1
|
Fraser SD, Klaassen RV, Villmann C, Smit AB, Harvey RJ. Milestone Review: Unlocking the Proteomics of Glycine Receptor Complexes. J Neurochem 2025; 169:e70061. [PMID: 40285371 PMCID: PMC12032442 DOI: 10.1111/jnc.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025]
Abstract
Glycine receptors (GlyRs) are typically known for mediating inhibitory synaptic transmission within the spinal cord and brainstem, but they also have key roles in embryonic brain development, learning/memory, inflammatory pain sensitization, and rhythmic breathing. GlyR dysfunction has been implicated in multiple neurological disease states, including startle disease (GlyR α1β) and neurodevelopmental disorders (NDDs) including autism spectrum disorder (ASD), intellectual disability (ID), developmental delay (DD) and epilepsy (GlyR α2). However, GlyRs do not operate in isolation but depend upon stable and transient protein-protein interactions (PPIs) that influence synaptic localization, homeostasis, signaling pathways, and receptor function. Despite the affinity purification of GlyRs using the antagonist strychnine over four decades ago, we still have much to learn about native GlyR stoichiometry and accessory proteins. In contrast to other neurotransmitter receptors, < 20 potential GlyR interactors have been identified to date. These include some well-known proteins that are vital to inhibitory synapse function, such as the postsynaptic scaffolding protein gephyrin and the RhoGEF collybistin. However, the majority of known interactors either bind to the GlyR α1 and β subunits, or the binding partner in the GlyR complex is unknown. Several potential GlyR interactors are not found at inhibitory synapses and/or have no clear functional role. Moreover, other GlyR interactors are secondary interactors that bind indirectly, for example, via gephyrin. In this review, we provide a critical evaluation of known GlyR interacting proteins and methodological limitations to date. We also provide a road map for the use of innovative and emerging interaction proteomic techniques that will unlock the GlyR interactome. With the emergence of disease-associated missense mutations in the α1, α2 and β subunit intracellular domains in startle disease and NDDs, understanding the identity and roles of GlyR accessory proteins is vital in understanding GlyR function and dysfunction in health and disease.
Collapse
Affiliation(s)
- Sean D. Fraser
- School of HealthUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
- National PTSD Research CentreThompson Institute, University of the Sunshine CoastBirtinyaQueenslandAustralia
| | - Remco V. Klaassen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive ResearchAmsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Carmen Villmann
- Institute of Clinical NeurobiologyUniversity Hospital, Julius‐Maximilians‐University of WürzburgWürzburgGermany
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive ResearchAmsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Robert J. Harvey
- School of HealthUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
- National PTSD Research CentreThompson Institute, University of the Sunshine CoastBirtinyaQueenslandAustralia
| |
Collapse
|
2
|
Gibbs E, Klemm E, Seiferth D, Kumar A, Ilca SL, Biggin PC, Chakrapani S. Conformational transitions and allosteric modulation in a heteromeric glycine receptor. Nat Commun 2023; 14:1363. [PMID: 36914669 PMCID: PMC10011588 DOI: 10.1038/s41467-023-37106-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Glycine Receptors (GlyRs) provide inhibitory neuronal input in the spinal cord and brainstem, which is critical for muscle coordination and sensory perception. Synaptic GlyRs are a heteromeric assembly of α and β subunits. Here we present cryo-EM structures of full-length zebrafish α1βBGlyR in the presence of an antagonist (strychnine), agonist (glycine), or agonist with a positive allosteric modulator (glycine/ivermectin). Each structure shows a distinct pore conformation with varying degrees of asymmetry. Molecular dynamic simulations found the structures were in a closed (strychnine) and desensitized states (glycine and glycine/ivermectin). Ivermectin binds at all five interfaces, but in a distinct binding pose at the β-α interface. Subunit-specific features were sufficient to solve structures without a fiduciary marker and to confirm the 4α:1β stoichiometry recently observed. We also report features of the extracellular and intracellular domains. Together, our results show distinct compositional and conformational properties of α1βGlyR and provide a framework for further study of this physiologically important channel.
