
|
Nilsson A, Stroth N, Zhang X, Qi H, Fälth M, Sköld K, Hoyer D, Andrén PE, Svenningsson P. Neuropeptidomics of mouse hypothalamus after imipramine treatment reveal somatostatin as a potential mediator of antidepressant effects. Neuropharmacology 2011; 62:347-57. [PMID: 21856315 DOI: 10.1016/j.neuropharm.2011.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/15/2011] [Accepted: 08/02/2011] [Indexed: 12/24/2022]
Abstract
Excessive activation of the hypothalamic-pituitary-adrenal (HPA) axis has been associated with numerous diseases, including depression, and the tricyclic antidepressant imipramine has been shown to suppress activity of the HPA axis. Central hypothalamic control of the HPA axis is complex and involves a number of neuropeptides released from multiple hypothalamic subnuclei. The present study was therefore designed to determine the effects of imipramine administration on the mouse hypothalamus using a peptidomics approach. Among the factors found to be downregulated after acute (one day) or chronic (21 days) imipramine administration were peptides derived from secretogranin 1 (chromogranin B) as well as peptides derived from cerebellin precursors. In contrast, peptides SRIF-14 and SRIF-28 (1-11) derived from somatostatin (SRIF, somatotropin release inhibiting factor) were significantly upregulated by imipramine in the hypothalamus. Because diminished SRIF levels have long been known to occur in depression, a second part of the study investigated the roles of individual SRIF receptors in mediating potential antidepressant effects. SRA880, an antagonist of the somatostatin-1 autoreceptor (sst1) which positively modulates release of endogenous SRIF, was found to synergize with imipramine in causing antidepressant-like effects in the tail suspension test. Furthermore, chronic co-administration of SRA880 and imipramine synergistically increased BDNF mRNA expression in the cerebral cortex. Application of SRIF or L054264, an sst2 receptor agonist, but not L803807, an sst4 receptor agonist, increased phosphorylation of CaMKII and GluR1 in cerebrocortical slices. Our present experiments thus provide evidence for antidepressant-induced upregulation of SRIF in the brain, and strengthen the notion that augmented SRIF expression and signaling may counter depressive-like symptoms. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Anna Nilsson
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry, Uppsala University, BMC, P.O. Box 591, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Rivera-Arconada I, Roza C, Lopez-Garcia JA. Enhancing m currents: a way out for neuropathic pain? Front Mol Neurosci 2009; 2:10. [PMID: 19680469 PMCID: PMC2726036 DOI: 10.3389/neuro.02.010.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 07/23/2009] [Indexed: 12/19/2022] Open
Abstract
Almost three decades ago, the M current was identified and characterized in frog sympathetic neurons (Brown and Adams, 1980). The years following this discovery have seen a huge progress in the understanding of the function and the pharmacology of this current as well as on the structure of the underlying ion channels. Therapies for a number of syndromes involving abnormal levels of excitability in neurons are benefiting from research on M currents. At present, the potential of M current openers as analgesics for neuropathic pain is under discussion. Here we offer a critical view of existing data on the involvement of M currents in pain processing. We believe that enhancement of M currents at the site of injury may become a powerful strategy to alleviate pain in some peripheral neuropathies.
Collapse
Affiliation(s)
- Ivan Rivera-Arconada
- Departamento de Fisiología, Edificio de Medicina, Universidad de Alcala Madrid, Spain
| | | | | |
Collapse
|
5
|
Kleuss C. Somatostatin modulates voltage-dependent Ca2+ channels in GH3 cells via a specific G(o) splice variant. CIBA FOUNDATION SYMPOSIUM 2007; 190:171-82; discussion 182-6. [PMID: 7587646 DOI: 10.1002/9780470514733.ch11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In rat pituitary GH3 cells Ca2+ current through L-type channels is reduced by somatostatin. This modulation of channel activity by somatostatin receptors is mediated by a guanine nucleotide-binding regulatory protein (G protein). It is sensitive to pertussis toxin, indicating the involvement of a G(o)- or Gi-type G protein in this pathway. The identity of this G protein was determined by suppressing the expression of endogenous G proteins individually via intranuclear injection of antisense oligonucleotides. This method was applied to GH3 cells to screen several G protein alpha, beta and gamma subunits for their roles in the defined signal transduction pathway. The loss of somatostatin's modulating activity on the voltage-dependent Ca2+ channel after oligonucleotide injection revealed the involvement of G(o) alpha 2 beta 1 gamma 3 to the exclusion of other closely related subtypes.
Collapse
Affiliation(s)
- C Kleuss
- Institut für Molekularbiologie und Biochemie, Freie Universität Berlin, Germany
| |
Collapse
|
6
|
Cervia D, Bagnoli P. An update on somatostatin receptor signaling in native systems and new insights on their pathophysiology. Pharmacol Ther 2007; 116:322-41. [PMID: 17719647 DOI: 10.1016/j.pharmthera.2007.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 06/28/2007] [Indexed: 12/20/2022]
Abstract
The peptide somatostatin (SRIF) has important physiological effects, mostly inhibitory, which have formed the basis for the clinical use of SRIF compounds. SRIF binding to its 5 guanine nucleotide-binding proteins-coupled receptors leads to the modulation of multiple transduction pathways. However, our current understanding of signaling exerted by receptors endogenously expressed in different cells/tissues reflects a rather complicated picture. On the other hand, the complexity of SRIF receptor signaling in pathologies, including pituitary and nervous system diseases, may be studied not only as alternative intervention points for the modulation of SRIF function but also to exploit new chemical space for drug-like molecules.
Collapse
Affiliation(s)
- Davide Cervia
- Department of Environmental Sciences, University of Tuscia, largo dell'Università snc, blocco D, 01100 Viterbo, Italy.
| | | |
Collapse
|
7
|
Spary EJ, Maqbool A, Batten TFC. Expression and localisation of somatostatin receptor subtypes sst1-sst5 in areas of the rat medulla oblongata involved in autonomic regulation. J Chem Neuroanat 2007; 35:49-66. [PMID: 17646081 DOI: 10.1016/j.jchemneu.2007.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/18/2007] [Accepted: 06/20/2007] [Indexed: 11/21/2022]
Abstract
Somatostatin is known to modulate the activity of neurones of the medulla oblongata involved in autonomic regulation, mediated through five subtypes of G protein-coupled receptors, sst1-sst5. This study utilises reverse transcription polymerase chain reaction and immunohistochemistry to investigate the expression of sst1-sst5, including the sst2(A)/sst2(B) isoforms, in the main autonomic centres of the rat medulla oblongata: nucleus of the solitary tract (NTS), dorsal motor vagal nucleus (DVN) and ventrolateral medulla (VLM). In tissue from the cerebral cortex, hippocampus and cerebellum all subtype mRNAs were detected, but sst5 signals were weak, and the distribution of sst1-sst5 immunoreactivities was consistent with previous reports. In the medulla, all sst mRNAs gave clear amplicons and subtype-specific antibodies produced characteristic patterns of immunolabelling, frequently in areas of somatostatinergic innervation. Anti-sst1 labelled beaded fibres, sst2(A), sst2(B), sst4 and sst5 gave somatodendritic labelling and sst3 labelled presumptive neuronal cilia. In NTS tissue, sst1, sst2(A), sst4 and sst5 mRNAs were strongly expressed, while in VLM tissue sst1, sst2(A), sst2(B) and sst4 predominated. In both areas of the medulla, neurones with intense somatodendritic sst2(A) immunoreactivity were principally catecholaminergic in phenotype, being double labelled for tyrosine hydroxylase (TH) and phenylethanolamine-N-methyl-transferase (PNMT). Some TH/PNMT positive neurones were also sst2(B) and sst4 immunoreactive. Cholinergic parasympathetic neurones in the DVN were immunoreactive for the sst2(A), sst2(B), sst4 and sst5 subtypes. These observations are consistent with the proposal that multiple somatostatin receptor subtypes, possibly combining as heterodimers, are involved in mediating the modulatory effects of somatostatin on autonomic function, including cardiovascular, respiratory and gastrointestinal reflex activity.
