1
|
Lee YS, Braun EL, Grotewold E. Evolutionary trajectory of transcription factors and selection of targets for metabolic engineering. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230367. [PMID: 39343015 PMCID: PMC11439498 DOI: 10.1098/rstb.2023.0367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 10/01/2024] Open
Abstract
Transcription factors (TFs) provide potentially powerful tools for plant metabolic engineering as they often control multiple genes in a metabolic pathway. However, selecting the best TF for a particular pathway has been challenging, and the selection often relies significantly on phylogenetic relationships. Here, we offer examples where evolutionary relationships have facilitated the selection of the suitable TFs, alongside situations where such relationships are misleading from the perspective of metabolic engineering. We argue that the evolutionary trajectory of a particular TF might be a better indicator than protein sequence homology alone in helping decide the best targets for plant metabolic engineering efforts. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824, USA
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL32611, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824, USA
| |
Collapse
|
2
|
Chu YH, Lee YS, Gomez-Cano F, Gomez-Cano L, Zhou P, Doseff AI, Springer N, Grotewold E. Molecular mechanisms underlying gene regulatory variation of maize metabolic traits. THE PLANT CELL 2024; 36:3709-3728. [PMID: 38922302 PMCID: PMC11371180 DOI: 10.1093/plcell/koae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/17/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Variation in gene expression levels is pervasive among individuals and races or varieties, and has substantial agronomic consequences, for example, by contributing to hybrid vigor. Gene expression level variation results from mutations in regulatory sequences (cis) and/or transcription factor (TF) activity (trans), but the mechanisms underlying cis- and/or trans-regulatory variation of complex phenotypes remain largely unknown. Here, we investigated gene expression variation mechanisms underlying the differential accumulation of the insecticidal compounds maysin and chlorogenic acid in silks of widely used maize (Zea mays) inbreds, B73 and A632. By combining transcriptomics and cistromics, we identified 1,338 silk direct targets of the maize R2R3-MYB TF Pericarp color1 (P1), consistent with it being a regulator of maysin and chlorogenic acid biosynthesis. Among these P1 targets, 464 showed allele-specific expression (ASE) between B73 and A632 silks. Allelic DNA-affinity purification sequencing identified 34 examples in which P1 allelic specific binding (ASB) correlated with cis-expression variation. From previous yeast one-hybrid studies, we identified 9 TFs potentially implicated in the control of P1 targets, with ASB to 83 out of 464 ASE genes (cis) and differential expression of 4 out of 9 TFs between B73 and A632 silks (trans). These results provide a molecular framework for understanding universal mechanisms underlying natural variation of gene expression levels, and how the regulation of metabolic diversity is established.
Collapse
Affiliation(s)
- Yi-Hsuan Chu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Lina Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Andrea I Doseff
- Department of Physiology and Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Nathan Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Feng X, Abubakar AS, Chen K, Yu C, Zhu A, Chen J, Gao G, Wang X, Mou P, Chen P. Genome-wide analysis of R2R3-MYB transcription factors in Boehmeria nivea (L.) gaudich revealed potential cadmium tolerance and anthocyanin biosynthesis genes. Front Genet 2023; 14:1080909. [PMID: 36896232 PMCID: PMC9989182 DOI: 10.3389/fgene.2023.1080909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Gene family, especially MYB as one of the largest transcription factor family in plants, the study of its subfunctional characteristics is a key step in the study of plant gene function. The sequencing of ramie genome provides a good opportunity to study the organization and evolutionary characters of the ramie MYB gene at the whole genome level. In this study, a total of 105 BnGR2R3-MYB genes were identified from ramie genome and subsequently grouped into 35 subfamilies according to phylogeny divergence and sequences similarity. Chromosomal localization, gene structure, synteny analysis, gene duplication, promoter analysis, molecular characteristics and subcellular localization were accomplished using several bioinformatics tools. Collinearity analysis showed that the segmental and tandem duplication events is the dominant form of the gene family expansion, and duplications prominent in distal telomeric regions. Highest syntenic relationship was obtained between BnGR2R3-MYB genes and that of Apocynum venetum (88). Furthermore, transcriptomic data and phylogenetic analysis revealed that BnGMYB60, BnGMYB79/80 and BnGMYB70 might inhibit the biosynthesis of anthocyanins, and UPLC-QTOF-MS data further supported the results. qPCR and phylogenetic analysis revealed that the six genes (BnGMYB9, BnGMYB10, BnGMYB12, BnGMYB28, BnGMYB41, and BnGMYB78) were cadmium stress responsive genes. Especially, the expression of BnGMYB10/12/41 in roots, stems and leaves all increased more than 10-fold after cadmium stress, and in addition they may interact with key genes regulating flavonoid biosynthesis. Thus, a potential link between cadmium stress response and flavonoid synthesis was identified through protein interaction network analysis. The study thus provided significant information into MYB regulatory genes in ramie and may serve as a foundation for genetic enhancement and increased productivity.
Collapse
Affiliation(s)
- Xinkang Feng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Aminu Shehu Abubakar
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Department of Agronomy, Bayero University, Kano, Nigeria
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Chunming Yu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xiaofei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Pan Mou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
4
|
Qin B, Fan SL, Yu HY, Lu YX, Wang LF. HbMYB44, a Rubber Tree MYB Transcription Factor With Versatile Functions in Modulating Multiple Phytohormone Signaling and Abiotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2022; 13:893896. [PMID: 35720610 PMCID: PMC9201644 DOI: 10.3389/fpls.2022.893896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The vital roles of R2R3-MYB transcription factors (TFs) in regulating stress response and phytohormone signaling have been thoroughly studied in numerous plant species, but the functions of these TFs in rubber tree are poorly understood. Rubber tree is the most important source of natural rubber but often suffers from various abiotic and biotic stresses that cause severe yield losses each year. In this study, we reported a novel MYB44 gene in rubber tree (named HbMYB44) and revealed its biological function. HbMYB44 was highly similar to AtMYB44 and clustered into subgroup 22. Transient expression indicated that HbMYB44 is a nuclear localized protein and displays transactivation activity at the C-terminus. HbMYB44 was ubiquitously expressed in rubber tree, and its expression was strongly induced by multiple phytohormones, drought stress, wounding, and H2O2 treatments. Furthermore, overexpression of HbMYB44 in Arabidopsis (OE) demonstrated that OE plants significantly enhanced stress tolerance, i.e., salt stress, osmotic stress, and drought stress. Additionally, HbMYB44 promoted recovery from root growth inhibition of OE plants caused by exogenous phytohormones (including abscisic acid, methyl jasmonic acid, gibberellic acid 3, and salicylic acid), but the opposite effect was present in response to ethephon. Interestingly, HbMYB44 increased the expression of its homologous genes and interacting protein-encoding genes in OE plants. Overall, HbMYB44 plays versatile functions in modulating multiple phytohormone signaling pathways and stress tolerance.
Collapse
Affiliation(s)
- Bi Qin
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Song-Le Fan
- Institute of Tropical Crops, Hainan University, Haikou, China
| | - Hai-Yang Yu
- Institute of Tropical Crops, Hainan University, Haikou, China
| | - Yan-Xi Lu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Li-Feng Wang
- Institute of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
5
|
Zeng Q, Liu H, Chu X, Niu Y, Wang C, Markov GV, Teng L. Independent Evolution of the MYB Family in Brown Algae. Front Genet 2022; 12:811993. [PMID: 35186015 PMCID: PMC8854648 DOI: 10.3389/fgene.2021.811993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Myeloblastosis (MYB) proteins represent one of the largest families of eukaryotic transcription factors and regulate important processes in growth and development. Studies on MYBs have mainly focused on animals and plants; however, comprehensive analysis across other supergroups such as SAR (stramenopiles, alveolates, and rhizarians) is lacking. This study characterized the structure, evolution, and expression of MYBs in four brown algae, which comprise the biggest multicellular lineage of SAR. Subfamily 1R-MYB comprised heterogeneous proteins, with fewer conserved motifs found outside the MYB domain. Unlike the SHAQKY subgroup of plant 1R-MYB, THAQKY comprised the largest subgroup of brown algal 1R-MYBs. Unlike the expansion of 2R-MYBs in plants, brown algae harbored more 3R-MYBs than 2R-MYBs. At least ten 2R-MYBs, fifteen 3R-MYBs, and one 6R-MYB orthologs existed in the common ancestor of brown algae. Phylogenetic analysis showed that brown algal MYBs had ancient origins and a diverged evolution. They showed strong affinity with stramenopile species, while not with red algae, green algae, or animals, suggesting that brown algal MYBs did not come from the secondary endosymbiosis of red and green plastids. Sequence comparison among all repeats of the three types of MYB subfamilies revealed that the repeat of 1R-MYBs showed higher sequence identity with the R3 of 2R-MYBs and 3R-MYBs, which supports the idea that 1R-MYB was derived from loss of the first and second repeats of the ancestor MYB. Compared with other species of SAR, brown algal MYB proteins exhibited a higher proportion of intrinsic disordered regions, which might contribute to multicellular evolution. Expression analysis showed that many MYB genes are responsive to different stress conditions and developmental stages. The evolution and expression analyses provided a comprehensive analysis of the phylogeny and functions of MYBs in brown algae.