Collapse
Affiliation(s)
- Eric Gibbs
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Emily Klemm
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - David Seiferth
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Arvind Kumar
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Serban L Ilca
- New York Structural Biology Center, New York, NY, 10027, USA
- Simons Electron Microscopy Center, New York, NY, 10027, USA
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
3
|
Salceda R. Glycine neurotransmission: Its role in development. Front Neurosci 2022; 16:947563. [PMID: 36188468 PMCID: PMC9525178 DOI: 10.3389/fnins.2022.947563] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The accurate function of the central nervous system (CNS) depends of the consonance of multiple genetic programs and external signals during the ontogenesis. A variety of molecules including neurotransmitters, have been implied in the regulation of proliferation, survival, and cell-fate of neurons and glial cells. Among these, neurotransmitters may play a central role since functional ligand-gated ionic channel receptors have been described before the establishment of synapses. This review argues on the function of glycine during development, and show evidence indicating it regulates morphogenetic events by means of their transporters and receptors, emphasizing the role of glycinergic activity in the balance of excitatory and inhibitory signals during development. Understanding the mechanisms involved in these processes would help us to know the etiology of cognitive dysfunctions and lead to improve brain repair strategies.
Collapse
|
4
|
Ivica J, Lape R, Jazbec V, Yu J, Zhu H, Gouaux E, Gold MG, Sivilotti LG. The intracellular domain of homomeric glycine receptors modulates agonist efficacy. J Biol Chem 2021; 296:100387. [PMID: 33617876 PMCID: PMC7995613 DOI: 10.1074/jbc.ra119.012358] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/19/2020] [Indexed: 11/20/2022] Open
Abstract
Like other pentameric ligand-gated channels, glycine receptors (GlyRs) contain long intracellular domains (ICDs) between transmembrane helices 3 and 4. Structurally characterized GlyRs are generally engineered to have a very short ICD. We show here that for one such construct, zebrafish GlyREM, the agonists glycine, β-alanine, taurine, and GABA have high efficacy and produce maximum single-channel open probabilities greater than 0.9. In contrast, for full-length human α1 GlyR, taurine and GABA were clearly partial agonists, with maximum open probabilities of 0.46 and 0.09, respectively. We found that the elevated open probabilities in GlyREM are not due to the limited sequence differences between the human and zebrafish orthologs, but rather to replacement of the native ICD with a short tripeptide ICD. Consistent with this interpretation, shortening the ICD in the human GlyR increased the maximum open probability produced by taurine and GABA to 0.90 and 0.70, respectively, but further engineering it to resemble GlyREM (by introducing the zebrafish transmembrane helix 4 and C terminus) had no effect. Furthermore, reinstating the native ICD to GlyREM converted taurine and GABA to partial agonists, with maximum open probabilities of 0.66 and 0.40, respectively. Structural comparison of transmembrane helices 3 and 4 in short- and long-ICD GlyR subunits revealed that ICD shortening does not distort the orientation of these helices within each subunit. This suggests that the effects of shortening the ICD stem from removing a modulatory effect of the native ICD on GlyR gating, revealing a new role for the ICD in pentameric ligand-gated channels.
