1
|
Methylation of promoter of RBL1 enhances the radioresistance of three dimensional cultured carcinoma cells. Oncotarget 2018; 8:4422-4435. [PMID: 27779109 PMCID: PMC5354843 DOI: 10.18632/oncotarget.12647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/29/2016] [Indexed: 12/04/2022] Open
Abstract
Three dimensional (3D) culture in vitro is a new cell culture model that more closely mimics the physiology features of the in vivo environment and is being used widely in the field of medical and biological research. It has been demonstrated that cancer cells cultured in 3D matrices are more radioresistant compared with cells in monolayer (2D). However, the mechanisms causing this difference remain largely unclear. Here we found that the cell cycle distribution and expression of cell cycle regulation genes in 3D A549 cells are different from the 2D. The higher levels of the promotor methylation of cell cycle regulation genes such as RBL1 were observed in 3D A549 cells compared with cells in 2D. The treatments of irradiation or 5-Aza-CdR activated the demethylation of RBL1 promotor and resulted in the increased expression of RBL1 only in 3D A549 cells. Inhibition of RBL1 enhanced the radioresistance and decreased the G2/M phase arrest induced by irradiation in 2D A549 and MCF7 cells. Overexpression of RBL1 sensitized 3D cultured A549 and MCF7 cells to irradiation. Taken together, to our knowledge, it is the first time to revealthat the low expression of RBL1 due to itself promotor methylation in 3D cells enhances the radioresistance. Our finding sheds a new light on understanding the features of the 3D cultured cell model and its application in basic research into cancer radiotherapy and medcine development.
Collapse
|
2
|
Su S, Minges JT, Grossman G, Blackwelder AJ, Mohler JL, Wilson EM. Proto-oncogene activity of melanoma antigen-A11 (MAGE-A11) regulates retinoblastoma-related p107 and E2F1 proteins. J Biol Chem 2013; 288:24809-24. [PMID: 23853093 DOI: 10.1074/jbc.m113.468579] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Melanoma antigen-A11 (MAGE-A11) is a low-abundance, primate-specific steroid receptor coregulator in normal tissues of the human reproductive tract that is expressed at higher levels in prostate cancer. Increased expression of MAGE-A11 enhances androgen receptor transcriptional activity and promotes prostate cancer cell growth. Further investigation into the mechanisms of MAGE-A11 function in prostate cancer demonstrated interactions with the retinoblastoma-related protein p107 and Rb tumor suppressor but no interaction with p130 of the Rb family. MAGE-A11 interaction with p107 was associated with transcriptional repression in cells with low MAGE-A11 and transcriptional activation in cells with higher MAGE-A11. Selective interaction of MAGE-A11 with retinoblastoma family members suggested the regulation of E2F transcription factors. MAGE-A11 stabilized p107 by inhibition of ubiquitination and linked p107 to hypophosphorylated E2F1 in association with the stabilization and activation of E2F1. The androgen receptor and MAGE-A11 modulated endogenous expression of the E2F1-regulated cyclin-dependent kinase inhibitor p27(Kip1). The ability of MAGE-A11 to increase E2F1 transcriptional activity was similar to the activity of adenovirus early oncoprotein E1A and depended on MAGE-A11 interactions with p107 and p300. The immunoreactivity of p107 and MAGE-A11 was greater in advanced prostate cancer than in benign prostate, and knockdown with small inhibitory RNA showed that p107 is a transcriptional activator in prostate cancer cells. These results suggest that MAGE-A11 is a proto-oncogene whose increased expression in prostate cancer reverses retinoblastoma-related protein p107 from a transcriptional repressor to a transcriptional activator of the androgen receptor and E2F1.