Collapse
Affiliation(s)
| | - Hanyu Liu
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Xiaonan Chu
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Yonggang Niu
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Caili Wang
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Gabriel V. Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Linhong Teng
- College of Life Sciences, Dezhou University, Dezhou, China
| |
Collapse
|
6
|
Chen Q, Zhang X, Fang Y, Wang B, Xu S, Zhao K, Zhang J, Fang J. Genome-Wide Identification and Expression Analysis of the R2R3-MYB Transcription Factor Family Revealed Their Potential Roles in the Flowering Process in Longan ( Dimocarpus longan). FRONTIERS IN PLANT SCIENCE 2022; 13:820439. [PMID: 35401601 PMCID: PMC8990856 DOI: 10.3389/fpls.2022.820439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/02/2022] [Indexed: 05/10/2023]
Abstract
Longan (Dimocarpus longan Lour.) is a productive fruit crop with high nutritional and medical value in tropical and subtropical regions. The MYB gene family is one of the most widespread plant transcription factor (TF) families participating in the flowering regulation. However, little is known about the MYB TFs involved in the flowering process in longan and its regulatory network. In this study, a total of 119 DlR2R3-MYB genes were identified in the longan genome and were phylogenetically grouped into 28 subgroups. The groupings were supported by highly conserved gene structures and motif composition of DlR2R3-MYB genes in each subgroup. Collinearity analysis demonstrated that segmental replications played a more crucial role in the expansion of the DlR2R3-MYB gene family compared to tandem duplications, and all tandem/segmental duplication gene pairs have evolved under purifying selection. Interspecies synteny analysis among longan and five representative species implied the occurrence of gene duplication events was one of the reasons contributing to functional differentiation among species. RNA-seq data from various tissues showed DlR2R3-MYB genes displayed tissue-preferential expression patterns. The pathway of flower development was enriched with six DlR2R3-MYB genes. Cis-acting element prediction revealed the putative functions of DlR2R3-MYB genes were related to the plant development, phytohormones, and environmental stresses. Notably, the orthologous counterparts between Arabidopsis and longan R2R3-MYB members tended to play conserved roles in the flowering regulation and stress responses. Transcriptome profiling on off-season flower induction (FI) by KClO3 indicated two up-regulated and four down-regulated DlR2R3-MYB genes involved in the response to KClO3 treatment compared with control groups. Additionally, qRT-PCR confirmed certain genes exhibited high expression in flowers/flower buds. Subcellular localization experiments revealed that three predicted flowering-associated MYB proteins were localized in the nucleus. Future functional studies on these potential candidate genes involved in the flowering development could further the understanding of the flowering regulation mechanism.
Collapse
Affiliation(s)
- Qinchang Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Xiaodan Zhang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yaxue Fang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baiyu Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaosi Xu
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Jisen Zhang,
| | - Jingping Fang
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
- *Correspondence: Jingping Fang,
| |
Collapse
|
7
|
Blanco E, Curci PL, Manconi A, Sarli A, Zuluaga DL, Sonnante G. R2R3-MYBs in Durum Wheat: Genome-Wide Identification, Poaceae-Specific Clusters, Expression, and Regulatory Dynamics Under Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:896945. [PMID: 35795353 PMCID: PMC9252425 DOI: 10.3389/fpls.2022.896945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 05/14/2023]
Abstract
MYB transcription factors (TFs) represent one of the biggest TF families in plants, being involved in various specific plant processes, such as responses to biotic and abiotic stresses. The implication of MYB TFs in the tolerance mechanisms to abiotic stress is particularly interesting for crop breeding, since environmental conditions can negatively affect growth and productivity. Wheat is a worldwide-cultivated cereal, and is a major source of plant-based proteins in human food. In particular, durum wheat plays an important role in global food security improvement, since its adaptation to hot and dry conditions constitutes the base for the success of wheat breeding programs in future. In the present study, a genome-wide identification of R2R3-MYB TFs in durum wheat was performed. MYB profile search and phylogenetic analyses based on homology with Arabidopsis and rice MYB TFs led to the identification of 233 R2R3-TdMYB (Triticum durum MYB). Three Poaceae-specific MYB clusters were detected, one of which had never been described before. The expression of eight selected genes under different abiotic stress conditions, revealed that most of them responded especially to salt and drought stress. Finally, gene regulatory network analyses led to the identification of 41 gene targets for three TdR2R3-MYBs that represent novel candidates for functional analyses. This study provides a detailed description of durum wheat R2R3-MYB genes and contributes to a deeper understanding of the molecular response of durum wheat to unfavorable climate conditions.
Collapse
Affiliation(s)
- Emanuela Blanco
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
- *Correspondence: Emanuela Blanco,
| | - Pasquale Luca Curci
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
- Pasquale Luca Curci,
| | - Andrea Manconi
- Institute of Biomedical Technologies, National Research Council (CNR), Milan, Italy
| | - Adele Sarli
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
| | - Diana Lucia Zuluaga
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
| | - Gabriella Sonnante
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
- Gabriella Sonnante,
| |
Collapse
|
8
|
Zhang YL, Lin-Wang K, Albert NW, Elborough C, Espley RV, Andre CM, Fang ZZ. Identification of a Strong Anthocyanin Activator, VbMYBA, From Berries of Vaccinium bracteatum Thunb. FRONTIERS IN PLANT SCIENCE 2021; 12:697212. [PMID: 34938303 PMCID: PMC8685453 DOI: 10.3389/fpls.2021.697212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/09/2021] [Indexed: 05/27/2023]
Abstract
Wufanshu (Vaccinium bracteatum Thunb.), which is a wild member of the genus Vaccinium, accumulates high concentration of anthocyanin in its berries. In this study, the accumulated anthocyanins and their derivatives in Wufanshu berries were identified through UHPLC-MS/MS analysis. Candidate anthocyanin biosynthetic genes were identified from the transcriptome of Wufanshu berries. qRT-PCR analyses showed that the expression of anthocyanin structural genes correlated with anthocyanin accumulation in berries. The R2R3-MYB, VbMYBA, which is a homolog of anthocyanin promoting R2R3-MYBs from other Vaccinium species, was also identified. Transient expression of VbMYBA in Nicotiana tabacum leaves confirmed its role as an anthocyanin regulator, and produced a higher anthocyanin concentration when compared with blueberry VcMYBA expression. Dual-luciferase assays further showed that VbMYBA can activate the DFR and UFGT promoters from other Vaccinium species. VbMYBA has an additional 23 aa at the N terminus compared with blueberry VcMYBA, but this was shown not to affect the ability to regulate anthocyanins. Taken together, our results provide important information on the molecular mechanisms responsible for the high anthocyanin content in Wufanshu berries.
Collapse
Affiliation(s)
- Ya-Ling Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Caitlin Elborough
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Christelle M. Andre
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Zhi-Zhen Fang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
9
|
Yan H, Pei X, Zhang H, Li X, Zhang X, Zhao M, Chiang VL, Sederoff RR, Zhao X. MYB-Mediated Regulation of Anthocyanin Biosynthesis. Int J Mol Sci 2021; 22:3103. [PMID: 33803587 PMCID: PMC8002911 DOI: 10.3390/ijms22063103] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins are natural water-soluble pigments that are important in plants because they endow a variety of colors to vegetative tissues and reproductive plant organs, mainly ranging from red to purple and blue. The colors regulated by anthocyanins give plants different visual effects through different biosynthetic pathways that provide pigmentation for flowers, fruits and seeds to attract pollinators and seed dispersers. The biosynthesis of anthocyanins is genetically determined by structural and regulatory genes. MYB (v-myb avian myeloblastosis viral oncogene homolog) proteins are important transcriptional regulators that play important roles in the regulation of plant secondary metabolism. MYB transcription factors (TFs) occupy a dominant position in the regulatory network of anthocyanin biosynthesis. The TF conserved binding motifs can be combined with other TFs to regulate the enrichment and sedimentation of anthocyanins. In this study, the regulation of anthocyanin biosynthetic mechanisms of MYB-TFs are discussed. The role of the environment in the control of the anthocyanin biosynthesis network is summarized, the complex formation of anthocyanins and the mechanism of environment-induced anthocyanin synthesis are analyzed. Some prospects for MYB-TF to modulate the comprehensive regulation of anthocyanins are put forward, to provide a more relevant basis for further research in this field, and to guide the directed genetic modification of anthocyanins for the improvement of crops for food quality, nutrition and human health.
Collapse
Affiliation(s)
- Huiling Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xiaona Pei
- Harbin Research Institute of Forestry Machinery, State Administration of Forestry and Grassland, Harbin 150086, China;
- Research Center of Cold Temperate Forestry, CAF, Harbin 150086, China
| | - Heng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xinxin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Minghui Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ronald Ross Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| |
Collapse
|
10
|
Zhang Y, Xu S, Cheng Y, Wang J, Wang X, Liu R, Han J. Functional identification of PsMYB57 involved in anthocyanin regulation of tree peony. BMC Genet 2020; 21:124. [PMID: 33198624 PMCID: PMC7667756 DOI: 10.1186/s12863-020-00930-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/30/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND R2R3 myeloblastosis (MYB) genes are widely distributed in plants and comprise one of the largest transcription factor gene families. They play important roles in the regulatory networks controlling development, metabolism, and stress responses. Researches on functional genes in tree peony are still in its infancy. To date, few MYB genes have thus far been reported. RESULTS In this study, we constructed a comprehensive reference gene set by transcriptome sequencing to obtain R2R3 MYB genes. The transcriptomes of eight different tissues were sequenced, and 92,837 unigenes were obtained with an N50 of 1662 nt. A total of 48,435 unigenes (77.98%) were functionally annotated in public databases. Based on the assembly, we identified 57 R2R3 MYB genes containing full-length open reading frames, which clustered into 35 clades by phylogenetic analysis. PsMYB57 clustered with anthocyanin regulation genes in Arabidopsis and was mainly transcribed in the buds and young leaves. The overexpression of PsMYB57 induced anthocyanin accumulation in tobacco, and four detected anthocyanin structural genes, including NtCHS, NtF3'H, NtDFR, and NtANS, were upregulated. The two endogenous bHLH genes NtAn1a and NtAn1b were also upregulated and may work in combination with PsMYB57 in regulating anthocyanin structural genes. CONCLUSIONS Our study offers a useful reference to the selection of candidate MYB genes for further functional studies in tree peony. Function analysis of PsMYB57 is helpful to understand the color accumulation in vegetative organs of tree peony. PsMYB57 is also a promising resource to improve plant color in molecular breeding.