Collapse
Affiliation(s)
- Emma J Spary
- Academic Unit of Cardiovascular Medicine, Worsley Building, University of Leeds, Leeds LS2 9JT, UK.
| | | | | |
Collapse
|
8
|
Liao Z, Li ZS, Lu Y, Wang WZ. Microinjection of exogenous somatostatin in the dorsal vagal complex inhibits pancreatic secretion via somatostatin receptor-2 in rats. Am J Physiol Gastrointest Liver Physiol 2007; 292:G746-52. [PMID: 17138968 DOI: 10.1152/ajpgi.00174.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies have suggested that somatostatin inhibits pancreatic secretion at a central vagal site, and the dorsal vagal complex (DVC) is involved in central feedback inhibition of the exocrine pancreas. The aim of this study was to investigate the effect of exogenous somatostatin in the DVC on pancreatic secretion and the somatostatin receptor subtype(s) responsible for the effect. The effects of somatostatin microinjected into the DVC on pancreatic secretion stimulated by cholecystokinin octapeptide (CCK-8) or 2-deoxy-d-glucose (2-DG) were examined in anesthetized rats. To investigate the somatostatin inhibitory action site, a somatostatin receptor antagonist [SRA; cyclo(7-aminoheptanoyl-Phe-d-Trp-Lys-Thr)] was microinjected into the DVC before intravenous infusion of somatostatin and CCK-8/2-DG. The effects of injection of a somatostatin receptor-2 agonist (seglitide) and combined injection of somatostatin and a somatostatin receptor-2 antagonist (CYN 154806) in the DVC on the pancreatic secretion were also investigated. Somatostatin injected into the DVC significantly inhibited pancreatic secretion evoked by CCK-8 or 2-DG in a dose-dependent manner. SRA injected into the DVC completely reversed the inhibitory effect of intravenous administration of somatostatin. Seglitide injected into the DVC also inhibited CCK-8/2-DG-induced pancreatic protein secretion. However, combined injection of somatostatin and CYN 154806 did not affect the CCK-8/2-DG-induced pancreatic secretion. Somatostatin in the DVC inhibits pancreatic secretion via somatostatin receptor-2, and the DVC is the action site of somatostatin for its inhibitory effect.
Collapse
Affiliation(s)
- Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | | | | | | |
Collapse
|
9
|
Batten TFC, Gamboa-Esteves FO, Saha S. Evidence for peptide co-transmission in retrograde- and anterograde-labelled central nucleus of amygdala neurones projecting to NTS. Auton Neurosci 2002; 98:28-32. [PMID: 12144035 DOI: 10.1016/s1566-0702(02)00026-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Synaptic terminals in the nucleus of the solitary tract (NTS) from axons originating in the central nucleus of the amygdala (CeA) are known to contain gamma-aminobutyric acid (GABA) immunoreactivity. Here, we have investigated whether such projections contain neuropeptides as putative co-transmitters. Somata in the medial and lateral CeA that were retrogradely labelled with cholera toxin B (CTb) injected into the commissural NTS were found to be immunoreactive for GABA, somatostatin (SOM), neurotensin (NT), vasoactive intestinal polypeptide (VIP) and nitric oxide synthase (NOS). Subpopulations of fibres in the NTS that were anterogradely labelled with biotin dextran amine (BDA) injected into the CeA and examined using both fluorescence and electron microscopy appeared to colocalise somatostatin, but not other neuropeptides. Their varicosities were observed in proximity to NTS neurones that were immunoreactive for the somatostatin receptor sst2A subtype, substance P (SP) NK1 receptor, and the GABAA receptor alpha3, beta1 and gamma2 subunits. This morphological evidence is consistent with the possibility of GABA-somatostatin co-transmission at synapses of some of the CeA projection neurones to NTS that might inhibit cardiovascular reflex responses in response to fear or emotion-related stimuli.
Collapse
Affiliation(s)
- Trevor F C Batten
- Institute for Cardiovascular Research, School of Medicine, University of Leeds, UK.
| | | | | |
Collapse
|
10
|
Saha S, Henderson Z, Batten TFC. Somatostatin immunoreactivity in axon terminals in rat nucleus tractus solitarii arising from central nucleus of amygdala: coexistence with GABA and postsynaptic expression of sst2A receptor. J Chem Neuroanat 2002; 24:1-13. [PMID: 12084407 DOI: 10.1016/s0891-0618(02)00013-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Axon terminals synapsing on neurones in the nucleus tractus solitarii (NTS) that originate from the central nucleus of the amygdala (CeA) have been shown to contain gamma-aminobutyric acid (GABA) immunoreactivity. Here we investigated whether such terminals also contain somatostatin (SOM), a neuropeptide found in axons distributed throughout the NTS and in somata in the CeA, and known to modulate cardiovascular reflexes when microinjected into the NTS. With fluorescence microscopy, SOM immunoreactivity was seen in the varicosities of some axons throughout the NTS that were anterogradely labelled with biotin dextran amine injected into the CeA. Such varicosities were frequently observed in close proximity to dendrites of NTS neurones that were immunoreactive for the SOM receptor sst(2A) subtype, and in many cases also for catecholamine synthesising enzymes. In the caudal, cardioregulatory zone of NTS, SOM immunoreactivity was localised by electron microscopic pre-embedding gold labelling to boutons containing dense-cored and clear pleomorphic vesicles and forming symmetrical synapses, mostly onto dendrites. Additional post-embedding gold labelling for GABA suggested that a subpopulation (29%) of GABAergic terminals sampled in this area of NTS contained SOM. Almost all boutons anterogradely labelled from the amygdala were GABA-immunoreactive (-IR) and 21% of these were SOM-IR. A similar proportion of these boutons (22%) formed synapses onto dendrites containing immunoreactivity for the SOM receptor sst(2A) subtype. These observations provide evidence that some of the GABAergic projection neurones in the CeA that inhibit baroreceptor reflex responses in the NTS in response to fear or emotional stimuli could release SOM, which might modulate the activity of NTS neurones via an action on sst(2A) receptors.
Collapse
Affiliation(s)
- S Saha
- Institute for Cardiovascular Research, School of Medicine, Worsley Building, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
11
|
Brown BS, Yu SP. Modulation and genetic identification of the M channel. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 73:135-66. [PMID: 10958929 DOI: 10.1016/s0079-6107(00)00004-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Potassium channels constitute a superfamily of the most diversified ion channels, acting in delicate and accurate ways to control or modify many physiological and pathological functions including membrane excitability, transmitter release, cell proliferation and cell degeneration. The M-type channel is a unique ligand-regulated and voltage-gated K(+) channel showing distinct physiological and pharmacological characteristics. This review will cover some important progress in the study of M channel modulation, particularly focusing on membrane transduction mechanisms. The K(+) channel genes corresponding to the M channel have been identified and will be reviewed in detail. It has been a long journey since the discovery of M current in 1980 to our present understanding of the mysterious mechanisms for M channel modulation; a journey which exemplifies tremendous achievements in ion channel research and exciting discoveries of elaborate modulatory systems linked to these channels. While substantial evidence has accumulated, challenging questions remain to be answered.
Collapse
Affiliation(s)
- B S Brown
- General Pharmacology Department, DuPont Pharmaceuticals Company, Wilmington, DE 19880-0400, USA
| | | |
Collapse
|
12
|
Haji A, Takeda R, Okazaki M. Neuropharmacology of control of respiratory rhythm and pattern in mature mammals. Pharmacol Ther 2000; 86:277-304. [PMID: 10882812 DOI: 10.1016/s0163-7258(00)00059-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes the current understanding of the neurotransmitters and neuromodulators that are involved, firstly, in respiratory rhythm and pattern generation, where glutamate plays an essential role in the excitatory mechanisms and glycine and gamma-aminobutyric acid mediate inhibitory postsynaptic effects, and secondly, in the transmission of input signals from the central and peripheral chemoreceptors and of motor outputs to respiratory motor neurons. Finally, neuronal mechanisms underlying respiratory modulations caused by respiratory depressants and excitants, such as general anesthetics, benzodiazepines, opioids, and cholinergic agents, are described.