Collapse
Affiliation(s)
- Shifeng Su
- Laboratories for Reproductive Biology, Department of Pediatrics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
3
|
Burkhart DL, Wirt SE, Zmoos AF, Kareta MS, Sage J. Tandem E2F binding sites in the promoter of the p107 cell cycle regulator control p107 expression and its cellular functions. PLoS Genet 2010; 6:e1001003. [PMID: 20585628 PMCID: PMC2891812 DOI: 10.1371/journal.pgen.1001003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 05/26/2010] [Indexed: 11/19/2022] Open
Abstract
The retinoblastoma tumor suppressor (Rb) is a potent and ubiquitously expressed cell cycle regulator, but patients with a germline Rb mutation develop a very specific tumor spectrum. This surprising observation raises the possibility that mechanisms that compensate for loss of Rb function are present or activated in many cell types. In particular, p107, a protein related to Rb, has been shown to functionally overlap for loss of Rb in several cellular contexts. To investigate the mechanisms underlying this functional redundancy between Rb and p107 in vivo, we used gene targeting in embryonic stem cells to engineer point mutations in two consensus E2F binding sites in the endogenous p107 promoter. Analysis of normal and mutant cells by gene expression and chromatin immunoprecipitation assays showed that members of the Rb and E2F families directly bound these two sites. Furthermore, we found that these two E2F sites controlled both the repression of p107 in quiescent cells and also its activation in cycling cells, as well as in Rb mutant cells. Cell cycle assays further indicated that activation of p107 transcription during S phase through the two E2F binding sites was critical for controlled cell cycle progression, uncovering a specific role for p107 to slow proliferation in mammalian cells. Direct transcriptional repression of p107 by Rb and E2F family members provides a molecular mechanism for a critical negative feedback loop during cell cycle progression and tumorigenesis. These experiments also suggest novel therapeutic strategies to increase the p107 levels in tumor cells. The retinoblastoma tumor suppressor Rb belongs to a family of cell cycle inhibitors along with the related proteins p107 and p130. Strong evidence indicates that the three family members have both specific and overlapping functions and expression patterns in mammalian cells, including in cancer cells. However, the molecular mechanisms underlying the functional differences and similarities among Rb, p107, and p130 are still poorly understood. One proposed mechanism of compensation is a negative feedback loop involving increased p107 transcription in Rb-deficient cells. To dissect the mechanisms controlling p107 expression in both wild-type and Rb-deficient cells, we have engineered inactivating point mutations into the E2F binding sites in the endogenous p107 promoter using gene targeting in mouse embryonic stem cells. Gene expression and DNA binding assays revealed that these two sites are essential for the control of p107 transcription in wild-type and Rb mutant cells, and cell cycle assays showed their importance for normal functions of p107. These experiments identify a key node in cell cycle regulatory networks.
Collapse
Affiliation(s)
- Deborah L. Burkhart
- Departments of Pediatrics and Genetics, Stanford Medical School, Stanford, California, United States of America
- Cancer Biology Program, Stanford Medical School, Stanford, California, United States of America
| | - Stacey E. Wirt
- Departments of Pediatrics and Genetics, Stanford Medical School, Stanford, California, United States of America
- Cancer Biology Program, Stanford Medical School, Stanford, California, United States of America
| | - Anne-Flore Zmoos
- Departments of Pediatrics and Genetics, Stanford Medical School, Stanford, California, United States of America
| | - Michael S. Kareta
- Departments of Pediatrics and Genetics, Stanford Medical School, Stanford, California, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medical School, Stanford, California, United States of America
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford Medical School, Stanford, California, United States of America
- Cancer Biology Program, Stanford Medical School, Stanford, California, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medical School, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Wirt SE, Sage J. p107 in the public eye: an Rb understudy and more. Cell Div 2010; 5:9. [PMID: 20359370 PMCID: PMC2861648 DOI: 10.1186/1747-1028-5-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/02/2010] [Indexed: 11/25/2022] Open
Abstract
p107 and its related family members Rb and p130 are critical regulators of cellular proliferation and tumorigenesis. Due to the extent of functional overlap within the Rb family, it has been difficult to assess which functions are exclusive to individual members and which are shared. Like its family members, p107 can bind a variety of cellular proteins to affect the expression of many target genes during cell cycle progression. Unlike Rb and p130, p107 is most highly expressed during the G1 to S phase transition of the cell cycle in actively dividing cells and accumulating evidence suggests a role for p107 during DNA replication. The specific roles for p107 during differentiation and development are less clear, although emerging studies suggest that it can cooperate with other Rb family members to control differentiation in multiple cell lineages. As a tumor suppressor, p107 is not as potent as Rb, yet studies in knockout mice have revealed some tumor suppressor functions in mice, depending on the context. In this review, we identify the unique and overlapping functions of p107 during the cell cycle, differentiation, and tumorigenesis.