Collapse
Affiliation(s)
- Yanzhao Zhang
- Life Science Department, Luoyang Normal University, Luoyang, 471022, China.
| | - Shuzhen Xu
- Life Science Department, Luoyang Normal University, Luoyang, 471022, China
| | - Yanwei Cheng
- Life Science Department, Luoyang Normal University, Luoyang, 471022, China
| | - Jing Wang
- Life Science Department, Luoyang Normal University, Luoyang, 471022, China
| | - Xiangxiang Wang
- Life Science Department, Luoyang Normal University, Luoyang, 471022, China
| | - Runxiao Liu
- Life Science Department, Luoyang Normal University, Luoyang, 471022, China
| | - Jianming Han
- Life Science Department, Luoyang Normal University, Luoyang, 471022, China
| |
Collapse
|
11
|
Genome-wide analysis and expression profiles of the StR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.). Int J Biol Macromol 2020; 148:817-832. [PMID: 31962068 DOI: 10.1016/j.ijbiomac.2020.01.167] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/29/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
MYB transcription factors comprise one of the largest families in plant kingdom, which play a variety of functions in plant developmental processes and defence responses, the R2R3-MYB members are the predominant form found in higher plants. In the present study, a total of 111 StR2R3-MYB transcription factors were identified and further phylogenetically classified into 31 subfamilies, as supported by highly conserved gene structures and motifs. Collinearity analysis showed that the segmental duplication events played a crucial role in the expansion of StR2R3-MYB gene family. Synteny analysis indicated that 37 and 13 StR2R3-MYB genes were orthologous to Arabidopsis and wheat (Triticum aestivum), respectively, and these gene pairs have evolved under strong purifying selection. RNA-seq data from different tissues and abiotic stresses revealed tissue-preferential and abiotic stress-responsive StR2R3-MYB genes. We further analyzed StR2R3-MYB genes might be involved in anthocyanin biosynthesis and drought stress by using RNA-seq data of pigmented tetraploid potato cultivars and drought-sensitive and -tolerant tetraploid potato cultivars under drought stress, respectively. Moreover, EAR motifs were found in 21 StR2R3-MYB proteins and 446 pairs of proteins were predicted to interact with 21 EAR motif-containing StR2R3-MYB proteins by constructing the interaction network with medium confidence (0.4). Additionally, Gene Ontology (GO) analysis of the 21 EAR motif-containing StR2R3-MYB proteins was performed to further investigate their functions. This work will facilitate future biologically functional studies of potato StR2R3-MYB transcription factors and enrich the knowledge of MYB superfamily genes in plant species.
Collapse
|
12
|
Cheng J, Yu K, Shi Y, Wang J, Duan C. Transcription Factor VviMYB86 Oppositely Regulates Proanthocyanidin and Anthocyanin Biosynthesis in Grape Berries. FRONTIERS IN PLANT SCIENCE 2020; 11:613677. [PMID: 33519871 PMCID: PMC7838568 DOI: 10.3389/fpls.2020.613677] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/22/2020] [Indexed: 05/07/2023]
Abstract
Proanthocyanidins (PAs) and anthocyanins are two vital groups of flavonoid compounds for grape berries and red wines. Several transcription factors (TFs) have been identified to be involved in regulating PA and anthocyanin biosynthesis in grape berries. However, research on TFs with different regulatory mechanisms for these two biosynthesis branches in grapes remains limited. In this study, we identified an R2R3-MYB TF, VviMYB86, whose spatiotemporal gene expression pattern in grape berries coincided well with PA accumulation but contrasted with anthocyanin synthesis. Both in vivo and in vitro experiments verified that VviMYB86 positively regulated PA biosynthesis, primarily by upregulating the expression of the two leucoanthocyanidin reductase (LAR) genes in the Arabidopsis protoplast system, as well as in VviMYB86-overexpressing grape callus cultured under 24 h of darkness. Moreover, VviMYB86 was observed to repress the anthocyanin biosynthesis branch in grapes by downregulating the transcript levels of VviANS and VviUFGT. Overall, VviMYB86 is indicated to have a broad effect on flavonoid synthesis in grape berries. The results of this study will help elucidate the regulatory mechanism governing the expression of the two LAR genes in grape berries and provide new insights into the regulation of PA and anthocyanin biosynthesis in grape berries.
Collapse
Affiliation(s)
- Jing Cheng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Changqing Duan,
| |
Collapse
|
13
|
Tombuloglu H. Genome-wide identification and expression analysis of R2R3, 3R- and 4R-MYB transcription factors during lignin biosynthesis in flax (Linum usitatissimum). Genomics 2019; 112:782-795. [PMID: 31128265 DOI: 10.1016/j.ygeno.2019.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/06/2019] [Accepted: 05/20/2019] [Indexed: 11/19/2022]
Abstract
MYB transcription factors (TFs) have vital roles in regulating lignin or fiber development. Flax (Linum usitatissimum) is known as one of the plants with high fiber production capacity. However, no studies have been conducted to identify and characterize MYB TFs in the flax genome. Results showed that flax genome harbours 167 R2R3, seven 3R, and one 4R-type MYB TFs. 22 MYB genes (%13) were estimated to be tandem duplicated dated around 13.3-86.98 Mya. 130 flax MYB members have apparent orthologous with Arabidopsis, in which 17 R2R3 MYBs are associated with lignin biosynthesis. MYB062, MYB072, MYB096, MYB141, and MYB146 genes were up-regulated in tissues having higher lignin production capacity. In opposite, MYB012 and MYB113 genes were down-regulated which points out the involvement of those genes in the lignin biosynthesis mechanism. This comprehensive study can provide a basis for understanding the role of MYBs in fiber or lignin production in flax.
Collapse
Affiliation(s)
- Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia.
| |
Collapse
|
14
|
Zhou H, Liao L, Xu S, Ren F, Zhao J, Ogutu C, Wang L, Jiang Q, Han Y. Two amino acid changes in the R3 repeat cause functional divergence of two clustered MYB10 genes in peach. PLANT MOLECULAR BIOLOGY 2018; 98:169-183. [PMID: 30155830 DOI: 10.1007/s11103-018-0773-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/24/2018] [Indexed: 05/23/2023]
Abstract
R2R3-MYB genes play a pivotal role in regulating anthocyanin accumulation. Here, we report two tandemly duplicated R2R3-MYB genes in peach, PpMYB10.1 and PpMYB10.2, with the latter showing lower ability to induce anthocyanin accumulation than the former. Site-directed mutation assay revealed two amino acid changes in the R3 repeat, Arg/Lys66 and Gly/Arg93, responsible for functional divergence between these two PpMYB10 genes. Anthocyanin-promoting activity of PpMYB10.2 was significantly increased by a single amino acid replacement of Arg93 with Gly93. However, either the Gly93 → Arg93 or Arg66 → Lys66 substitutions alone showed little impact on anthocyanin-promoting activity of PpMYB10.1, but simultaneous substitutions caused a significant decrease. Reciprocal substitution of Arg/Gly93 could significantly alter binding affinity to PpbHLH3, while the Arg66 → Lys66 substitution is predicted to affect the folding of the MYB DNA-binding domain, instead of PpbHLH3-binding affinity. Overall, the change of anthocyanin-promoting activity was accompanied with that of bHLH-binding affinity, suggesting that DNA-binding affinity of R2R3-MYBs depends on their bHLH partners. Our study is helpful for understanding of functional evolution of R2R3-MYBs and their interaction with DNA targets.
Collapse
Affiliation(s)
- Hui Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Horticultural Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Liao Liao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China
| | - Shengli Xu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Fei Ren
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jianbo Zhao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Collins Ogutu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Lu Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China
| | - Quan Jiang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
15
|
Kubo H, Nozawa S, Hiwatashi T, Kondou Y, Nakabayashi R, Mori T, Saito K, Takanashi K, Kohchi T, Ishizaki K. Biosynthesis of riccionidins and marchantins is regulated by R2R3-MYB transcription factors in Marchantia polymorpha. JOURNAL OF PLANT RESEARCH 2018; 131:849-864. [PMID: 29845372 DOI: 10.1007/s10265-018-1044-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/07/2018] [Indexed: 05/21/2023]
Abstract
R2R3-MYB transcription factors constitute the largest gene family among plant transcription factor families. They became largely divergent during the evolution of land plants and regulate various biological processes. The functions of R2R3-MYBs are mostly characterized in seed plants but are poorly understood in non-seed plants. Here, we examined the function of two R2R3-MYB genes of Marchantia polymorpha (Mapoly0073s0038 and Mapoly0006s0226) that are closely related to subgroup 4 of the R2R3-MYB family. We performed LC/MS/MS metabolomics, RNA-seq analysis and expression analysis in overexpressors and knockout mutants of MpMYB14 and MpMYB02. Overexpression of MpMYB14 remarkably increased the amount of riccionidins, which are specific anthocyanins in liverworts and a few flowering plants. In contrast, overexpression of MpMYB02 increased the amount of several marchantins, which are characteristic cyclic bis (bibenzyl ether) compounds in M. polymorpha and related liverworts. Knockouts of MpMYB14 and MpMYB02 abolished the accumulation of riccionidins and marchantins, respectively. The expression of MpMYB14 was up-regulated by UV-B irradiation, N deficiency, and NaCl treatment, whereas the expression of MpMYB02 was down-regulated by NaCl treatment. Our results suggest that the regulatory framework of phenolic metabolism by R2R3-MYB was already established in early land plants.
Collapse
Affiliation(s)
- Hiroyoshi Kubo
- Department of Biology, Faculty of Science, Shinshu University, Matsumoto, 390-8621, Japan.
| | - Shunsuke Nozawa
- Department of Biology, Faculty of Science, Shinshu University, Matsumoto, 390-8621, Japan
| | - Takuma Hiwatashi
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Youichi Kondou
- College of Science and Engineering, Kanto Gakuin University, Yokohama, 236-8501, Japan
| | - Ryo Nakabayashi
- Center for Sustainable Resource Science, RIKEN, Yokohama, 230-0045, Japan
| | - Tetsuya Mori
- Center for Sustainable Resource Science, RIKEN, Yokohama, 230-0045, Japan
| | - Kazuki Saito
- Center for Sustainable Resource Science, RIKEN, Yokohama, 230-0045, Japan
- Graduate School of Pharmaceutical Science, Chiba University, Chiba, 260-8675, Japan
| | - Kojiro Takanashi
- Department of Biology, Faculty of Science, Shinshu University, Matsumoto, 390-8621, Japan
- Institute of Mountain Science, Shinshu University, Matsumoto, 390-8621, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | | |
Collapse
|
16
|
Gates DJ, Olson BJSC, Clemente TE, Smith SD. A novel R3 MYB transcriptional repressor associated with the loss of floral pigmentation in Iochroma. THE NEW PHYTOLOGIST 2018; 217:1346-1356. [PMID: 29023752 DOI: 10.1111/nph.14830] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/31/2017] [Indexed: 05/23/2023]
Abstract
Losses of floral pigmentation represent one of the most common evolutionary transitions in flower color, yet the genetic basis for these changes has been elucidated in only a handful of cases. Here we used crossing studies, bulk-segregant RNA sequencing, phylogenetic analyses and functional tests to identify the gene(s) responsible for the transition to white flowers in Iochroma loxense. Crosses between I. loxense and its blue-flowered sister species, I. cyaneum, suggested that a single locus controls the flower color difference and that the white allele causes a nearly complete loss of pigmentation. Examining sequence variation across phenotypic pools from the crosses, we found that alleles at a novel R3 MYB transcription factor were tightly associated with flower color variation. This gene, which we term MYBL1, falls into a class of MYB transcriptional repressors and, accordingly, higher expression of this gene is associated with downregulation of multiple anthocyanin pigment pathway genes. We confirmed the repressive function of MYBL1 through stable transformation of Nicotiana. The mechanism underlying the evolution of white flowers in I. loxense differs from that uncovered in previous studies, pointing to multiple mechanisms for achieving fixed transitions in flower color intensity.