Collapse
Affiliation(s)
- A Haji
- Department of Pharmacology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, 930-0194, Toyama, Japan
| | | | | |
Collapse
|
13
|
Ballanyi K, Onimaru H, Homma I. Respiratory network function in the isolated brainstem-spinal cord of newborn rats. Prog Neurobiol 1999; 59:583-634. [PMID: 10845755 DOI: 10.1016/s0301-0082(99)00009-x] [Citation(s) in RCA: 271] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The in vitro brainstem-spinal cord preparation of newborn rats is an established model for the analysis of respiratory network functions. Respiratory activity is generated by interneurons, bilaterally distributed in the ventrolateral medulla. In particular non-NMDA type glutamate receptors constitute excitatory synaptic connectivity between respiratory neurons. Respiratory activity is modulated by a diversity of neuroactive substances such as serotonin, adenosine or norepinephrine. Cl(-)-mediated IPSPs provide a characteristic pattern of membrane potential fluctuations and elevation of the interstitial concentration of (endogenous) GABA or glycine leads to hyperpolarisation-related suppression of respiratory activity. Respiratory rhythm is not blocked upon inhibition of IPSPs with bicuculline, strychnine and saclofen. This indicates that GABA- and glycine-mediated mutual synaptic inhibition is not crucial for in vitro respiratory activity. The primary oscillatory activity is generated by neurons of a respiratory rhythm generator. In these cells, a set of intrinsic conductances such as P-type Ca2+ channels, persistent Na+ channels and G(i/o) protein-coupled K+ conductances mediates conditional bursting. The respiratory rhythm generator shapes the activity of an inspiratory pattern generator that provides the motor output recorded from cranial and spinal nerve rootlets in the preparation. Burst activity appears to be maintained by an excitatory drive due to tonic synaptic activity in concert with chemostimulation by H+. Evoked anoxia leads to a sustained decrease of respiratory frequency, related to K+ channel-mediated hyperpolarisation, whereas opiates or prostaglandins cause longlasting apnea due to a fall of cellular cAMP. The latter observations show that this in vitro model is also suited for analysis of clinically relevant disturbances of respiratory network function.
Collapse
Affiliation(s)
- K Ballanyi
- II Physiologisches Institut, Universität Göttingen, Germany
| | | | | |
Collapse
|
14
|
Miyasaka K, Kanai S, Masuda M, Funakoshi A. Central somatostatin diminished inhibitory action of central CGRP on pancreatic basal secretion in conscious rats. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1998; 73:143-8. [PMID: 9862389 DOI: 10.1016/s0165-1838(98)00130-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined whether central somatostatin prevents an inhibitory effect of central calcitonin-gene related peptide (CGRP) on pancreatic secretion in conscious male Wistar rats (330-330 g). Rats were prepared with separate cannulas for draining bile and pancreatic juice and with a duodenal cannula and an extrajugular vein cannula. In addition, another cannula was stereotactically implanted into the left lateral cerebral ventricle. Rats were placed in restraint cages and experiments were conducted 4 days after the operation without anesthesia. An injection of CGRP (0.1, 1.0 nmol/10 microl) into the left lateral cerebral ventricle (i.c.v.) inhibited pancreatic secretion dose-dependently. To confirm the inhibitory effect of CGRP (i.c.v.) was mediated via sympathetic nerves, phentolamine was injected intravenously (i.v.) bolus (0.5 mg kg(-1)) 0.5-h before CGRP (i.c.v.), followed by continuous infusion of 0.2 mg kg(-1) h(-1). Phentolamine (i.v.) reversed the inhibition produced by CGRP (i.c.v.). An injection of 4 nmol/10 microl somatostatin (i.c.v.) 5 min prior to CGRP injection diminished the inhibitory effect of CGRP (i.c.v.). It is concluded that centrally administered somatostatin diminished the inhibitory action of CGRP (i.c.v.) on pancreatic secretion, probably via inhibiting autonomic (sympathetic) nerve excitation at the central site.
Collapse
Affiliation(s)
- K Miyasaka
- Department of Clinical Physiology, Tokyo Metropolitan Institute of Gerontology, Japan.
| | | | | | | |
Collapse
|
15
|
Abstract
Considering the mechanisms responsible for age- and Alzheimer's disease (AD)-related neuronal degeneration, little attention was paid to the opposing relationships between the energy-rich phosphates, mainly the availability of the adenosine triphosphate (ATP), and the activity of the glutamic acid decarboxylase (GAD), the rate-limiting enzyme synthesizing the gamma-amino butyric acid (GABA). Here, it is postulated that in all neuronal phenotypes the declining ATP-mediated negative control of GABA synthesis gradually declines and results in age- and AD-related increases of GABA synthesis. The Ca2+-independent carrier-mediated GABA release interferes with Ca2+-dependent exocytotic release of all transmitter-modulators, because the interstitial (ambient) GABA acts on axonal preterminal and terminal varicosities endowed with depolarizing GABA(A)-benzodiazepine receptors; this makes GABA the "executor" of virtually all age- and AD-related neurodegenerative processes. Such a role of GABA is diametrically opposite to that in the perinatal phase, when the carrier-mediated GABA release, acting on GABA(A)/chloride ionophore receptors, positively controls chemotactic migration of neuronal precursor cells, has trophic actions and initiates synaptogenesis, thereby enabling retrograde axonal transport of target produced factors that trigger differentiation of neuronal phenotypes. However, with advancing age, and prematurely in AD, the declining mitochondrial ATP synthesis unleashes GABA synthesis, and its carrier-mediated release blocks Ca2+-dependent exocytotic release of all transmitter-modulators, leading to dystrophy of chronically depolarized axon terminals and block of retrograde transport of target-produced trophins, causing "starvation" and death of neuronal somata. The above scenario is consistent with the following observations: 1) a 10-month daily administration to aging rats of the GABA-chloride ionophore antagonist, pentylenetetrazol, or of the BDZ antagonist, flumazenil (FL), each forestalls the age-related decline in cognitive functions and losses of hippocampal neurons; 2) the brains of aging rats, relative to young animals, and the postmortem brains of AD patients, relative to age-matched controls, show up to two-fold increases in GABA synthesis; 3) the aging humans and those showing symptoms of AD, as well as the aging nonhuman primates and rodents--all show in the forebrain dystrophic axonal varicosities, losses of transmitter vesicles, and swollen mitochondria. These markers, currently regarded as the earliest signs of aging and AD, can be reproduced in vitro cell cultures by 1 microM GABA; the development of these markers can be prevented by substituting Cl- with SO4(2-); 4) the extrasynaptic GABA suppresses the membrane Na+, K+-ATPase and ion pumping, while the resulting depolarization of soma-dendrites relieves the "protective" voltage-dependent Mg2+ control of the N-methyl-D-aspartate (NMDA) channels, thereby enabling Ca2+-dependent persistent toxic actions of the excitatory amino acids (EAA); and 5) in whole-cell patch-clamp recording from neurons of aging rats, relative to young rats, the application of 3 microM GABA, causes twofold increases in the whole-cell membrane Cl- conductances and a loss of the physiologically important neuronal ability to desensitize to repeated GABA applications. These age-related alterations in neuronal membrane functions are amplified by 150% in the presence of agonists of BDZ recognition sites located on GABA receptor. The GABA deafferentation hypothesis also accounts for the age- and AD-related degeneration in the forebrain ascending cholinergic, glutamatergic, and the ascending mesencephalic monoaminergic system, despite that the latter, to foster the distribution-utilization of locally produced trophins, evolved syncytium-like connectivities among neuronal somata, axon collaterals, and dendrites, to bidirectionally transport trophins. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- T J Marczynski
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago 60612, USA.
| |
Collapse
|
16
|
Schweitzer P, Madamba SG, Siggins GR. Somatostatin increases a voltage-insensitive K+ conductance in rat CA1 hippocampal neurons. J Neurophysiol 1998; 79:1230-8. [PMID: 9497404 DOI: 10.1152/jn.1998.79.3.1230] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Somatostatin (SST) is a neuropeptide involved in several central processes. In hippocampus, SST hyperpolarizes CA1 pyramidal neurons and augments the K+ M current (IM). However, the limited involvement of IM at resting potential in these cells suggests that the peptide also may modulate another channel to hyperpolarize hippocampal pyramidal neurons (HPNs). We studied the effect of SST on noninactivating conductances of rat CA1 HPNs in a slice preparation. Using MK886, a specific inhibitor of the enzymatic pathway that leads to the augmentation of IM by SST, we have uncovered and characterized a second conductance activated by the peptide. SST did not affect IM when applied with MK886 or the amplitudes of the slow Ca2+-dependent K+ afterhyperpolarization-current and the cationic Q current but still caused an outward current, indicating that SST acts upon another conductance. In the presence of MK886, SST elicited an outward current that reversed around -100 mV and that displayed a linear current-voltage relationship. Reversal potentials obtained in different external K+ concentrations are consistent with a conductance carried solely by K+ ions. The slope of the current-voltage relationship increased proportionately with the extracellular K+ concentration and remained linear. This suggests that SST opens a voltage-insensitive leak current (IK(L)) in HPNs not an inwardly rectifying K+ current as reported in other neuron types. A low concentration of extracellular Ba2+ (150 M) only slightly decreased the SST-induced effect in a voltage-independent manner, whereas a high concentration of Ba2+ (2 mM) completely blocked it. Extracellular Cs+ (2 mM) did not affect the outward SST current but inhibited the inward component. We conclude that SST inhibits HPNs by activating two different K+ conductances: the voltage-insensitive IK(L) and the voltage-dependent IM. The hyperpolarizing effect of SST at resting membrane potential appears to be mainly carried by IK(L), whereas IM dominates at slightly depolarized potentials.