Collapse
Affiliation(s)
- Stacey E Wirt
- Departments of Pediatrics and Genetics, Stanford Medical School, Stanford, CA 94305, USA.
| | | |
Collapse
|
5
|
Burkhart DL, Viatour P, Ho VM, Sage J. GFP reporter mice for the retinoblastoma-related cell cycle regulator p107. Cell Cycle 2008; 7:2544-52. [PMID: 18719374 DOI: 10.4161/cc.7.16.6441] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The RB tumor suppressor gene is mutated in a broad range of human cancers, including pediatric retinoblastoma. Strikingly, however, Rb mutant mice develop tumors of the pituitary and thyroid glands, but not retinoblastoma. Mouse genetics experiments have demonstrated that p107, a protein related to pRB, is capable of preventing retinoblastoma, but not pituitary tumors, in Rb-deficient mice. Evidence suggests that the basis for this compensatory function of p107 is increased transcription of the p107 gene in response to Rb inactivation. To begin to address the context-dependency of this compensatory role of p107 and to follow p107 expression in vivo, we have generated transgenic mice carrying an enhanced GFP (eGFP) reporter inserted into a bacterial artificial chromosome (BAC) containing the mouse p107 gene. Expression of the eGFP transgene parallels that of p107 in these transgenic mice and identifies cells with a broad range of expression level for p107, even within particular organs or tissues. We also show that loss of Rb results in the upregulation of p107 transcription in specific cell populations in vivo, including subpopulations of hematopoietic cells. Thus, p107 BAC-eGFP transgenic mice serve as a useful tool to identify distinct cell types in which p107 is expressed and may have key functions in vivo, and to characterize changes in cellular networks accompanying Rb deficiency.
Collapse
Affiliation(s)
- Deborah L Burkhart
- Department of Pediatrics and Genetics, Cancer Biology Program, Stanford Medical School, Stanford, California, USA
| | | | | | | |
Collapse
|
6
|
Ueda A, Araie M, Kubota S. Polyamine depletion induces G1 and S phase arrest in human retinoblastoma Y79 cells. Cancer Cell Int 2008; 8:2. [PMID: 18208615 PMCID: PMC2259317 DOI: 10.1186/1475-2867-8-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 01/21/2008] [Indexed: 11/25/2022] Open
Abstract
Background Polyamines and ornithine decarboxylase (ODC) are essential for cell proliferation. DL-α-difluoromethylornithine (DFMO), a synthetic inhibitor of ODC, induces G1 arrest through dephosphorylation of retinoblastoma protein (pRb). The effect of DFMO on cell growth of pRb deficient cells is not known. We examined the effects of DFMO on pRb deficient human retinoblastoma Y79 cell proliferation and its molecular mechanism. Methods Using cultured Y79 cells, the effects of DFMO were studied by using polyamine analysis, western blot, gel shift, FACS and promoter analysis. Results DFMO suppressed the proliferation of Y79 cells, which accumulated in the G1 and S phase. DFMO induced p27/Kip1 protein expression, p107 dephosphorylation and accumulation of p107/E2F-4 complex in Y79 cells. Conclusion These results indicate that p107 dephosphorylation and accumulation of p107/E2F-4 complex is involved in G1 and S phase arrest of DFMO treated Y79 cells.
Collapse
Affiliation(s)
- Akiko Ueda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | |
Collapse
|
7
|
Abstract
Melanoma is the most lethal of human skin cancers and its incidence is increasing worldwide [L.K. Dennis (1999). Arch. Dermatol. 135, 275; C. Garbe et al. (2000). Cancer 89, 1269]. Melanomas often metastasize early during the course of the disease and are then highly intractable to current therapeutic regimens [M.F. Demierre and G. Merlino (2004). Curr. Oncol. Rep. 6, 406]. Consequently, understanding the factors that maintain melanocyte homeostasis and prevent their neoplastic transformation into melanoma is of utmost interest from the perspective of therapeutic interdiction. This review will focus on the role of the pocket proteins (PPs), Rb1 (retinoblastoma protein), retinoblastoma-like 1 (Rbl1 also known as p107) and retinoblastoma-like 2 (Rbl2 also known as p130), in melanocyte homeostasis, with particular emphasis on their functions in the cell cycle and the DNA damage repair response. The potential mechanisms of PP deregulation in melanoma and the possibility of PP-independent pathways to melanoma development will also be considered. Finally, the role of the PP family in ultraviolet radiation (UVR)-induced melanoma and the precise contribution that each PP family member makes to melanocyte homeostasis will be discussed in the context of a number of genetically engineered mouse models.