Collapse
Affiliation(s)
- Daniel J Gates
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| | | | - Tom E Clemente
- Department of Agronomy and Horticulture and Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80305, USA
| |
Collapse
|
17
|
Martins L, Trujillo-Hernandez JA, Reichheld JP. Thiol Based Redox Signaling in Plant Nucleus. FRONTIERS IN PLANT SCIENCE 2018; 9:705. [PMID: 29892308 PMCID: PMC5985474 DOI: 10.3389/fpls.2018.00705] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/09/2018] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are well-described by-products of cellular metabolic activities, acting as signaling molecules and regulating the redox state of proteins. Solvent exposed thiol residues like cysteines are particularly sensitive to oxidation and their redox state affects structural and biochemical capacities of many proteins. While thiol redox regulation has been largely studied in several cell compartments like in the plant chloroplast, little is known about redox sensitive proteins in the nucleus. Recent works have revealed that proteins with oxidizable thiols are important for the regulation of many nuclear functions, including gene expression, transcription, epigenetics, and chromatin remodeling. Moreover, thiol reducing molecules like glutathione and specific isoforms of thiols reductases, thioredoxins and glutaredoxins were found in different nuclear subcompartments, further supporting that thiol-dependent systems are active in the nucleus. This mini-review aims to discuss recent progress in plant thiol redox field, taking examples of redox regulated nuclear proteins and focusing on major thiol redox systems acting in the nucleus.
Collapse
Affiliation(s)
- Laura Martins
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| | - José Abraham Trujillo-Hernandez
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
- *Correspondence: Jean-Philippe Reichheld,
| |
Collapse
|
18
|
Butt HI, Yang Z, Gong Q, Chen E, Wang X, Zhao G, Ge X, Zhang X, Li F. GaMYB85, an R2R3 MYB gene, in transgenic Arabidopsis plays an important role in drought tolerance. BMC PLANT BIOLOGY 2017; 17:142. [PMID: 28830364 PMCID: PMC5568319 DOI: 10.1186/s12870-017-1078-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/20/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND MYB transcription factors (TFs) are one of the largest families of TFs in higher plants and are involved in diverse biological, functional, and structural processes. Previously, very few functional validation studies on R2R3 MYB have been conducted in cotton in response to abiotic stresses. In the current study, GaMYB85, a cotton R2R3 MYB TF, was ectopically expressed in Arabidopsis thaliana (Col-0) and was functionally characterized by overexpression in transgenic plants. RESULTS The in-silico analysis of GaMYB85 shows the presence of a SANT domain with a conserved R2R3 MYB imperfect repeat. The GaMYB85 protein has a 257-amino acid sequence, a molecular weight of 24.91 kD, and an isoelectric point of 5.58. Arabidopsis plants overexpressing GaMYB85 exhibited a higher seed germination rate in response to mannitol and salt stress, and higher drought avoidance efficiency than wild-type plants upon water deprivation. These plants had notably higher levels of free proline and chlorophyll with subsequent lower water loss rates and higher relative water content. Germination of GaMYB85 transgenics was more sensitive to abscisic acid (ABA) and extremely liable to ABA-induced inhibition of primary root elongation. Moreover, when subjected to treatment with different concentrations of ABA, transgenic plants with ectopically expressed GaMYB85 showed reduced stomatal density, with greater stomatal size and lower stomatal opening rates than those in wild-type plants. Ectopic expression of GaMYB85 led to enhanced transcript levels of stress-related marker genes such as RD22, ADH1, RD29A, P5CS, and ABI5. CONCLUSIONS Our results indicate previously unknown roles of GaMYB85, showing that it confers good drought, salt, and freezing tolerance, most probably via an ABA-induced pathway. These findings can potentially be exploited to develop improved abiotic stress tolerance in cotton plants.
Collapse
Affiliation(s)
- Hamama Islam Butt
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Qian Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Eryong Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Xioaqian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Ge Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science (ICR, CAAS), Anyang, 455000, China.
| |
Collapse
|
19
|
Hajiebrahimi A, Owji H, Hemmati S. Genome-wide identification, functional prediction, and evolutionary analysis of the R2R3-MYB superfamily in Brassica napus. Genome 2017; 60:797-814. [PMID: 28732175 DOI: 10.1139/gen-2017-0059] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
R2R3-MYB transcription factors (TFs) have been shown to play important roles in plants, including in development and in various stress conditions. Phylogenetic analysis showed the presence of 249 R2R3-MYB TFs in Brassica napus, called BnaR2R3-MYB TFs, clustered into 38 clades. BnaR2R3-MYB TFs were distributed on 19 chromosomes of B. napus. Sixteen gene clusters were identified. BnaR2R3-MYB TFs were characterized by motif prediction, gene structure analysis, and gene ontology. Evolutionary analysis revealed that BnaR2R3-MYB TFs are mainly formed as a result of whole-genome duplication. Orthologs and paralogs of BnaR2R3-MYB TFs were identified in B. napus, B. rapa, B. oleracea, and Arabidopsis thaliana using synteny-based methods. Purifying selection was pervasive within R2R3-MYB TFs. Kn/Ks values lower than 0.3 indicated that BnaR2R3-MYB TFs are being functionally converged. The role of gene conversion in the formation of BnaR2R3-MYB TFs was significant. Cis-regulatory elements in the upstream regions of BnaR2R3-MYB genes, miRNA targeting BnaR2R3MYB TFs, and post translational modifications were identified. Digital expression data revealed that BnaR2R3-MYB genes were highly expressed in the roots and under high salinity treatment after 24 h. BnaMYB21, BnaMYB141, and BnaMYB148 have been suggested for improving salt-tolerant B. napus. BnaR2R3-MYB genes were mostly up regulated on the 14th day post inoculation with Leptosphaeria biglobosa and L. maculan. BnaMYB150 is a candidate for increased tolerance to Leptospheria in B. napus.
Collapse
Affiliation(s)
- Ali Hajiebrahimi
- a Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Owji
- a Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- a Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,b Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Chezem WR, Clay NK. Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs. PHYTOCHEMISTRY 2016; 131:26-43. [PMID: 27569707 PMCID: PMC5048601 DOI: 10.1016/j.phytochem.2016.08.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 05/20/2023]
Abstract
Plants are unrivaled in the natural world in both the number and complexity of secondary metabolites they produce, and the ubiquitous phenylpropanoids and the lineage-specific glucosinolates represent two such large and chemically diverse groups. Advances in genome-enabled biochemistry and metabolomic technologies have greatly increased the understanding of their metabolic networks in diverse plant species. There also has been some progress in elucidating the gene regulatory networks that are key to their synthesis, accumulation and function. This review highlights what is currently known about the gene regulatory networks and the stable sub-networks of transcription factors at their cores that regulate the production of these plant secondary metabolites and the differentiation of specialized cell types that are equally important to their defensive function. Remarkably, some of these core components are evolutionarily conserved between secondary metabolism and specialized cell development and across distantly related plant species. These findings suggest that the more ancient gene regulatory networks for the differentiation of fundamental cell types may have been recruited and remodeled for the generation of the vast majority of plant secondary metabolites and their specialized tissues.
Collapse
Affiliation(s)
- William R Chezem
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA.
| | - Nicole K Clay
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
21
|
Li Z, Peng R, Tian Y, Han H, Xu J, Yao Q. Genome-Wide Identification and Analysis of the MYB Transcription Factor Superfamily in Solanum lycopersicum. PLANT & CELL PHYSIOLOGY 2016; 57:1657-77. [PMID: 27279646 DOI: 10.1093/pcp/pcw091] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/29/2016] [Indexed: 05/21/2023]
Abstract
MYB proteins constitute one of the largest transcription factor families in the plant kingdom, members of which perform a variety of functions in plant biological processes. However, there are only very limited reports on the characterization of MYB transcription factors in tomato (Solanum lycopersicum). In our study, a total of 127 MYB genes have been identified in the tomato genome. A complete overview of these MYB genes is presented, including the phylogeny, gene structures, protein motifs, chromosome locations and expression patterns. The 127 SlMYB proteins could be classified into 18 subgroups based on domain similarity and phylogenetic topology. Phylogenetic analysis of SlMYBs along with MYBs from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) indicated 14 subfamilies. Conserved motifs outside the MYB domain may reflect their functional conservation. The identified tomato MYB genes were distributed on 12 chromosomes at various densities but mainly in chromosomes 6 and 10 (12.6% and 11.8%, respectively). Genome-wide segmental and tandem duplications were also found, which may contribute to the expansion of SlMYB genes. RNA-sequencing and microarray data revealed tissue-specific and stress-responsive expression patterns of SlMYB genes. The expression profiles of SlMYB genes in response to salicylic acid (SA) and jasmonic acid methyl ester (MeJA) were also investigated by real-time PCR. Moreover, ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motifs were found in 24 SlMYB proteins. Collectively, our comprehensive analysis of SlMYB genes will facilitate future functional studies of the tomato MYB gene family and probably other Solanaceae plants.
Collapse
Affiliation(s)
- Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Hongjuan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Jing Xu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| |
Collapse
|
22
|
Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in Gossypium raimondii. Sci Rep 2016; 6:22980. [PMID: 27009386 PMCID: PMC4806351 DOI: 10.1038/srep22980] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/29/2016] [Indexed: 11/09/2022] Open
Abstract
The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement.