Collapse
Affiliation(s)
- P Schweitzer
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
17
|
Jacquin TD, Borday V, Schneider-Maunoury S, Topilko P, Ghilini G, Kato F, Charnay P, Champagnat J. Reorganization of pontine rhythmogenic neuronal networks in Krox-20 knockout mice. Neuron 1996; 17:747-58. [PMID: 8893031 DOI: 10.1016/s0896-6273(00)80206-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have shown previously that the inactivation of the zinc finger gene Krox-20 affects hindbrain segmentation, resulting in the elimination of rhombomeres 3 and 5. We demonstrate here that Krox-20 homozygous mutant mice exhibit abnormally slow respiratory and jaw opening rhythms, indicating that a modification of hindbrain segmentation influences the function of neuronal networks after birth. Central neuronal networks that control respiratory frequency are made predominantly depressant by the elimination of a previously undescribed rhythm-promoting system. Recordings of rhythmic activity from the isolated hindbrain following progressive tissue transections indicate that the reorganization takes place in the caudal pontine reticular formation. The newborn (PO) Krox-20-/- mice, in which apneas are ten times longer than in wild-type animals, may be a valuable model for the study of life-threatening apneas during early infancy.
Collapse
Affiliation(s)
- T D Jacquin
- Biologie Fonctionnelle du Neurone, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Biological actions of somatostatin are exerted via a family of receptors, for which five genes recently have been cloned. However, none of these receptor proteins has been visualized yet in the brain. In the present-study, the regional and cellular distribution of the somatostatin sst2A receptor was investigated via immunocytochemistry in the rat central nervous system by using an antibody generated against a unique sequence of the receptor protein. Specificity of the antiserum was demonstrated by immunoblot and immunocytochemistry on rat brain membranes and/or on cells transfected with cDNA encoding the different sst receptor subtypes. In rat brain sections, sst2A receptor immunoreactivity was concentrated either in perikarya and dendrites or in axon terminals distributed throughout the neuropil. Somatodendritic labeling was most prominent in the olfactory tubercle, layers II-III of the cerebral cortex, nucleus accumbens, pyramidal cells of CA1-CA2 subfields of the hippocampus, central and cortical amygdaloid nuclei, and locus coeruleus. Labeled terminals were detected mainly in the endopiriform nucleus, deep layers of the cortex, claustrum, substantia innominata, subiculum, basolateral amygdala, medial habenula, and periaqueductal gray. Electron microscopy confirmed the association of sst2A receptors with perikarya and dendrites in the former regions and with axon terminals in the latter. These results provide the first characterization of the cellular distribution of a somatostatin receptor in mammalian brain. The widespread distribution of the sst2A receptor in cerebral cortex and limbic structures suggests that it is involved in the transduction of both pre- and postsynaptic effects of somatostatin on cognition, learning, and memory.
Collapse
|
19
|
Dournaud P, Gu YZ, Schonbrunn A, Mazella J, Tannenbaum GS, Beaudet A. Localization of the somatostatin receptor SST2A in rat brain using a specific anti-peptide antibody. J Neurosci 1996; 16:4468-78. [PMID: 8699257 PMCID: PMC6578860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/1996] [Revised: 04/22/1996] [Accepted: 04/24/1996] [Indexed: 02/01/2023] Open
Abstract
Biological actions of somatostatin are exerted via a family of receptors, for which five genes recently have been cloned. However, none of these receptor proteins has been visualized yet in the brain. In the present-study, the regional and cellular distribution of the somatostatin sst2A receptor was investigated via immunocytochemistry in the rat central nervous system by using an antibody generated against a unique sequence of the receptor protein. Specificity of the antiserum was demonstrated by immunoblot and immunocytochemistry on rat brain membranes and/or on cells transfected with cDNA encoding the different sst receptor subtypes. In rat brain sections, sst2A receptor immunoreactivity was concentrated either in perikarya and dendrites or in axon terminals distributed throughout the neuropil. Somatodendritic labeling was most prominent in the olfactory tubercle, layers II-III of the cerebral cortex, nucleus accumbens, pyramidal cells of CA1-CA2 subfields of the hippocampus, central and cortical amygdaloid nuclei, and locus coeruleus. Labeled terminals were detected mainly in the endopiriform nucleus, deep layers of the cortex, claustrum, substantia innominata, subiculum, basolateral amygdala, medial habenula, and periaqueductal gray. Electron microscopy confirmed the association of sst2A receptors with perikarya and dendrites in the former regions and with axon terminals in the latter. These results provide the first characterization of the cellular distribution of a somatostatin receptor in mammalian brain. The widespread distribution of the sst2A receptor in cerebral cortex and limbic structures suggests that it is involved in the transduction of both pre- and postsynaptic effects of somatostatin on cognition, learning, and memory.
Collapse
Affiliation(s)
- P Dournaud
- Department of Neurology, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Previous studies in our laboratory have shown that the peptides, neurotensin (NT), cholecystokinin (CCK), substance P (SP), somatostatin (SOM), and calcitonin gene-related peptide (CGRP), have a role in modulating ascending visceral sensory information from the nucleus of the solitary tract to the thalamus via a mandatory synapse in the parabrachial nucleus (PB). In this investigation, we examined the changes in the levels of these peptides detected by immunohistochemistry in response to cervical vagal stimulation in the inactin-anesthetized male Wistar rat. Paired control and experimental animals were instrumented to monitor blood pressure and heart rate. The vagus nerve was stimulated for 0.5, 2, or 4 hours, after which time the animals were perfused and the brains processed immunohistochemically for the Fos protein and the peptides NT, CCK, SP, SOM, and CGRP. Vagal stimulation for 1 hour produced large numbers of Fos-positive cells in the external lateral (el), external medial (em), and central lateral (cl) subnuclei of the PB (N = 3). Vagal stimulation produced a reduction in the level of immunolabeling for NT, SOM, and CCK in the el and em subnuclei of the PB. This depletion was present at 0.5 hour and increased in magnitude with the length of vagal stimulation, reaching a maximum after 4 hours. In contrast, the immunolabeling for SP and CGRP increased after 0.5 hour, reaching a maximum after 2 hours of vagal stimulation in the el and em subnuclei of the PB. After 4 hours of vagal stimulation, the immunolabeling for SP and CGRP was depleted in the two PB subnuclei. Thus, the neuropeptides NT, CCK, SP, SOM, and CGRP, which modulate the visceral sensory information in the PB, are influenced somewhat differentially by the level of activity in the vagus nerve.