Collapse
Affiliation(s)
- Ian D Tonks
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
8
|
Ranjan P, Heintz NH. S-phase arrest by reactive nitrogen species is bypassed by okadaic acid, an inhibitor of protein phosphatases PP1/PP2A. Free Radic Biol Med 2006; 40:247-59. [PMID: 16413407 DOI: 10.1016/j.freeradbiomed.2005.08.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 06/03/2005] [Accepted: 08/08/2005] [Indexed: 12/26/2022]
Abstract
In mammalian cells DNA damage activates a checkpoint that halts progression through S phase. To determine the ability of nitrating agents to induce S-phase arrest, mouse C10 cells synchronized in S phase were treated with nitrogen dioxide (NO(2)) or SIN-1, a generator of reactive nitrogen species (RNS). SIN-1 or NO(2) induced S-phase arrest in a dose- and time-dependent manner. As for the positive controls adozelesin and cisplatin, arrest was accompanied by phosphorylation of ATM kinase; dephosphorylation of pRB; decreases in RF-C, cyclin D1, Cdc25A, and Cdc6; and increases in p21. Comet assays indicated that RNS induce minimal DNA damage. Moreover, in a cell-free replication system, nuclei from cells treated with RNS were able to support control levels of DNA synthesis when incubated in cytosolic extracts from untreated cells, whereas nuclei from cells treated with cisplatin were not. Induction of phosphatase activity may represent one mechanism of RNS-induced arrest, for the PP1/PP2A phosphatase inhibitor okadaic acid inhibited dephosphorylation of pRB; prevented decreases in the levels of RF-C, cyclin D1, Cdc6, and Cdc25A; and bypassed arrest by SIN-1 or NO(2), but not cisplatin or adozelesin. Our studies suggest that RNS may induce S-phase arrest through mechanisms that differ from those elicited by classical DNA-damaging agents.
Collapse
Affiliation(s)
- Priya Ranjan
- Department of Pathology and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
9
|
Dannenberg JH, te Riele HPJ. The retinoblastoma gene family in cell cycle regulation and suppression of tumorigenesis. Results Probl Cell Differ 2006; 42:183-225. [PMID: 16903212 DOI: 10.1007/400_002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Since its discovery in 1986, as the first tumor suppressor gene, the retinoblastoma gene (Rb) has been extensively studied. Numerous biochemical and genetic studies have elucidated in great detail the function of the Rb gene and placed it at the heart of the molecular machinery controlling the cell cycle. As more insight was gained into the genetic events required for oncogenic transformation, it became clear that the retinoblastoma gene is connected to biochemical pathways that are dysfunctional in virtually all tumor types. Besides regulating the E2F transcription factors, pRb is involved in numerous biological processes such as apoptosis, DNA repair, chromatin modification, and differentiation. Further complexity was added to the system with the discovery of p107 and p130, two close homologs of Rb. Although the three family members share similar functions, it is becoming clear that these proteins also have unique functions in differentiation and regulation of transcription. In contrast to Rb, p107 and p130 are rarely found inactivated in human tumors. Yet, evidence is accumulating that these proteins are part of a "tumor-surveillance" mechanism and can suppress tumorigenesis. Here we provide an overview of the knowledge obtained from studies involving the retinoblastoma gene family with particular focus on its role in suppressing tumorigenesis.
Collapse
Affiliation(s)
- Jan-Hermen Dannenberg
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.
| | | |
Collapse
|
10
|
Lyons TE, Salih M, Tuana BS. Activating E2Fs mediate transcriptional regulation of human E2F6 repressor. Am J Physiol Cell Physiol 2005; 290:C189-99. [PMID: 16107498 DOI: 10.1152/ajpcell.00630.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
E2F6 is believed to repress E2F-responsive genes and therefore serve a role in cell cycle regulation. Analysis of the human E2F6 promoter region revealed the presence of two putative E2F binding sites, both of which were found to be functionally critical because deletion or mutations of these sites abolished promoter activity. Ectopic expression of E2F1 protein was found to increase E2F6 mRNA levels and significantly upregulate E2F6 promoter activity. Deletion or mutation of the putative E2F binding sites nullified the effects of E2F1 on the E2F6 promoter activity. Studies on the temporal induction of E2F family members demonstrated that the activating E2Fs, and most notably E2F1, were upregulated before E2F6 during cell cycle progression at the G1/S phase, and this coincided with the time course of induction experienced by the E2F6 promoter during the course of the cell cycle. EMSAs indicated the specific binding of nuclear complexes to the E2F6 promoter that contained E2F1-related species whose binding was specifically competed by the consensus E2F binding site. Chromatin immunoprecipitation assays with anti-E2Fs demonstrated the association of E2F family members with the E2F6 promoter in vivo. These data indicate that the expression of the E2F6 repressor is influenced at the transcriptional level by E2F family members and suggest that interplay among these transcriptional regulators, especially E2F1, may be critical for cell cycle regulation.