Collapse
|
23
|
Miller JC, Chezem WR, Clay NK. Ternary WD40 Repeat-Containing Protein Complexes: Evolution, Composition and Roles in Plant Immunity. FRONTIERS IN PLANT SCIENCE 2016; 6:1108. [PMID: 26779203 PMCID: PMC4703829 DOI: 10.3389/fpls.2015.01108] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/23/2015] [Indexed: 05/18/2023]
Abstract
Plants, like mammals, rely on their innate immune system to perceive and discriminate among the majority of their microbial pathogens. Unlike mammals, plants respond to this molecular dialog by unleashing a complex chemical arsenal of defense metabolites to resist or evade pathogen infection. In basal or non-host resistance, plants utilize signal transduction pathways to detect "non-self," "damaged-self," and "altered-self"- associated molecular patterns and translate these "danger" signals into largely inducible chemical defenses. The WD40 repeat (WDR)-containing proteins Gβ and TTG1 are constituents of two independent ternary protein complexes functioning at opposite ends of a plant immune signaling pathway. They are also encoded by single-copy genes that are ubiquitous in higher plants, implying the limited diversity and functional conservation of their respective complexes. In this review, we summarize what is currently known about the evolutionary history of these WDR-containing ternary complexes, their repertoire and combinatorial interactions, and their downstream effectors and pathways in plant defense.
Collapse
Affiliation(s)
- Jimi C. Miller
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT, USA
| | - William R. Chezem
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| | - Nicole K. Clay
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| |
Collapse
|
24
|
|
25
|
Analysis of the DNA-Binding Activities of the Arabidopsis R2R3-MYB Transcription Factor Family by One-Hybrid Experiments in Yeast. PLoS One 2015; 10:e0141044. [PMID: 26484765 PMCID: PMC4613820 DOI: 10.1371/journal.pone.0141044] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/02/2015] [Indexed: 12/20/2022] Open
Abstract
The control of growth and development of all living organisms is a complex and dynamic process that requires the harmonious expression of numerous genes. Gene expression is mainly controlled by the activity of sequence-specific DNA binding proteins called transcription factors (TFs). Amongst the various classes of eukaryotic TFs, the MYB superfamily is one of the largest and most diverse, and it has considerably expanded in the plant kingdom. R2R3-MYBs have been extensively studied over the last 15 years. However, DNA-binding specificity has been characterized for only a small subset of these proteins. Therefore, one of the remaining challenges is the exhaustive characterization of the DNA-binding specificity of all R2R3-MYB proteins. In this study, we have developed a library of Arabidopsis thaliana R2R3-MYB open reading frames, whose DNA-binding activities were assayed in vivo (yeast one-hybrid experiments) with a pool of selected cis-regulatory elements. Altogether 1904 interactions were assayed leading to the discovery of specific patterns of interactions between the various R2R3-MYB subgroups and their DNA target sequences and to the identification of key features that govern these interactions. The present work provides a comprehensive in vivo analysis of R2R3-MYB binding activities that should help in predicting new DNA motifs and identifying new putative target genes for each member of this very large family of TFs. In a broader perspective, the generated data will help to better understand how TF interact with their target DNA sequences.
Collapse
|
26
|
Zhou H, Lin-Wang K, Liao L, Gu C, Lu Z, Allan AC, Han Y. Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase. FRONTIERS IN PLANT SCIENCE 2015; 6:908. [PMID: 26579158 PMCID: PMC4620396 DOI: 10.3389/fpls.2015.00908] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/12/2015] [Indexed: 05/22/2023]
Abstract
Proanthocyanidins (PAs) are a group of natural phenolic compounds that have a great effect on both flavor and nutritious value of fruit. It has been shown that PA synthesis is regulated by R2R3-MYB transcription factors (TFs) via activation of PA-specific pathway genes encoding leucoanthocyanidin reductase and anthocyanidin reductase. Here, we report the isolation and characterization of a MYB gene designated PpMYB7 in peach. The peach PpMYB7 represents a new group of R2R3-MYB genes regulating PA synthesis in plants. It is able to activate transcription of PpLAR1 but not PpANR, and has a broader selection of potential bHLH partners compared with PpMYBPA1. Transcription of PpMYB7 can be activated by the peach basic leucine-zipper 5 TF (PpbZIP5) via response to ABA. Our study suggests a transcriptional network regulating PA synthesis in peach, with the results aiding the understanding of the functional divergence between R2R3-MYB TFs in plants.
Collapse
Affiliation(s)
- Hui Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
- Graduate University of Chinese Academy of SciencesBeijing, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Ltd., Mt Albert Research CentreAuckland, New Zealand
| | - Liao Liao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
| | - Chao Gu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
| | - Ziqi Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
| | - Andrew C. Allan
- The New Zealand Institute for Plant & Food Research Ltd., Mt Albert Research CentreAuckland, New Zealand
- School of Biological Sciences, University of AucklandAuckland, New Zealand
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of SciencesWuhan, China
- *Correspondence: Yuepeng Han,
| |
Collapse
|
27
|
Genome-wide analysis of the R2R3-MYB transcription factor gene family in sweet orange (Citrus sinensis). Mol Biol Rep 2014; 41:6769-85. [DOI: 10.1007/s11033-014-3563-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/24/2014] [Indexed: 01/22/2023]
|
28
|
Heppel SC, Jaffé FW, Takos AM, Schellmann S, Rausch T, Walker AR, Bogs J. Identification of key amino acids for the evolution of promoter target specificity of anthocyanin and proanthocyanidin regulating MYB factors. PLANT MOLECULAR BIOLOGY 2013; 82:457-71. [PMID: 23689818 DOI: 10.1007/s11103-013-0074-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/14/2013] [Indexed: 05/05/2023]
Abstract
A complex of R2R3-MYB and bHLH transcription factors, stabilized by WD40 repeat proteins, regulates gene transcription for plant cell pigmentation and epidermal cell morphology. It is the MYB component of this complex which specifies promoter target activation. The Arabidopsis MYB TT2 regulates proanthocyanidin (PA) biosynthesis by activating the expression of ANR (anthocyanidin reductase), the gene product of which catalyzes the first committed step of this pathway. Conversely the closely related MYB PAP4 (AtMYB114) regulates the anthocyanin pathway and specifically activates UFGT (UDP-glucose:flavonoid-3-O-glucosyltransferase), encoding the first enzyme of the anthocyanin pathway. Both at the level of structural and regulatory genes, evolution of PA biosynthesis proceeded anthocyanin biosynthesis and we have identified key residues in these MYB transcription factors for the evolution of target promoter specificity. Using chimeric and point mutated variants of TT2 and PAP4 we found that exchange of a single amino acid, Gly/Arg(39) in the R2 domain combined with an exchange of a four amino acid motif in the R3 domain, could swap the pathway selection of TT2 and PAP4, thereby converting in planta specificity of the PA towards the anthocyanin pathway and vice versa. The general importance of these amino acids for target specificity was also shown for the grapevine transcription factors VvMYBPA2 and VvMYBA2 which regulate PAs and anthocyanins, respectively. These results provide an insight into the evolution of the different flavonoid regulators from a common ancestral gene.
Collapse
Affiliation(s)
- Simon C Heppel
- Centre for Organismal Studies Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Transcriptome-wide identification of R2R3-MYB transcription factors in barley with their boron responsive expression analysis. Mol Genet Genomics 2013; 288:141-55. [PMID: 23539153 DOI: 10.1007/s00438-013-0740-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/11/2013] [Indexed: 12/21/2022]
Abstract
MYB family of transcription factors (TF) comprises one of the largest transcription factors in plants and is represented in all eukaryotes. They include highly conserved MYB repeats (1R, R2R3, 3R, and 4R) in the N-terminus. In addition to this, they have diverse C-terminal sequences which help the protein gain wide distinct functions, such as controlling development, secondary metabolism, hormonal regulation and response to biotic and abiotic stress. Stress-responsive roles of the MYB TFs were reported for drought, salt, wounding, cold, freezing, dehydration and osmotic stresses. This study describes the identification of barley R2R3-MYB TFs including their expression analysis in tissues under control and Boron (B) toxic conditions. Conserved motifs for MYB proteins were searched into barley full-transcriptome RNA-seq data and a total of 320 protein sequences were filtered as MYB TFs in which 51 of them corresponded to R2R3 MYB TFs. Using various bioinformatics tools, their conserved domain structures, chromosomal distributions, gene duplications, comparative functional analysis, as well as phylogenetic relations with Arabidopsis thaliana, were conducted. Beside the RNA-seq data-based expression pattern analysis of 51 R2R3 MYB TFs, quantitative analysis of selected R2R3 MYB TF genes was assessed in control and B-stressed root and leaf tissues. Critical B-induced R2R3 MYB TFs were identified. It was concluded that the results would be useful for functional characterizations of R2R3-type MYB transcription factors that are possibly involved in both B stress and divergent regulation mechanisms in plants.
Collapse
|
30
|
Persak H, Pitzschke A. Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling. PLoS One 2013; 8:e57547. [PMID: 23437396 PMCID: PMC3578790 DOI: 10.1371/journal.pone.0057547] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/25/2013] [Indexed: 01/10/2023] Open
Abstract
Abiotic stress poses a huge, ever-increasing problem to plants and agriculture. The dissection of signalling pathways mediating stress tolerance is a prerequisite to develop more resistant plant species. Mitogen-activated protein kinase (MAPK) cascades are universal signalling modules. In Arabidopsis, the MAPK MPK3 and its upstream regulator MAPK kinase MKK4 initiate the adaptation response to numerous abiotic and biotic stresses. Yet, molecular steps directly linked with MKK4-MPK3 activation are largely unknown. Starting with a yeast-two-hybrid screen for interacting partners of MKK4, we identified a transcription factor, MYB44. MYB44 is controlled at multiple levels by and strongly inter-connected with MAPK signalling. As we had shown earlier, stress-induced expression of the MYB44 gene is regulated by a MPK3-targeted bZIP transcription factor VIP1. At the protein level, MYB44 interacts with MPK3 in vivo. MYB44 is phosphorylated by MPK3 in vitro at a single residue, Ser145. Although replacement of Ser145 by a non-phosphorylatable (S145A) or phosphomimetic (S145D) residue did not alter MYB44 subcellular localisation, dimerization behaviour nor DNA-binding characteristics, abiotic stress tolerance tests in stable transgenic Arabidopsis plants clearly related S145 phosphorylation to MYB44 function: Compared to Arabidopsis wild type plants, MYB44 overexpressing lines exhibit an enhanced tolerance to osmotic stress and are slightly more sensitive to abscisic acid. Interestingly, overexpression of the S145A variant revealed that impaired phosphorylation does not render the MYB44 protein non-functional. Instead, S145A lines are highly sensitive to abiotic stress, and thereby remarkably similar to mpk3-deficient plants. Its in vivo interaction with the nuclear sub-pools of both MPK3 and MKK4 renders MYB44 the first plant transcription factor to have a second function as putative MAPK cascade scaffolding protein.