Collapse
Affiliation(s)
- T M Saleh
- Stroke and Aging, Robarts Research Institute, and Department of Physiology, University of Western Ontario, Canada
| | | |
Collapse
|
21
|
Kungel M, Friauf E. Somatostatin and leu-enkephalin in the rat auditory brainstem during fetal and postnatal development. ANATOMY AND EMBRYOLOGY 1995; 191:425-43. [PMID: 7625613 DOI: 10.1007/bf00304428] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A transient expression of the neuropeptide somatostatin has been described in several brain areas during early ontogeny and several opioid peptides, such as leu-enkephalin, have also been found in the brain at this stage in development. It is therefore believed that somatostatin and leu-enkephalin may play a role in neural maturation. The aim of the present study was to describe the spatiotemporal pattern of somatostatin and leu-enkephalin immunoreactivity in the auditory brainstem nuclei of the developing rat and to correlate it with other developmental events. In order to achieve this goal, we applied peroxidase-antiperoxidase immunocytochemistry to rat brains between embryonic day (E) 17 and adulthood. Somatostatin immunoreactivity (SIR) was found in all nuclei of the auditory brainstem, yet it was temporally restricted in most nuclei. SIR appeared prenatally and reached maximum levels around postnatal day (P) 7, when great numbers of immunoreactive neurons were present in the ventral cochlear nucleus (VCN) and in the lateral lemniscus. At that time relatively low numbers of cells were labeled in the dorsal cochlear nucleus, the lateral superior olive (LSO), and the inferior colliculus (IC). During the same period, when somata in the VCN were somatostatin-immunoreactive (SIR), a dense network of labeled fibers was also present in the LSO, the medial superior olive (MSO), and the medial nucleus of the trapezoid body (MNTB). As these nuclei receive direct input from VCN neurons, and as the distribution and morphology of the somatostatinergic fibers in the superior olivary complex (SOC) was like that of axons from VCN neurons, these findings suggest a transient somatostatinergic connection within the auditory system. Aside from the LSO, MSO, and MNTB, labeled fibers were found to a smaller extent in all other auditory brainstem nuclei. After P7, the SIR decreased and only a few immunoreactive elements were found in the adult auditory brainstem nuclei, indicating that somatostatin is transiently expressed in the rat auditory brainstem. Leu-enkephalin immunoreactivity showed a lower number and weaker intensity of labeled structures as compared to SIR, with E18 being the earliest day at which labeled fibers appeared in the SOC. At birth, immunoreactive fibers were also present in the cochlear nuclear complex and in the IC. Leu-enkephalin immunoreactive somata were found only after P12 in the CN and after P16 in the IC. Leu-enkephalin immunoreactivity was not transient, but increased progressively with age until about P21, when the adult levels were reached.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M Kungel
- Universität Tübingen, Tierphysiologie, Germany
| | | |
Collapse
|
22
|
Carnahan J, Nawa H. Regulation of neuropeptide expression in the brain by neurotrophins. Potential role in vivo. Mol Neurobiol 1995; 10:135-49. [PMID: 7576304 DOI: 10.1007/bf02740672] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurotrophins, which are structurally related to nerve growth factor, have been shown to promote survival of various neurons. Recently, we found a novel activity of a neurotrophin in the brain: Brain-derived neurotrophic factor (BDNF) enhances expression of various neuropeptides. The neuropeptide differentiation activity was then compared among neurotrophins both in vivo and in vitro. In cultured neocortical neurons, BDNF and neurotrophin-5 (NT-5) remarkably increased levels of neuropeptide Y and somatostatin, and neurotrophin-3 (NT-3) also increased these peptides but required higher concentrations. At elevating substance P, however, NT-3 was as potent as BDNF. In contrast, NGF had negligible or no effect. Neurotrophins administered into neonatal brain exhibited slightly different potencies for increasing these neuropeptides: The most marked increase in neuropeptide Y levels was obtained in the neocortex by NT-5, whereas in the striatum and hippocampus by BDNF, although all three neurotrophins increased somatostatin similarly in all the brain regions examined. Overall spatial patterns of the neuropeptide induction were similar among the neurotrophins. Neurons in adult rat brain can also react with the neurotrophins and alter neuropeptide expression in a slightly different fashion. Excitatory neuronal activity and hormones are known to change expression of neurotrophins. Therefore, neurotrophins, neuronal activity, and hormones influence each other and all regulate neurotransmitter/peptide expression in developing and mature brain. Physiological implication of the neurotransmitter/peptide differentiation activities is also discussed.
Collapse
Affiliation(s)
- J Carnahan
- Amgen Center, Neuroscience Division, Thousand Oaks, CA 91320, USA
| | | |
Collapse
|
23
|
Champagnat J, Richter DW. The roles of K+ conductance in expiratory pattern generation in anaesthetized cats. J Physiol 1994; 479 ( Pt 1):127-38. [PMID: 7990029 PMCID: PMC1155730 DOI: 10.1113/jphysiol.1994.sp020282] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. The potassium current blockers caesium and tetraethylammonium were injected intracellularly by ionophoretic current into brainstem expiratory neurones of the ventral group. Neurones were identified by their spontaneous activity and by antidromic excitation from the spinal cord at the C2-C3 level. 2. The duration of action potentials increased and the early and late after-hyperpolarizations were completely suppressed. These effects on action potentials were reversible, recovered with an exponential time course within 3 min, and could be reproduced when blockers were applied repetitively into the same neurone. They were ascribed to blockade of potassium channels in the somatic membrane region. 3. Potassium channel blockers modified postsynaptic potentials: early-inspiratory hyperpolarizations were reversibly depressed while postinspiratory and expiratory depolarizations were irreversibly enhanced. The former effect was associated with a decrease of the neuronal input conductance. The latter effect was cumulative upon repetitive ionophoretic applications of potassium blockers. 4. The results demonstrate that potassium currents exert two different roles in expiratory pattern generation. Together with chloride currents, they contribute to the phasic early-inspiratory inhibition. They seem to be calcium-dependent and GABAB receptor-controlled currents which predominate near to the cell body. 5. Potassium currents also operate throughout the postinspiratory and late-expiratory periods. They seem to include persistent potassium currents which modulate the excitatory respiratory drive provided by the respiratory rhythm generator. We assume that these currents, widely distributed over the somatodendritic membrane area, are a target for neuromodulation by transmitters and intracellular second messengers.
Collapse
Affiliation(s)
- J Champagnat
- Biologie Fonctionnelle du Neurone, Institut Alfred Fessard, CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|
24
|
Pérez J, Rigo M, Kaupmann K, Bruns C, Yasuda K, Bell GI, Lübbert H, Hoyer D. Localization of somatostatin (SRIF) SSTR-1, SSTR-2 and SSTR-3 receptor mRNA in rat brain by in situ hybridization. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1994; 349:145-60. [PMID: 8170498 DOI: 10.1007/bf00169831] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In situ hybridization histochemistry was performed to analyse the distribution of the messenger RNA (mRNA) of three putative somatostatin (SRIF) receptors in rat brain, using oligonucleotide probes derived from the cDNA coding for SSTR-1, SSTR-2, and SSTR-3 receptors. SSTR-1 signals were found in layers V-VI of the cerebral cortex, in primary olfactory cortex, taenia tecta, subiculum, entorhinal cortex, granular layer of the dentate gyrus, amygdala and cerebellar nuclei. Signals for SSTR-2 were found in the frontal cerebral cortex (layers IV, V and VI), taenia tecta, claustrum, endopiriform nucleus, locus coeruleus, medial habenula, subiculum, granular cell layer of the dentate gyrus and amygdala. High levels of SSTR-3 hybridization were found in the olfactory bulb, primary olfactory cortex, islands of Calleja, medial habenula, amygdala, granular layer of the dentate gyrus, various thalamic and pontine nuclei and in the granular and Purkinje cell layers of the cerebellum. The distribution of the hybridization signals of the oligoprobes is consistent with the labelling of specific SRIF binding sites in rat brain. Especially, SSTR-2 and SSTR-1 oligos seem to label regions in which SS-1 and SS-2 receptors, respectively, have been previously characterized in autoradiographical studies. The situation is less clear with SSTR-3 mRNA, since SRIF binding in adult rats is usually low or absent in cerebellum, although some cerebellar nuclei appear to be labelled in the adult. The localization of SSTR-1, SSTR-2 and SSTR-3 mRNAs suggests that SRIF receptor subtypes in rat brain show profound differences in their distribution and are involved in a variety of central, in addition to neuroendocrine, functions.
Collapse
Affiliation(s)
- J Pérez
- Preclinical Research, SANDOZ Pharma Ltd, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Theveniau M, Reisine T. Developmental changes in expression of a 60-kDa somatostatin receptor immunoreactivity in the rat brain. J Neurochem 1993; 60:1870-5. [PMID: 8473902 DOI: 10.1111/j.1471-4159.1993.tb13414.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The neuropeptide somatostatin (SRIF) exerts several important physiological actions in the adult CNS through interactions with membrane-bound receptors. SRIF expression is developmentally regulated and this regulation is most apparent in the cerebellum, where SRIF immunoreactivity is expressed at early postnatal ages and then disappears toward adulthood. The transitory nature of SRIF expression at a time of major changes in cerebellum suggests that this peptide may have a role in cerebellar development. To further investigate the role of the SRIF transmitter system during development, we have examined the levels of expression of SRIF receptors in the developing rat brain by immunoblotting using antiserum selective for a 60-kDa brain SRIF receptor. In whole rat brain, SRIF receptor immunoreactivity first appears at embryonic day 13 (E13), is elevated at E16, increases at birth, peaks at early postnatal ages, and then gradually declines with age. No apparent changes in size of the receptor occur with age. No consistent changes in levels of SRIF receptor immunoreactivity are detected from early postnatal ages to adulthood in the hippocampus, cerebral cortex, and striatum, but levels gradually decline in the hypothalamus. In contrast, SRIF receptor immunoreactivity is expressed transiently in cerebellum. SRIF receptor immunoreactivity is detectable in cerebellum at E16, increases in levels at birth, is apparent from postnatal day 3 to postnatal day 8, and then disappears. The transitory nature of SRIF receptor expression in cerebellum is unique and parallels the expression of SRIF immunoreactivity in this brain region. These findings support the hypothesis that SRIF has a role in cerebellar development.