Collapse
Affiliation(s)
- Tarrah E Lyons
- Dept. of Cellular and Molecular Medicine, Faculty of Medicine, Univ. of Ottawa, 451 Smyth Rd., Ottawa, ON, Canada K1H 8M5
| | | | | |
Collapse
|
11
|
Abstract
The retinoblastoma protein (pRB) and the pRB-related p107 and p130 comprise the 'pocket protein' family of cell cycle regulators. These proteins are best known for their roles in restraining the G1-S transition through the regulation of E2F-responsive genes. pRB and the p107/p130 pair are required for the repression of distinct sets of genes, potentially due to their selective interactions with E2Fs that are engaged at specific promoter elements. In addition to regulating E2F-responsive genes in a reversible manner, pocket proteins contribute to silencing of such genes in cells that are undergoing senescence or differentiation. Pocket proteins also affect the G1-S transition through E2F-independent mechanisms, such as by inhibiting Cdk2 or by stabilizing p27(Kip1), and they are implicated in the control of G0 exit, the spatial organization of replication, and genomic rereplication. New insights into pocket protein regulation have also been obtained. Kinases previously thought to be crucial to pocket protein phosphorylation have been shown to be redundant, and new modes of phosphorylation and dephosphorylation have been identified. Despite these advances, much remains to be learned about the pocket proteins, particularly with regard to their developmental and tumor suppressor functions. Thus continues the story of the pocket proteins and the cell cycle.
Collapse
Affiliation(s)
- David Cobrinik
- Dyson Vision Research Institute and Department of Ophthalmology, Weill Medical College of Cornell University, 1300 York Avenue, LC303, New York, NY 10021, USA.
| |
Collapse
|
12
|
White J, Stead E, Faast R, Conn S, Cartwright P, Dalton S. Developmental activation of the Rb-E2F pathway and establishment of cell cycle-regulated cyclin-dependent kinase activity during embryonic stem cell differentiation. Mol Biol Cell 2005; 16:2018-27. [PMID: 15703208 PMCID: PMC1073679 DOI: 10.1091/mbc.e04-12-1056] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To understand cell cycle control mechanisms in early development and how they change during differentiation, we used embryonic stem cells to model embryonic events. Our results demonstrate that as pluripotent cells differentiate, the length of G(1) phase increases substantially. At the molecular level, this is associated with a significant change in the size of active cyclin-dependent kinase (Cdk) complexes, the establishment of cell cycle-regulated Cdk2 activity and the activation of a functional Rb-E2F pathway. The switch from constitutive to cell cycle-dependent Cdk2 activity coincides with temporal changes in cyclin A2 and E1 protein levels during the cell cycle. Transcriptional mechanisms underpin the down-regulation of cyclin levels and the establishment of their periodicity during differentiation. As pluripotent cells differentiate and pRb/p107 kinase activities become cell cycle dependent, the E2F-pRb pathway is activated and imposes cell cycle-regulated transcriptional control on E2F target genes, such as cyclin E1. These results suggest the existence of a feedback loop where Cdk2 controls its own activity through regulation of cyclin E1 transcription. Changes in rates of cell division, cell cycle structure and the establishment of cell cycle-regulated Cdk2 activity can therefore be explained by activation of the E2F-pRb pathway.