Collapse
Affiliation(s)
- Helene Persak
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- * E-mail: (AP); (HP)
| | - Andrea Pitzschke
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- * E-mail: (AP); (HP)
| |
Collapse
|
31
|
Malhotra S, Sowdhamini R. Re-visiting protein-centric two-tier classification of existing DNA-protein complexes. BMC Bioinformatics 2012; 13:165. [PMID: 22800292 PMCID: PMC3472317 DOI: 10.1186/1471-2105-13-165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 03/26/2012] [Indexed: 01/28/2023] Open
Abstract
Background Precise DNA-protein interactions play most important and vital role in maintaining the normal physiological functioning of the cell, as it controls many high fidelity cellular processes. Detailed study of the nature of these interactions has paved the way for understanding the mechanisms behind the biological processes in which they are involved. Earlier in 2000, a systematic classification of DNA-protein complexes based on the structural analysis of the proteins was proposed at two tiers, namely groups and families. With the advancement in the number and resolution of structures of DNA-protein complexes deposited in the Protein Data Bank, it is important to revisit the existing classification. Results On the basis of the sequence analysis of DNA binding proteins, we have built upon the protein centric, two-tier classification of DNA-protein complexes by adding new members to existing families and making new families and groups. While classifying the new complexes, we also realised the emergence of new groups and families. The new group observed was where β-propeller was seen to interact with DNA. There were 34 SCOP folds which were observed to be present in the complexes of both old and new classifications, whereas 28 folds are present exclusively in the new complexes. Some new families noticed were NarL transcription factor, Z-α DNA binding proteins, Forkhead transcription factor, AP2 protein, Methyl CpG binding protein etc. Conclusions Our results suggest that with the increasing number of availability of DNA-protein complexes in Protein Data Bank, the number of families in the classification increased by approximately three fold. The folds present exclusively in newly classified complexes is suggestive of inclusion of proteins with new function in new classification, the most populated of which are the folds responsible for DNA damage repair. The proposed re-visited classification can be used to perform genome-wide surveys in the genomes of interest for the presence of DNA-binding proteins. Further analysis of these complexes can aid in developing algorithms for identifying DNA-binding proteins and their family members from mere sequence information.
Collapse
Affiliation(s)
- Sony Malhotra
- National Centre for Biological Sciences, UAS-GKVK Campus, Bangalore 560 065, India
| | | |
Collapse
|
32
|
Xia R, Zhu H, An YQ, Beers EP, Liu Z. Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 2012; 13:R47. [PMID: 22704043 PMCID: PMC3446319 DOI: 10.1186/gb-2012-13-6-r47] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/30/2012] [Accepted: 06/15/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) and their regulatory functions have been extensively characterized in model species but whether apple has evolved similar or unique regulatory features remains unknown. RESULTS We performed deep small RNA-seq and identified 23 conserved, 10 less-conserved and 42 apple-specific miRNAs or families with distinct expression patterns. The identified miRNAs target 118 genes representing a wide range of enzymatic and regulatory activities. Apple also conserves two TAS gene families with similar but unique trans-acting small interfering RNA (tasiRNA) biogenesis profiles and target specificities. Importantly, we found that miR159, miR828 and miR858 can collectively target up to 81 MYB genes potentially involved in diverse aspects of plant growth and development. These miRNA target sites are differentially conserved among MYBs, which is largely influenced by the location and conservation of the encoded amino acid residues in MYB factors. Finally, we found that 10 of the 19 miR828-targeted MYBs undergo small interfering RNA (siRNA) biogenesis at the 3' cleaved, highly divergent transcript regions, generating over 100 sequence-distinct siRNAs that potentially target over 70 diverse genes as confirmed by degradome analysis. CONCLUSIONS Our work identified and characterized apple miRNAs, their expression patterns, targets and regulatory functions. We also discovered that three miRNAs and the ensuing siRNAs exploit both conserved and divergent sequence features of MYB genes to initiate distinct regulatory networks targeting a multitude of genes inside and outside the MYB family.
Collapse
Affiliation(s)
- Rui Xia
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
33
|
Du H, Feng BR, Yang SS, Huang YB, Tang YX. The R2R3-MYB transcription factor gene family in maize. PLoS One 2012; 7:e37463. [PMID: 22719841 PMCID: PMC3370817 DOI: 10.1371/journal.pone.0037463] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/20/2012] [Indexed: 12/15/2022] Open
Abstract
MYB proteins comprise a large family of plant transcription factors, members of which perform a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). In the present study, we performed a comprehensive computational analysis, to yield a complete overview of the R2R3-MYB gene family in maize, including the phylogeny, expression patterns, and also its structural and functional characteristics. The MYB gene structure in maize and Arabidopsis were highly conserved, indicating that they were originally compact in size. Subgroup-specific conserved motifs outside the MYB domain may reflect functional conservation. The genome distribution strongly supports the hypothesis that segmental and tandem duplication contribute to the expansion of maize MYB genes. We also performed an updated and comprehensive classification of the R2R3-MYB gene families in maize and other plant species. The result revealed that the functions were conserved between maize MYB genes and their putative orthologs, demonstrating the origin and evolutionary diversification of plant MYB genes. Species-specific groups/subgroups may evolve or be lost during evolution, resulting in functional divergence. Expression profile study indicated that maize R2R3-MYB genes exhibit a variety of expression patterns, suggesting diverse functions. Furthermore, computational prediction potential targets of maize microRNAs (miRNAs) revealed that miR159, miR319, and miR160 may be implicated in regulating maize R2R3-MYB genes, suggesting roles of these miRNAs in post-transcriptional regulation and transcription networks. Our comparative analysis of R2R3-MYB genes in maize confirm and extend the sequence and functional characteristics of this gene family, and will facilitate future functional analysis of the MYB gene family in maize.
Collapse
Affiliation(s)
- Hai Du
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Ministry of Agriculture, Chengdu, Sichuan, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo-Run Feng
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Si-Si Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu-Bi Huang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Ministry of Agriculture, Chengdu, Sichuan, China
- * E-mail: (YBH); (YXT)
| | - Yi-Xiong Tang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (YBH); (YXT)
| |
Collapse
|
34
|
Gray J, Caparrós-Ruiz D, Grotewold E. Grass phenylpropanoids: regulate before using! PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 184:112-20. [PMID: 22284715 DOI: 10.1016/j.plantsci.2011.12.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 05/18/2023]
Abstract
The phenylpropanoid pathway is responsible for the synthesis of lignin as well as a large number of compounds of fundamental importance for the biology of plants. Over the years, important knowledge has accumulated on how dicotyledoneous plants control various branches of phenylpropanoid accumulation, but comparable information on the grasses is lagging significantly behind. In addition to playing fundamental roles in biotic and abiotic interactions, phenylpropanoids in the grasses play a very important function in the reinforcement of cell wall components. Understanding how phenylpropanoid metabolism is controlled in the grasses has been complicated by recent genome duplications, the difficulties in making transgenic plants and the absence of mutants in many genes. Recent studies in a particular subgroup of R2R3-MYB transcription factors suggest that they might play a central role in regulating a small set of phenylpropanoid genes, opening the door for the identification of other related regulators, and perhaps also finding out which combinations of biosynthesis genes function in particular cell types for the formation of specific compounds. This information will be essential for the rational metabolic engineering of this pathway, either to increase biomass or decrease phenolic accumulation for better accessibility of polysaccharides for forage quality and biofuel production.
Collapse
Affiliation(s)
- John Gray
- Dept. Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | | | | |
Collapse
|
35
|
Control of Programmed Cell Death During Plant Reproductive Development. BIOCOMMUNICATION OF PLANTS 2012. [DOI: 10.1007/978-3-642-23524-5_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Prouse MB, Campbell MM. The interaction between MYB proteins and their target DNA binding sites. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:67-77. [DOI: 10.1016/j.bbagrm.2011.10.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 02/02/2023]
|
37
|
Tossi V, Amenta M, Lamattina L, Cassia R. Nitric oxide enhances plant ultraviolet-B protection up-regulating gene expression of the phenylpropanoid biosynthetic pathway. PLANT, CELL & ENVIRONMENT 2011; 34:909-921. [PMID: 21332509 DOI: 10.1111/j.1365-3040.2011.02289.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The link between ultraviolet (UV)-B, nitric oxide (NO) and phenylpropanoid biosynthetic pathway (PPBP) was studied in maize and Arabidopsis. The transcription factor (TF) ZmP regulates PPBP in maize. A genetic approach using P-rr (ZmP+) and P-ww (ZmP⁻) maize lines demonstrate that: (1) NO protects P-rr leaves but not P-ww from UV-B-induced reactive oxygen species (ROS) and cell damage; (2) NO increases flavonoid and anthocyanin content and prevents chlorophyll loss in P-rr but not in P-ww and (3) the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) blocks the UV-B-induced expression of ZmP and their targets CHS and CHI suggesting that NO plays a key role in the UV-B-regulated PPBP. Involvement of endogenous NO was studied in Arabidopsis nitric oxide dioxygenase (NOD) plants that express a NO dioxygenase gene under the control of a dexamethasone (DEX)-inducible promoter. Expression of HY5 and MYB12, TFs involved in PPBP regulation, was induced by UV-B, reduced by DEX in NOD plants and recovered by subsequent NO treatment. C4H regulates synapate esters synthesis and is UV-B-induced in a NO-independent pathway. Data indicate that UV-B perception increases NO concentration, which protects plant against UV-B by two ways: (1) scavenging ROS; and (2) up-regulating the expression of HY5, MYB12 and ZmP, resulting in the PPBP activation.