Collapse
Affiliation(s)
- M Theveniau
- Department of Pharmacology and Institute of Neurological Sciences, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | |
Collapse
|
26
|
Fontanesi G, Traina G, Bagnoli P. Somatostatin-like immunoreactivity in the pigeon visual system: developmental expression and effects of retina removal. Vis Neurosci 1993; 10:271-85. [PMID: 8097928 DOI: 10.1017/s0952523800003679] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The distribution of somatostatin (SS)-containing neurons was investigated by immunocytochemical methods in the central visual system of adult, developing, and retina-ablated pigeons. In normal adult brains, SS-positive cells and processes were present in the optic tectum, the nucleus of the basal optic root, the visual Wulst, and the ectostriatum. During development, progressive increase or decrease in the numerical density and the total number of SS-containing neurons occurred as determined by quantitative analysis. Changes in SS immunoreactivity also occurred as a consequence of unilateral and bilateral retina removal immediately after hatching, i.e. before retinofugal connections have been established. In spite of the segregation of visual inputs due to the almost completely crossed retinal projections, unilateral and bilateral deafferentation differentially affected SS-containing visual regions. In addition, different effects were observed on the relative packing density of labeled cells as compared to their total number. A possible role of retinal axons in regulating the distribution of SS immunoreactivity was suggested by its altered expression induced by retinal deafferentation. In addition, parallels with the distribution of SS immunoreactivity in the pigeon's visual system were used to suggest possible equivalence between cell populations in the avian and the mammalian brains.
Collapse
Affiliation(s)
- G Fontanesi
- Department of Physiology and Biochemistry, University of Pisa, Italy
| | | | | |
Collapse
|
27
|
Alonso IA, Prieto JC, Arilla E. Effect of acute and chronic diisopropylfluorophosphate and atropine administration on somatostatin binding in the rat frontoparietal cortex and hippocampus. Psychopharmacology (Berl) 1993; 110:103-9. [PMID: 7870867 DOI: 10.1007/bf02246957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The acute and chronic administration of diisopropylfluorophosphate (DFP), an inhibitor of acetylcholinesterase (AChE), and of atropine, a blocker of muscarinic cholinergic receptors, did not affect somatostatin-like immunoreactivity (SLI) content in the frontoparietal cortex and hippocampus of rats. Acute and chronic DFP administration increased the number of specific 125I-Tyr11-somatostatin (125I-Tyr11-SS) receptors in synaptosomes from the frontoparietal cortex but not in those from the hippocampus and did not change the affinity constant. This increase in 125I-Tyr11-SS binding was not due to a direct effect of DFP on somatostatin (SS) receptors since no rise of binding was produced by high concentrations of DFP (10(-5) M) when added in vitro. The increase could be blocked by pretreatment with atropine. The acute administration of atropine alone had no observable effect on the number of SS receptors. However, repeated atropine administration produced a significant decrease in the 125I-Tyr11-SS binding in synaptosomes from the frontoparietal cortex but not in those from the hippocampus although the affinity constant was unchanged. The results suggest that interactions between somatostatinergic and cholinergic receptors may be important in the rat frontoparietal cortex.
Collapse
Affiliation(s)
- I A Alonso
- Department of Biochemistry and Molecular Biology, Medical School, University of Alcala, Madrid, Spain
| | | | | |
Collapse
|
28
|
Raynor K, Coy DC, Reisine T. Analogues of Somatostatin Bind Selectively to Brain Somatostatin Receptor Subtypes. J Neurochem 1992; 59:1241-50. [PMID: 1357093 DOI: 10.1111/j.1471-4159.1992.tb08433.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Somatostatin (SRIF) is a neurotransmitter that produces its multiple effects in the CNS through interactions with membrane-bound receptors. Subtypes of SRIF receptors are found in the CNS that are distinguished by their sensitivities to the cyclic hexapeptide MK-678, such that SRIF1 receptors are sensitive to MK-678 and SRIF2 receptors are insensitive to MK-678. In the present study, we further examined the selectivities of a series of structurally diverse SRIF analogues for SRIF receptor subtypes. SRIF receptors were labeled by 125I-Tyr11-SRIF, which has indistinguishable affinities for SRIF receptor subtypes. The inhibition by MK-678 was incomplete, indicating this peptide is highly selective for a subtype of SRIF receptor that we have termed the SRIF1 receptor. The binding of 125I-MK-678 to SRIF1 receptors was monophasically inhibited by SRIF, the octapeptides (such as SMS-201-995), and the hexapeptides (such as MK-678), consistent with the highly selective labeling of a subtype of SRIF receptor. In contrast, the smaller CGP-23996-like analogues did not inhibit 125I-MK-678 binding to SRIF1 receptors. The binding of 125I-CGP-23996 to SRIF receptors was inhibited by SRIF and the octapeptides with Hill coefficients of less than 1, indicating that 125I-CGP-23996 labels multiple SRIF receptor subtypes. The hexapeptides and CGP-23996-like compounds produced only partial inhibitions of 125I-CGP-23996 binding, which were additive, indicating selective interactions of these compounds with the different receptor subpopulations labeled by 125I-CGP-23996. 125I-Tyr11-SRIF binding and 125I-CGP-23996 binding to SRIF receptors were likewise only partially affected by 100 microM guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), a concentration that completely abolishes specific 125I-MK-678 binding to SRIF1 receptors. The component of 125I-CGP-23996 labeling that was sensitive to GTP gamma S was also MK-678 sensitive. Thus, two subpopulations of SRIF receptors exist in the CNS. The SRIF1 receptor is sensitive to cyclic hexapeptides such as MK-678 and to GTP gamma S but insensitive to smaller CGP-23996-like compounds. The SRIF2 receptor is sensitive to the CGP-23996-like compounds and can be selectively labeled by 125I-CGP-23996 in the presence of high concentrations of the hexapeptides or GTP gamma S because, unlike the SRIF1 receptor, the SRIF2 receptor is insensitive to these agents. The SRIF receptor subtype-selective peptide analogues will be useful in the future characterization of the functions mediated by SRIF receptor subtypes in the CNS.