Collapse
Affiliation(s)
- Josephine White
- Department of Molecular Biosciences and Center for Molecular Genetics of Development, University of Adelaide, South Australia
| | | | | | | | | | | |
Collapse
|
13
|
Park CH, Kim HR, Kim J, Jang SH, Lee KY, Chung GH, Jang YS. Latent membrane protein 1 of Epstein-Barr virus plays an important role in the serum starvation resistance of Epstein-Barr virus-immortalized B lymphocytes. J Cell Biochem 2004; 91:777-85. [PMID: 14991769 DOI: 10.1002/jcb.10776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously shown that SNU-1103, which is a latency type III Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line (LCL) that was developed from a Korean cancer patient, resists serum starvation-induced G(1) arrest. In this study, we examined the role of latent membrane protein-1 (LMP-1) in serum starvation resistance, since LMP-1 is known to be essential for EBV-mediated immortalization of human B lymphocytes. The LMP-1 gene from SNU-1103 was introduced into the EBV-negative BJAB cell line, and shown to be associated with resistance to G(1) arrest during serum starvation. Western blot analyses of the LMP-1-transfected cells revealed several protein alterations as compared to vector-transfected control cells. The expression of key cell-cycle regulatory proteins was affected in the G(1) phase: the expression of cyclin D3, CDK2, p27, and E2F-4 was up-regulated, and the expression of cyclin D2, CDK6, p21, and p103 was down-regulated during serum starvation. These results imply that of the several EBV viral genes expressed in EBV-negative B lymphoma cells, LMP-1 mediates resistance to serum starvation-induced G(1) arrest. However, we cannot rule out the possibility that other EBV genes are also involved in the cell-cycle progression of the EBV-transformed LCL during serum starvation, since the altered protein expression profile of the LMP-1 transfectants was distinct from that of the SNU-1103 cells that expressed all of the EBV viral proteins.
Collapse
Affiliation(s)
- Chan-Hee Park
- Division of Biological Sciences and the Institute for Molecular Biology and Genetics, Chonbuk National University, Chonju 561-756, Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Takebayashi T, Higashi H, Sudo H, Ozawa H, Suzuki E, Shirado O, Katoh H, Hatakeyama M. NF-kappa B-dependent induction of cyclin D1 by retinoblastoma protein (pRB) family proteins and tumor-derived pRB mutants. J Biol Chem 2003; 278:14897-905. [PMID: 12594215 DOI: 10.1074/jbc.m210849200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinoblastoma protein (pRB) and its homologues, p107 and p130, prevent cell cycle progression from G(0)/G(1) to S phase by forming complexes with E2F transcription factors. Upon phosphorylation by G(1) cyclin-cyclin-dependent kinase (Cdk) complexes such as cyclin D1-Cdk4/6 and cyclin E-Cdk2, they lose the ability to bind E2F, and cells are thereby allowed to progress into S phase. Functional loss of one or more of the pRB family members, as a result of genetic mutation or deregulated phosphorylation, is considered to be an essential prerequisite for cellular transformation. In this study, we found that pRB family proteins have the ability to stimulate cyclin D1 transcription by activation of the NF-kappaB transcription factor. The cyclin D1-inducing activity of pRB is abolished by adenovirus E1A oncoprotein but not by the deletion of the A-box, the B-box, or the C-terminal region of the pocket, indicating that multiple pocket sequences are independently involved in cyclin D1 activation. Intriguingly, tumor-derived pRB pocket mutants retain the cyclin D1-inducing activity. Our results reveal a novel role of pRB family proteins as potential activators of NF-kappaB and inducers of G(1) cyclin. Certain pRB pocket mutants may give rise to a cellular situation in which deregulated E2F and cyclin D1 cooperatively promote abnormal cell proliferation.
Collapse
Affiliation(s)
- Tetsuro Takebayashi
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Laplantine E, Rossi F, Sahni M, Basilico C, Cobrinik D. FGF signaling targets the pRb-related p107 and p130 proteins to induce chondrocyte growth arrest. J Cell Biol 2002; 158:741-50. [PMID: 12177046 PMCID: PMC2174007 DOI: 10.1083/jcb.200205025] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Unregulated FGF signaling affects endochondral ossification and long bone growth, causing several genetic forms of human dwarfism. One major mechanism by which FGFs regulate endochondral bone growth is through their inhibitory effect on chondrocyte proliferation. Because mice with targeted mutations of the retinoblastoma (Rb)-related proteins p107 and p130 present severe endochondral bone defects with excessive chondrocyte proliferation, we have investigated the role of the Rb family of cell cycle regulators in the FGF response. Using a chondrocyte cell line, we found that FGF induced a rapid dephosphorylation of all three proteins of the Rb family (pRb, p107, and p130) and a blockade of the cells in the G1 phase of the cell cycle. This cell cycle block was reversed by inactivation of Rb proteins with viral oncoproteins such as polyoma large T (PyLT) antigen and Adenovirus E1A. Expression of a PyLT mutant that efficiently binds pRb, but not p107 and p130, allowed the cells to be growth inhibited by FGF, suggesting that pRb itself is not involved in the FGF response. To investigate more precisely the role of the individual Rb family proteins in FGF-mediated growth inhibition, we used chondrocyte micromass culture of limb bud cells isolated from mice lacking Rb proteins individually or in combination. Although wild-type as well as Rb-/- chondrocytes were similarly growth inhibited by FGF, chondrocytes null for p107 and p130 did not respond to FGF. Furthermore, FGF treatment of metatarsal bone rudiments obtained from p107-/-;p130-/- embryos failed to inhibit proliferation of growth plate chondrocytes, whereas rudiments from p107-null or p130-null embryos showed only a slight inhibition of growth. Our findings indicate that p107 and p130, but not pRb, are critical effectors of FGF-mediated growth inhibition in chondrocytes.