Collapse
Affiliation(s)
- Vanesa Tossi
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC1245 (7600) Mar del Plata, Argentina
| | - Melina Amenta
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC1245 (7600) Mar del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC1245 (7600) Mar del Plata, Argentina
| | - Raúl Cassia
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC1245 (7600) Mar del Plata, Argentina
| |
Collapse
|
38
|
Feller A, Machemer K, Braun EL, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:94-116. [PMID: 21443626 DOI: 10.1111/j.1365-313x.2010.04459.x] [Citation(s) in RCA: 770] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The expansion of gene families encoding regulatory proteins is typically associated with the increase in complexity characteristic of multi-cellular organisms. The MYB and basic helix-loop-helix (bHLH) families provide excellent examples of how gene duplication and divergence within particular groups of transcription factors are associated with, if not driven by, the morphological and metabolic diversity that characterize the higher plants. These gene families expanded dramatically in higher plants; for example, there are approximately 339 and 162 MYB and bHLH genes, respectively, in Arabidopsis, and approximately 230 and 111, respectively, in rice. In contrast, the Chlamydomonas genome has only 38 MYB genes and eight bHLH genes. In this review, we compare the MYB and bHLH gene families from structural, evolutionary and functional perspectives. The knowledge acquired on the role of many of these factors in Arabidopsis provides an excellent reference to explore sequence-function relationships in crops and other plants. The physical interaction and regulatory synergy between particular sub-classes of MYB and bHLH factors is perhaps one of the best examples of combinatorial plant gene regulation. However, members of the MYB and bHLH families also interact with a number of other regulatory proteins, forming complexes that either activate or repress the expression of sets of target genes that are increasingly being identified through a diversity of high-throughput genomic approaches. The next few years are likely to witness an increasing understanding of the extent to which conserved transcription factors participate at similar positions in gene regulatory networks across plant species.
Collapse
Affiliation(s)
- Antje Feller
- Plant Biotechnology Center and Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
39
|
Xiang Q, Judelson HS. Myb transcription factors in the oomycete Phytophthora with novel diversified DNA-binding domains and developmental stage-specific expression. Gene 2010; 453:1-8. [PMID: 20060444 DOI: 10.1016/j.gene.2009.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 12/14/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
Transcription factors containing two or three imperfect tandem repeats of the Myb DNA-binding domain (named R2R3 and R1R2R3, respectively) regulate important processes in growth and development. This study characterizes the structure, evolution, and expression of these proteins in the potato pathogen Phytophthora infestans and other oomycetes. P. infestans was found to encode five R2R3 and nine R1R2R3 transcription factor-like proteins, plus several with additional configurations of Myb domains. Sets of R2R3 and R1R2R3 orthologs are well-conserved in three Phytophthora species. Analyses of sites that bind DNA in canonical Myb transcription factors, such as mammalian c-Myb, revealed unusual diversification in the DNA recognition helices of the oomycete proteins. While oomycete R2R3 proteins contain c-Myb-like helices, R1R2R3 proteins exhibit either c-Myb-like or novel sequences. This suggests divergence in their DNA-binding specificities, which was confirmed by electrophoretic mobility shift assays. Eight of the P. infestans R2R3 and R1R2R3 genes are up-regulated during sporulation and three during zoospore release, which suggests their involvement in spore development. This is supported by the observation that an oomycete that does not form zoospores, Hyaloperonospora arabidopsidis, contains one-third fewer of these genes than Phytophthora.
Collapse
Affiliation(s)
- Qijun Xiang
- Department of Plant Pathology and Microbiology, University of California, Riverside, 92521, USA
| | | |
Collapse
|
40
|
Kang YH, Kirik V, Hulskamp M, Nam KH, Hagely K, Lee MM, Schiefelbein J. The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis. THE PLANT CELL 2009; 21:1080-94. [PMID: 19395683 PMCID: PMC2685616 DOI: 10.1105/tpc.108.063180] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 03/19/2009] [Accepted: 04/10/2009] [Indexed: 05/18/2023]
Abstract
The specification of cell fates during development requires precise regulatory mechanisms to ensure robust cell type patterns. Theoretical models of pattern formation suggest that a combination of negative and positive feedback mechanisms are necessary for efficient specification of distinct fates in a field of differentiating cells. Here, we examine the role of the R2R3-MYB transcription factor gene, AtMYB23 (MYB23), in the establishment of the root epidermal cell type pattern in Arabidopsis thaliana. MYB23 is closely related to, and is positively regulated by, the WEREWOLF (WER) MYB gene during root epidermis development. Furthermore, MYB23 is able to substitute for the function of WER and to induce its own expression when controlled by WER regulatory sequences. We also show that the MYB23 protein binds to its own promoter, suggesting a MYB23 positive feedback loop. The localization of MYB23 transcripts and MYB23-green fluorescent protein (GFP) fusion protein, as well as the effect of a chimeric MYB23-SRDX repressor construct, links MYB23 function to the developing non-hair cell type. Using mutational analyses, we find that MYB23 is necessary for precise establishment of the root epidermal pattern, particularly under conditions that compromise the cell specification process. These results suggest that MYB23 participates in a positive feedback loop to reinforce cell fate decisions and ensure robust establishment of the cell type pattern in the Arabidopsis root epidermis.
Collapse
Affiliation(s)
- Yeon Hee Kang
- Department of Biology, Yonsei University, 134 Sinchon-dong, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Pulido P, Domínguez F, Cejudo FJ. A hydrogen peroxide detoxification system in the nucleus of wheat seed cells: protection or signaling role? PLANT SIGNALING & BEHAVIOR 2009; 4:23-5. [PMID: 19704698 PMCID: PMC2634063 DOI: 10.4161/psb.4.1.7221] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 05/21/2023]
Abstract
Aerobic metabolism inevitably produces reactive oxygen species (ROS), including hydrogen peroxide, which may cause damage to the cell. Besides this toxic effect, hydrogen peroxide has an important signaling function in plant development and response to environmental stimuli. So, the balance of toxic and signaling effects of hydrogen peroxide is highly dependent on mechanisms to adjust its level in the different cell compartments. We recently described a redox system, formed by NADPH thioredoxin reductase (NTR) and 1-Cys peroxiredoxin (1-Cys Prx), able to use the reducing power of NADPH to reduce hydrogen peroxide. This system is localized in the nucleus of wheat seed cells and probably has an important antioxidant function in aleurone and scutellum cells, which suffer oxidative stress during seed development and germination. We discuss here the possibility that the control of the level of hydrogen peroxide in the nucleus may be important to balance redox regulation of gene expression and cell death in cereal seed cells.
Collapse
Affiliation(s)
- Pablo Pulido
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla y CSIC, Sevilla, Spain
| | | | | |
Collapse
|
42
|
Serpa V, Vernal J, Lamattina L, Grotewold E, Cassia R, Terenzi H. Inhibition of AtMYB2 DNA-binding by nitric oxide involves cysteine S-nitrosylation. Biochem Biophys Res Commun 2007; 361:1048-53. [PMID: 17686455 DOI: 10.1016/j.bbrc.2007.07.133] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO) can influence the transcriptional activity of a wide set of Arabidopsis genes. The aim of the present work was to investigate if NO modifies DNA-binding activity of AtMYB2 (a typical R2R3-MYB from Arabidopsis thaliana), by a posttranslational modification of its conserved Cys53 residue. We cloned a fully active minimal DNA-binding domain of AtMYB2 spanning residues 19-125, hereafter called M2D. In EMSA assays, M2D binds the core binding site 5'-[A]AACC[A]-3'. The NO donors SNP and GSNO inhibit M2D DNA-binding. As expected for a Cys S-nitrosylation, the NO-mediated inhibitory effect was reversed by DTT, and S-nitrosylation of Cys53 in M2D was detected by biotin switch assays. These results demonstrate that the DNA-binding of M2D is inhibited by S-nitrosylation of Cys53 as a consequence of NO action, thus establishing for the first time a relationship between the redox state and DNA-binding in a plant MYB transcription factor.
Collapse
Affiliation(s)
- Viviane Serpa
- Laboratório de Expressão Gênica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guilfoyle TJ, Schachtman DP. The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. THE PLANT CELL 2007; 19:2440-53. [PMID: 17675404 PMCID: PMC2002618 DOI: 10.1105/tpc.107.050963] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 07/05/2007] [Accepted: 07/12/2007] [Indexed: 05/16/2023]
Abstract
Auxin is a key plant hormone that regulates plant development, apical dominance, and growth-related tropisms, such as phototropism and gravitropism. In this study, we report a new Arabidopsis thaliana transcription factor, MYB77, that is involved in auxin response. In MYB77 knockout plants, we found that auxin-responsive gene expression was greatly attenuated. Lateral root density in the MYB77 knockout was lower than the wild type at low concentrations of indole-3-acetic acid (IAA) and also under low nutrient conditions. MYB77 interacts with auxin response factors (ARFs) in vitro through the C terminus (domains III and IV) of ARFs and the activation domain of MYB77. A synergistic genetic interaction was demonstrated between MYB77 and ARF7 that resulted in a strong reduction in lateral root numbers. Experiments with protoplasts confirmed that the coexpression of MYB77 and an ARF C terminus enhance reporter gene expression. R2R3 MYB transcription factors have not been previously implicated in regulating the expression of auxin-inducible genes. Also it was previously unknown that ARFs interact with proteins other than those in the Aux/IAA family via conserved domains. The interaction between MYB77 and ARFs defines a new type of combinatorial transcriptional control in plants. This newly defined transcription factor interaction is part of the plant cells' repertoire for modulating response to auxin, thereby controlling lateral root growth and development under changing environmental conditions.
Collapse
Affiliation(s)
- Ryoung Shin
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Feller A, Hernandez JM, Grotewold E. An ACT-like Domain Participates in the Dimerization of Several Plant Basic-helix-loop-helix Transcription Factors. J Biol Chem 2006; 281:28964-74. [PMID: 16867983 DOI: 10.1074/jbc.m603262200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maize basic-helix-loop-helix (bHLH) factor R belongs to a group of proteins with important functions in the regulation of metabolism and development through the cooperation with R2R3-MYB transcription factors. Here we show that in addition to the bHLH and the R2R3-MYB-interacting domains, R contains a dimerization region located C-terminal to the bHLH motif. This protein-protein interaction domain is important for the regulation of anthocyanin pigment biosynthesis by contributing to the recruitment of the C1 R2R3-MYB factor to the C1 binding sites present in the promoters of flavonoid biosynthetic genes. The R dimerization region bares structural similarity to the ACT domain present in several metabolic enzymes. Protein fold recognition analyses resulted in the identification of similar ACT-like domains in several other plant bHLH proteins. We show that at least one of these related motifs is capable of mediating homodimer formation. These findings underscore the function of R as a docking site for multiple protein-protein interactions and provide evidence for the presence of a novel dimerization domain in multiple plant bHLH proteins.