Collapse
Affiliation(s)
- K Raynor
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | | | |
Collapse
|
29
|
Affiliation(s)
- S Rens-Domiano
- Department of Pharmacology, University of Pennsylvania Medical School, Philadelphia 19104
| | | |
Collapse
|
30
|
Reisine T, Law SF. Pertussis Toxin in Analysis of Receptor Mechanisms. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/b978-0-12-185266-5.50031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
31
|
|
32
|
Jean A. [The nucleus tractus solitarius: neuroanatomic, neurochemical and functional aspects]. ARCHIVES INTERNATIONALES DE PHYSIOLOGIE, DE BIOCHIMIE ET DE BIOPHYSIQUE 1991; 99:A3-52. [PMID: 1720691 DOI: 10.3109/13813459109145916] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nucleus tractus solitarii (NTS) has long been considered as the first central relay for gustatory and visceral afferent informations only. However, data obtained during the past ten years, with neuroanatomical, biochemical and electrophysiological techniques, clearly demonstrate that the NTS is a structure with a high degree of complexity, which plays, at the medullary level, a key role in several integrative processes. The NTS, located in the dorsomedial medulla, is a structure of small size containing a limited number of neurons scattered in a more or less dense fibrillar plexus. The distribution and the organization of both the cells and the fibrillar network are not homogeneous within the nucleus and the NTS has been divided cytoarchitectonically into various subnuclei, which are partly correlated with the areas of projection of peripheral afferent endings. At the ultrastructural level, the NTS shows several complex synaptic arrangements in form of glomeruli. These arrangements provide morphological substrates for complex mechanisms of intercellular communication within the NTS. The NTS is not only the site of vagal and glossopharyngeal afferent projections, it receives also endings from facial and trigeminal nerves as well as from some renal afferents. Gustatory and somatic afferents from the oropharyngeal region project with a crude somatotopy within the rostral part of the NTS and visceral afferents from cardiovascular, digestive, respiratory and renal systems terminate viscero-topically within its caudal part. Moreover the NTS is extensively connected with several central structures. It projects directly to multiple brain regions by means of short connections to bulbo-ponto-mesencephalic structures (parabrachial nucleus, motor nuclei of several cranial nerves, ventro-lateral reticular formation, raphe nuclei...) and long connections to the spinal cord and diencephalic and telencephalic structures, in particular the hypothalamus and some limbic structures. The NTS is also the recipient of several central afferent inputs. It is worth to note that most of the structures that receive a direct projection from the NTS project back to the nucleus. Direct projections from the cerebral cortex to the NTS have also been identified. These extensive connections indicate that the NTS is a key structure for autonomic and neuroendocrine functions as well as for integration of somatic and autonomic responses in certain behaviors. The NTS contains a great diversity of neuroactive substances. Indeed, most of the substances identified within the central nervous system have also been detected in the NTS and may act, at this level, as classical transmitters and/or neuromodulators.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A Jean
- Laboratoire de Neurobiologie fonctionnelle, Faculté des Sciences et Techniques St Jérôme, Marseille
| |
Collapse
|
33
|
Abstract
Pharmacologic investigations into the transmission processes underlying fictive swallowing in the rat have disclosed the potential diversity of chemical signals used in central deglutitive pathways. Monoaminergic mechanisms appear to serve as links between subcortical structures and the medullary pattern generator of swallowing (PGS), and may play a critical role in maintaining internal facilitatory drive, required by the PGS for optimal responsivity to peripheral sensory input. Cholinergic bulbar interneurons form an integral component of the PGS subnetwork controlling esophageal peristalsis. Local GABA neurons exert a tonic inhibition of the buccopharyngeal stage, may regulate buccopharyngeal-esophageal coupling, and may contribute to peristaltic rhythmic generation at both the premotoneuronal and motoneuronal level. Receptor subtypes for excitatory amino acids (glutamate, aspartate) are differentially associated with deglutitive premotoneurons for both the buccopharyngeal and esophageal stage, as well as with ambiguus motoneurons. Preliminary evidence suggests the existence of excitatory peptidergic mechanisms involving thyrotropin-releasing hormone, vasopressin, oxytocin, and somatostatin, a probable candidate for excitatory transmitter in the solitarioambigual internuncial projection to motoneurons innervating esophageal striated musculature. Further validation of this experimental model may ultimately help to establish a framework for the clinical recognition, management, and exploitation of drug actions on central deglutitive neuroeffectors.
Collapse
Affiliation(s)
- D Bieger
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
34
|
Benishin CG. REPLY FROM DR. C. G. BENISHIN. J Neurochem 1991. [DOI: 10.1111/j.1471-4159.1991.tb02137.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Robbins RJ, Brines ML, Kim JH, Adrian T, de Lanerolle N, Welsh S, Spencer DD. A selective loss of somatostatin in the hippocampus of patients with temporal lobe epilepsy. Ann Neurol 1991; 29:325-32. [PMID: 1675046 DOI: 10.1002/ana.410290316] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although neuropeptides have been demonstrated to be hippocampal neuromodulators in laboratory animals, their role in human hippocampal physiology or pathophysiology remains to be defined. The concentrations of somatostatin, cholecystokinin octapeptide, vasoactive intestinal polypeptide, and dynorphin A 1-17 were determined in hippocampal tissue resected from patients with cryptogenic temporal lobe epilepsy, a common seizure disorder originating in or near the hippocampus. Control tissue was obtained from cadavera or epilepsy patients in whom the hippocampus was removed during the resection of temporal lobe tumors. Peptide determinations were performed on extracts of punch biopsy specimens taken from six different hippocampal regions. A significant decrease in immunoreactive somatostatin concentration was identified in the dentate gyrus and in region cornu ammonis 4 of cryptogenic temporal lobe epilepsy specimens. No significant changes were present in any other hippocampal region or in the levels of other peptides. In situ hybridization studies performed on cryostat sections from similar patients confirmed a marked loss of neurons expressing the somatostatin gene, which was restricted to the dentate hilus. The density of specific 125I-somatostatin binding to cryostat sections, as determined by semiquantitative in vitro autoradiography, was significantly increased in the dentate gyrus of the cryptogenic epilepsy patients, compared with tumor control specimens. We conclude that a loss of somatostatin-producing interneurons with an upregulation of dentate somatostatin receptors is a specific and characteristic element in the pathophysiology of human cryptogenic temporal lobe epilepsy.
Collapse
Affiliation(s)
- R J Robbins
- Neuroendocrinology Program, Yale University School of Medicine, New Haven, CT 06510
| | | | | | | | | | | | | |
Collapse
|
36
|
Sims SM, Clapp LH, Walsh JV, Singer JJ. Dual regulation of M current in gastric smooth muscle cells: beta-adrenergic-muscarinic antagonism. Pflugers Arch 1990; 417:291-302. [PMID: 2177185 DOI: 10.1007/bf00370995] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of the beta-adrenergic agent isoproterenol on membrane currents were studied in freshly dissociated gastric smooth muscle cells of Bufo marinus. Voltage-clamp experiments were carried out with patch pipettes in the tight-seal, whole-cell recording mode or with conventional microelectrodes. Isoproterenol induced a current identified as M current by the following criteria: the induced current is outward and carried by K+ ions, is suppressed by muscarine or acetylcholine, remains steadily activated, turns off with hyperpolarization, and exhibits slow relaxations in response to voltage jumps. In contrast to endogenous M current, isoproterenol-induced M current usually exhibited slower relaxations on hyperpolarizing voltage commands and displayed a steady-state conductance/voltage relationship that was shifted in the negative direction along the voltage axis. M current was also induced by either forskolin or phosphodiesterase-resistant cAMP analogs. In all cases, muscarinic agonists suppressed the M current, apparently by acting at a locus downstream from regulation of cAMP levels by adenylate cyclase and phosphodiesterase. beta-Adrenergic agents may act to increase the number of M channels available to be opened and also modify their kinetics.
Collapse
Affiliation(s)
- S M Sims
- Department of Physiology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | |
Collapse
|
37
|
Somatostatin-14 and somatostatin-28 induce opposite effects on potassium currents in rat neocortical neurons. Proc Natl Acad Sci U S A 1989; 86:9616-20. [PMID: 2574465 PMCID: PMC298549 DOI: 10.1073/pnas.86.23.9616] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The prosomatostatin-derived peptides somatostatin-14 (Som-14) and somatostatin-28 (Som-28) are believed to act as neurotransmitters in the central nervous system. To examine possible mechanisms by which these peptides induce their physiological actions in brain, the effects of Som-14 and Som-28 on voltage-dependent K+ currents in rat cerebral cortical neurons in culture were examined by using whole-cell patch-clamp techniques. Som-14 increased a delayed rectifier K+ current (IK) in the cortical neurons, while Som-28 reduced IK in the neurons, both in a concentration-dependent manner. Som-14 and Som-28 could induce opposite changes in IK in the same neurons. Elevating intracellular cAMP in the cortical neurons did not modify the effects of Som-14 or Som-28 on IK, indicating that the peptides can regulate this ionic current through cAMP-independent mechanisms. Pretreatment of the neocortical cells with pertussis toxin, which inactivates inhibitory GTP-binding proteins, abolished both Som-14 and Som-28 modulation of IK, indicating that Som-14 and Som-28 receptors are coupled to IK via GTP-binding proteins. These studies show that Som-14 and Som-28 can induce opposite biological effects, suggesting that Som-14 and Som-28, acting through distinct receptors, may function as different neurotransmitters or neuromodulators.