Collapse
Affiliation(s)
- Emmanuel Laplantine
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
16
|
Agrawal S, Agarwal ML, Chatterjee-Kishore M, Stark GR, Chisolm GM. Stat1-dependent, p53-independent expression of p21(waf1) modulates oxysterol-induced apoptosis. Mol Cell Biol 2002; 22:1981-92. [PMID: 11884587 PMCID: PMC133680 DOI: 10.1128/mcb.22.7.1981-1992.2002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
7-Ketocholesterol (7kchol) is prominent in atherosclerotic lesions where apoptosis occurs. Using mouse fibroblasts lacking p53, p21(waf1), or Stat1, we found that optimal 7kchol-induced apoptosis requires p21(waf1) and Stat1 but not p53. Findings were analogous in a human cell system. Apoptosis was restored in Stat1-null human cells when wild-type Stat1 was restored. Phosphorylation of Stat1 on Ser(727) but not Tyr(701) was essential for optimum apoptosis. A neutralizing antibody against beta interferon (IFN-beta) blunted Ser(727) phosphorylation and apoptosis after 7kchol treatment; cells deficient in an IFN-beta receptor subunit exhibited blunted apoptosis. IFN-beta alone did not induce apoptosis; thus, 7kchol-induced release of IFN-beta was necessary but not sufficient for optimal apoptosis. In Stat1-null cells, expression of p21(waf1) was much less than in wild-type cells; introducing transient expression of p21(waf1) restored apoptosis. Stat1 and p21(waf1) were essential for downstream apoptotic events, including cytochrome c release from mitochondria and activation of caspases 9 and 3. Our data reveal key elements of the cellular pathway through which an important oxysterol induces apoptosis. Identification of the essential signaling events that may pertain in vivo could suggest targets for therapeutic intervention.
Collapse
Affiliation(s)
- Sudesh Agrawal
- Department of Cell Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
The destiny of a cell--whether it undergoes division, differentiation or death--results from an intricate balance of many regulators, including oncoproteins, tumor-suppressor proteins and cell-cycle-associated proteins. One of the better-studied tumor suppressors is the retinoblastoma protein, known as pRb or p105. Two recently identified proteins, pRb2/p130 and p107, show structural and functional similarities to pRb, and these proteins and their orthologs make up the retinoblastoma (Rb) family. Members of the family have been found in animals and plants, and a related protein is known in the alga Chlamydomonas. Members of the Rb family are bound and inactivated by viral proteins and, in turn, bind cellular transcription factors and repress their function, and can also form complexes with cyclins and cyclin-dependent kinases and with histone deacetylases. They are found in the nucleus and their subnuclear localization depends on binding to the nuclear matrix. Members of the family form part of a signal-transduction pathway called the Rb pathway, which is important in cell-cycle regulation and have roles in growth suppression, differentiation and apoptosis in different organisms and cell types.
Collapse
Affiliation(s)
- Pier Paolo Claudio
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technologies, Temple University, Philadelphia, PA 19122, USA
- Dipartimento di Scienze Odontostomatologiche e Maxillo-Facciali, Universitá degli studi di Napoli "Federico II", 80130 Napoli, Italy
| | - Tiziana Tonini
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technologies, Temple University, Philadelphia, PA 19122, USA
- Istituto di Anatomia ed Istologia Patologica, Universita degli Studi di Siena, 53100 Siena, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technologies, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|