Collapse
Affiliation(s)
- Antje Feller
- Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
45
|
Ryu KH, Kang YH, Park YH, Hwang I, Schiefelbein J, Lee MM. The WEREWOLF MYB protein directly regulatesCAPRICEtranscription during cell fate specification in theArabidopsisroot epidermis. Development 2005; 132:4765-75. [PMID: 16207757 DOI: 10.1242/dev.02055] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Arabidopsis root epidermis is composed of two types of cells,hair cells and non-hair cells, and their fate is determined in a position-dependent manner. WEREWOLF (WER), a R2R3 MYB protein, has been shown genetically to function as a master regulator to control both of the epidermal cell fates. To directly test the proposed role of WER in this system, we examined its subcellular localization and defined its transcriptional activation properties. We show that a WER-GFP fusion protein is functional and accumulates in the nucleus of the N-position cells in the Arabidopsisroot epidermis, as expected for a transcriptional regulator. We also find that a modified WER protein with a strong activation domain (WER-VP16) promotes the formation of both epidermal cell types, supporting the view that WER specifies both cell fates. In addition, we used the glucocorticoid receptor (GR)inducible system to show that CPC transcription is regulated directly by WER. Using EMSA, we found two WER-binding sites (WBSs; WBSI and WBSII) in the CPC promoter. WER-WBSI binding was confirmed in vivo using the yeast one-hybrid assay. Binding between the WER protein and both WBSs (WBSI and WBSII), and the importance of the two WBSs in CPC promoter activity were confirmed in Arabidopsis. These results provide experimental support for the proposed role of WER as an activator of gene transcription during the specification of both epidermal cell fates.
Collapse
Affiliation(s)
- Kook Hui Ryu
- Department of Biology, Yonsei University, Sinchon 134, Seoul 120-749, Korea
| | | | | | | | | | | |
Collapse
|
46
|
Chang SM, Lu Y, Rausher MD. Neutral evolution of the nonbinding region of the anthocyanin regulatory gene Ipmyb1 in Ipomoea. Genetics 2005; 170:1967-78. [PMID: 15944366 PMCID: PMC1449781 DOI: 10.1534/genetics.104.034975] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 04/28/2005] [Indexed: 11/18/2022] Open
Abstract
Plant transcription factors often contain domains that evolve very rapidly. Although it has been suggested that this rapid evolution may contribute substantially to phenotypic differentiation among species, this suggestion has seldom been tested explicitly. We tested the validity of this hypothesis by examining the rapidly evolving non-DNA-binding region of an R2R3-myb transcription factor that regulates anthocyanin expression in flowers of the genus Ipomoea. We first provide evidence that the W locus in Ipomoea purpurea, which determines whether flowers will be pigmented or white, corresponds to a myb gene segregating in southeastern U.S. populations for one functional allele and one nonfunctional allele. While the binding domain exhibits substantial selective constraint, the nonbinding region evolves at an average K(a)/K(s) ratio of 0.74. This elevated rate of evolution is due to relaxed constraint rather than to increased levels of positive selection. Despite this relaxed constraint, however, approximately 20-25% of the codons, randomly distributed throughout the nonbinding region, are highly constrained, with the remainder evolving neutrally, indicating that the entire region performs important function(s). Our results provide little indication that rapid evolution in this regulatory gene is driven by natural selection or that it is responsible for floral-color differences among Ipomoea species.
Collapse
Affiliation(s)
- Shu-Mei Chang
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
47
|
Koshino-Kimura Y, Wada T, Tachibana T, Tsugeki R, Ishiguro S, Okada K. Regulation of CAPRICE Transcription by MYB Proteins for Root Epidermis Differentiation in Arabidopsis. ACTA ACUST UNITED AC 2005; 46:817-26. [PMID: 15795220 DOI: 10.1093/pcp/pci096] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Epidermal cell differentiation in Arabidopsis root is studied as a model system for understanding cell fate specification. Two types of MYB-related transcription factors are involved in this cell differentiation. One of these, CAPRICE (CPC), encoding an R3-type MYB protein, is a positive regulator of hair cell differentiation and is preferentially transcribed in hairless cells. We analyzed the regulatory mechanism of CPC transcription. Deletion analyses of the CPC promoter revealed that hairless cell-specific transcription of the CPC gene required a 69 bp sequence, and a tandem repeat of this region was sufficient for its expression in epidermis. This region includes two MYB-binding sites, and the epidermis-specific transcription of CPC was abolished when base substitutions were introduced in these sites. We showed by gel mobility shift experiments and by yeast one-hybrid assay that WEREWOLF (WER), which is an R2R3-type MYB protein, directly binds to this region. We showed that WER also binds to the GL2 promoter region, indicating that WER directly regulates CPC and GL2 transcription by binding to their promoter regions.
Collapse
Affiliation(s)
- Yoshihiro Koshino-Kimura
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | | | | | | | | | | |
Collapse
|
48
|
Heine GF, Hernandez JM, Grotewold E. Two Cysteines in Plant R2R3 MYB Domains Participate in REDOX-dependent DNA Binding. J Biol Chem 2004; 279:37878-85. [PMID: 15237103 DOI: 10.1074/jbc.m405166200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Plant R2R3 MYB domain proteins comprise one of the largest known families of transcription factors. Discrete evolutionary steps have shaped the plant-specific R2R3 MYB family from the broadly distributed R1R2R3 MYB proteins. R1R2R3 MYB domains have a single Cys residue (Cys-130) that needs to be reduced for DNA binding and transcriptional activity. In contrast, most R2R3 MYB domains contain two cysteines, Cys-49 and Cys-53, with Cys-53 at the equivalent position as Cys-130 in R1R2R3 MYB. Using the maize P1 regulator of flavonoid biosynthesis as a typical R2R3 MYB-domain protein, we investigated here the in vitro REDOX requirement for DNA binding by P1. We show that the C53S mutation requires reducing conditions for DNA-binding, whereas C53A binds DNA under oxidizing and reducing conditions. Neither mutation impairs the in vivo regulatory activity of P1. The C49S and C49A mutants bind DNA in vitro irrespective of the REDOX conditions. A C49I mutant, which simulates the MYB domain of c-MYB, binds DNA only under reducing conditions, and its binding is significantly affected by the C53S replacement. It is interesting that under non-reducing conditions, Cys-49 and Cys-53 form a disulfide bond that prevents the R2R3 MYB domain from binding DNA. Together, our results suggest that the evolutionary origin of Cys-49 within the plants has provided R2R3 MYB domains with a regulatory feature not present in animal MYB domains, highlighting fundamental structural and functional differences between similar DNA-binding domains from plants and animals.
Collapse
Affiliation(s)
- George F Heine
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
49
|
Hernandez JM, Heine GF, Irani NG, Feller A, Kim MG, Matulnik T, Chandler VL, Grotewold E. Different mechanisms participate in the R-dependent activity of the R2R3 MYB transcription factor C1. J Biol Chem 2004; 279:48205-13. [PMID: 15347654 DOI: 10.1074/jbc.m407845200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The R2R3 MYB transcription factor C1 requires the basic helix-loop-helix factor R as an essential co-activator for the transcription of maize anthocyanin genes. In contrast, the R2R3 MYB protein P1 activates a subset of the C1-regulated genes independently of R. Substitution of six amino acids in P1 with the C1 amino acids results in P1(*), whose activity on C1-regulated and P1-regulated genes is R-dependent or R-enhanced, respectively. We have used P1(*) in combination with various promoters to uncover two mechanisms for R function. On synthetic promoters that contain only C1/P1 binding sites, R is an essential co-activator of C1. This function of R is unlikely to simply be the result of an increase in the C1 DNA-binding affinity, since transcriptional activity of a C1 mutant that binds DNA at a higher affinity, comparable with P1, remains R-dependent. The differential transcriptional activity of C1 fusions with the yeast Gal4 DNA-binding domain in yeast and maize cells suggests that part of the function of R is to relieve C1 from a plant-specific inhibitor. A second function of R requires cis-regulatory elements in addition to the C1/P1 DNA-binding sites for R-enhanced transcription of a1. We hypothesize that R functions in this mode by binding or recruiting additional factors to the anthocyanin regulatory element conserved in the promoters of several anthocyanin genes. Together, these findings suggest a model in which combinatorial interactions with co-activators enable R2R3 MYB factors with very similar DNA binding preferences to discriminate between target genes in vivo.
Collapse
Affiliation(s)
- J Marcela Hernandez
- Ohio State Biochemistry Program, Department of Plant Cellular and Molecular Biology, and Plant Biotechnology Center, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Myb domain proteins contain a conserved DNA-binding domain composed of one to four conserved repeat motifs. In animals, Myb proteins are encoded by a small gene family and commonly contain three repeat motifs (R1R2R3); whereas, plant Myb proteins are encoded by a very large and diverse gene family in which a motif containing two repeats (R2R3) is the most common. In contrast to the conservation in the Myb domain, other regions of Myb proteins are highly variable. To explore the evolutionary origin of Myb genes, we cloned and sequenced Myb domains from maize and sorghum, and conducted a comprehensive phylogenetic analysis of Myb genes. The results indicate that the origins of individual Myb repeats are strikingly distinct, and that the R2 repeat has evolved more slowly than the R1 and R3 repeats. However, it is not clear which repeat is the most ancient one. The evidence also suggests that R2R3 and R1R2R3 Myb genes co-existed in eukaryotes before the divergence of plants and animals. Based on our results, we propose that R1R2R3 Myb genes were derived from R2R3 Myb genes by gain of the R1 repeat through an ancient intragenic duplication; this gain model is more parsimonious than the previous proposal that R2R3 Myb genes were derived from R1R2R3 Mybs by loss of the R1 repeat. A separate group of diverse non-typical Myb proteins exhibits a polyphyletic origin and a complex evolutionary pattern. Finally, a small group of ancient Myb paralogs prior to the amplification of current Myb genes is identified. Together, these results support a new model for the ordered evolution of Myb gene family.
Collapse
Affiliation(s)
- Cizhong Jiang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|