Collapse
|
38
|
Lopez HS, Adams PR. A G Protein Mediates the Inhibition of the Voltage-Dependent Potassium M Current by Muscarine, LHRH, Substance P and UTP in Bullfrog Sympathetic Neurons. Eur J Neurosci 1989; 1:529-542. [PMID: 12106139 DOI: 10.1111/j.1460-9568.1989.tb00360.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The involvement of G proteins in the transduction mechanism of M current (Im) inhibition by extracellular ligands in bullfrog sympathetic neurons was examined using the hydrolysis resistant nucleotide analogues GTPgammaS and GDPbetaS. Im was recorded in large (40 - 60 microm) isolated neurons using the patch-clamp technique in the whole-cell configuration, as well as in neurons from the intact ganglion impaled with conventional microelectrodes. In whole-cell recordings Im could be recorded without significant loss for 1 h or more provided ATP was present in the patch pipette. Muscarine, D-Ala6-LHRH, substance P and UTP reversibly inhibited Im in isolated control neurons, with full and rapid recovery of the current following agonist washout. Dialysis of isolated neurons with various concentrations of GTPgammaS (1 - 100 microM) affected, in a dose-dependent manner, the recovery of Im after its inhibition by brief agonist application. With 50 microM GTPgammaS, Im inhibition became completely irreversible. Similarly, the reversibility of Im inhibition by muscarine was reduced or abolished by the iontophoretic injection of GTPgammaS through a second microelectrode into neurons of the intact ganglion. GTPgammaS by itself caused a slow, agonist-independent suppression of Im in dialysed neurons, thus mimicking agonist action. Dialysis of isolated neurons with GDPbetaS (100 - 500 microM) attenuated by half or more the magnitude of Im inhibition by agonist as compared to control neurons. In addition, GDPbetaS attenuated the response of a given neuron to muscarine and D-Ala6-LHRH, and caused slow increase of Im, as a function of dialysis time. Incubation (2 - 72 h, 4 - 36 degrees C) of isolated neurons or intact ganglions with activated pertussis toxin had no effect on the response to muscarine. Toxin injections to experimental animals were equally ineffective. In contrast to Im, the additional inward current with increase in conductance induced by muscarine and D-Ala6-LHRH reversed with agonist washout in GTPgammaS-dialysed neurons, although more slowly than in control neurons. The results in this study indicate that a G protein, possibly pertussis toxin-insensitive, provides a common coupling step linking muscarinic, substance P, D-Ala6-LHRH and UTP receptors to the inhibition of M current.
Collapse
Affiliation(s)
- H. S. Lopez
- Howard Hughes Medical Institute, Department of Neurobiology and Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | | |
Collapse
|
39
|
Abstract
The effects of somatostatin (SS14) on neocortical neurons of the rat were investigated in an in vitro slice preparation. Intracellular recordings were performed in neurons (n=30) in layers 2 and 3 of the frontal cortex. Iontophoretically applied SS14 reduced the responses evoked by iontophoretically applied L-glutamate (GLU) and gamma-aminobutyric acid (GABA). The blocking effect of SS14 was apparent 1 - 2 min after onset of SS14 application and recovery required 2 - 3 min. The conductance increase evoked by GLU or GABA was reduced by SS14. In the majority of neurons, SS14 did not produce any measurable changes in passive membrane properties, spike threshold or on orthodromically evoked synaptic potentials. In 5 cells, SS14 induced a slight hyperpolarization (<3 mV). These results lend further support to claims that SS14 plays a neuromodulatory role in the neocortex.
Collapse
Affiliation(s)
- C. Vidal
- Molecular Neurobiology, Pasteur Institute, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
40
|
Sessle BJ, Henry JL. Neural mechanisms of swallowing: neurophysiological and neurochemical studies on brain stem neurons in the solitary tract region. Dysphagia 1989; 4:61-75. [PMID: 2484181 DOI: 10.1007/bf02407148] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neurophysiological studies of the nuclei of the tractus solitarius (NTS) and adjacent regions have provided a partial understanding of the integrative brainstem network underlying swallowing and related functions such as respiration. The NTS is also richly endowed with an abundance of neuropeptides and other neuroactive substances, but only limited information is available on their influences on neurons involved specifically in swallowing. Since dysfunction of these neurophysiological and neurochemical regulatory mechanisms in the NTS region may be important in pathophysiological conditions such as dysphagia, increased awareness of and focus on these mechanisms are warranted. This paper outlines recent neurophysiological and neurochemical data that provide information on the afferent inputs and neurophysiological properties of neurons in NTS and adjacent caudal brainstem regions implicated in swallowing, respiration, and respiratory-related reflexes.
Collapse
|
41
|
He HT, Johnson K, Thermos K, Reisine T. Purification of a putative brain somatostatin receptor. Proc Natl Acad Sci U S A 1989; 86:1480-4. [PMID: 2564203 PMCID: PMC286720 DOI: 10.1073/pnas.86.5.1480] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The brain somatostatin (somatotropin release-inhibiting factor; SRIF) receptor was purified by affinity chromatographic techniques. A protein of 60 kDa could be purified from rat brain. The protein was eluted from a [D-Trp8]SRIF affinity column with either sodium acetate (pH 5.5) or free [D-Trp8]SRIF. The binding of the protein to the affinity column was prevented by free [D-Trp8]SRIF or the stable SRIF analogue SMS 201-996 but not by the inactive somatostatin 28-(1-14). The purified receptor could be covalently labeled by the 125I-labeled SRIF analogue CGP 23996. Excess [D-Trp8]SRIF blocked the binding of 125I-labeled CGP 23996 to the purified receptor, but somatostatin 28-(1-14) did not affect the binding. A 60-kDa protein was also purified from the anterior pituitary cell line AtT-20, which has a high expression of SRIF receptors. In contrast, no 60-kDa protein could be purified from CHO cells, which have no detectable SRIF receptors. These findings present evidence for the purification of the SRIF receptor.
Collapse
Affiliation(s)
- H T He
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | | | | | |
Collapse
|
42
|
Dean JB, Lawing WL, Millhorn DE. CO2 decreases membrane conductance and depolarizes neurons in the nucleus tractus solitarii. Exp Brain Res 1989; 76:656-61. [PMID: 2507342 DOI: 10.1007/bf00248922] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To identify central sites of potential CO2/H+-chemoreceptive neurons, and the mechanism responsible for neuronal chemosensitivity, intracellular recordings were made in rat tissue slices in two cardiopulmonary-related regions (i.e., nucleus tractus solitarii, NTS; nucleus ambiguus, AMBc) during exposure to high CO2. When the NTS was explored slices were bisected and the ventral half discarded. Utilizing such "dorsal" medullary slices removed any impinging synaptic input from putative chemoreceptors in the ventrolateral medulla. In the NTS, CO2-induced changes in firing rate were associated with membrane depolarizations ranging from 2-25 mV (n = 15). In some cases increased e.p.s.p. activity was observed during CO2 exposure. The CO2-induced depolarization occurred concomitantly with an increased input resistance ranging from 19-23 M omega (n = 5). The lower membrane conductance during hypercapnia suggests that CO2-induced depolarization is due to a decreased outward potassium conductance. Unlike neurons in the NTS, AMBc neurons were not spontaneously active and were rarely depolarized by hypercapnia. Eleven of 12 cells tested were either hyperpolarized by or insensitive to CO2. Only 1 neuron in the AMBc was depolarized and it also showed an increased input resistance during CO2 exposure. Our findings suggest that CO2/H+-related stimuli decrease potassium conductance which depolarizes the cell and increases firing rate. Although our in vitro studies cannot guarantee the specific function of these cells, we believe they may be involved with brain pH homeostasis and cardiopulmonary regulation.
Collapse
Affiliation(s)
- J B Dean
- Department of Physiology, University of North Carolina, Chapel Hill 27599
| | | | | |
Collapse
|
43
|
Abstract
Immunocytochemical and electrophysiological evidence suggests that somatostatin may be a transmitter in the hippocampus. To characterize the ionic mechanisms underlying somatostatin effects, voltage-clamp and current-clamp studies on single CA1 pyramidal neurons in the hippocampal slice preparation were performed. Both somatostatin-28 and somatostatin-14 elicited a steady outward current and selectively augmented the noninactivating, voltage-dependent outward potassium current known as the M-current. Since the muscarinic cholinergic agonists carbachol and muscarine antagonized this current, these results suggest a reciprocal regulation of the M-current by somatostatin and acetylcholine.
Collapse
Affiliation(s)
- S D Moore
- Research Institute of Scripps Clinic, La Jolla, CA 92037
| | | | | | | |
Collapse
|