Collapse
Key Words
- 5-ht3, 5-hydroxytryptamine type 3
- dmem, dulbecco’s modified eagle’s medium
- ecd, extracellular domain
- glyr, glycine receptor
- icd, intracellular domain
- popen, open probability
- pdb, protein data bank
- plgic, pentameric ligand-gated ion channels
- tm, transmembrane
- zf, zebrafish
Collapse
Affiliation(s)
- Josip Ivica
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Remigijus Lape
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Vid Jazbec
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Jie Yu
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Hongtao Zhu
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Eric Gouaux
- Howard Hughes Medical Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Matthew G Gold
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Lucia G Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
5
|
Chieca M, Torrini S, Conticello SG. Live-Cell Quantification of APOBEC1-Mediated RNA Editing: A Comparison of RNA Editing Assays. Methods Mol Biol 2021; 2181:69-81. [PMID: 32729075 DOI: 10.1007/978-1-0716-0787-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
APOBEC1 is a member of the AID/APOBECs, a group of deaminases responsible for the editing of C>U in both DNA and RNA. APOBEC1 is physiologically involved in C>U RNA editing: while hundreds of targets have been discovered in mice, in humans the only well-characterized target of APOBEC1 is the apolipoprotein B (ApoB) transcript. APOBEC1 edits a CAA codon into a stop codon, which causes the translation of a truncated form of ApoB. A number of assays have been developed to investigate this process. Early assays, poisoned primer extension and Sanger sequencing, have focused on accuracy and sensitivity but rely on extraction of the RNA from tissues and cells. More recently, the need to visualize the RNA editing process directly in live cells have led to the development of fluorescence-based tools. These assays detect RNA editing through reporters whose editing causes a change in cellular localization or a change in fluorescent properties. Here we review the available assays to quantify RNA editing, and we present the protocol for cytofluorimetric analysis using a double-fluorescent reporter.
Collapse
Affiliation(s)
- Martina Chieca
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, Firenze, Italy.,Department of Medical Biotechnologies, Università di Siena, Siena, Italy
| | - Serena Torrini
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, Firenze, Italy.,Department of Medical Biotechnologies, Università di Siena, Siena, Italy
| | - Silvestro G Conticello
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, Firenze, Italy. .,Institute of Clinical Physiology, CNR, Pisa, Italy.
| |
Collapse
|
6
|
Abstract
The inhibitory glycine receptor is a member of the Cys-loop superfamily of ligand-gated ion channels. It is the principal mediator of rapid synaptic inhibition in the spinal cord and brainstem and plays an important role in the modulation of higher brain functions including vision, hearing, and pain signaling. Glycine receptor function is controlled by only a few agonists, while the number of antagonists and positive or biphasic modulators is steadily increasing. These modulators are important for the study of receptor activation and regulation and have found clinical interest as potential analgesics and anticonvulsants. High-resolution structures of the receptor have become available recently, adding to our understanding of structure-function relationships and revealing agonistic, inhibitory, and modulatory sites on the receptor protein. This Review presents an overview of compounds that activate, inhibit, or modulate glycine receptor function in vitro and in vivo.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo 11835, Egypt
| | | |
Collapse
|
7
|
van der Spek SJF, Koopmans F, Paliukhovich I, Ramsden SL, Harvey K, Harvey RJ, Smit AB, Li KW. Glycine Receptor Complex Analysis Using Immunoprecipitation-Blue Native Gel Electrophoresis-Mass Spectrometry. Proteomics 2020; 20:e1900403. [PMID: 31984645 DOI: 10.1002/pmic.201900403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 11/07/2022]
Abstract
The pentameric glycine receptor (GlyR), comprising the α1 and β subunits, is a major inhibitory ionotropic receptor in brainstem and spinal cord. GlyRs interact with gephyrin (GPHN), a scaffold protein that anchors the GlyR in the plasma membrane and enables it to form clusters in glycinergic postsynapses. Using an interaction proteomics approach, evidence of the ArfGEFs IQ motif and Sec7 domain 3 (IQSEC3) and IQ motif and Sec7 domain 2 (IQSEC2) as two novel synaptic proteins interacting with GlyR complexes is provided. When the affinity-isolated GlyR complexes are fractionated by blue native gel electrophoresis and characterized by mass spectrometry, GlyR α1β-GPHN appears as the most abundant complex with a molecular weight of ≈1 MDa, and GlyR α1β-GPHN-IQSEC3 as a minor protein complex of ≈1.2 MDa. A third GlyR α1β-GPHN-IQSEC2 complex exists at the lowest amount with a mass similar to the IQSEC3 containing complex. Using yeast two-hybrid it is demonstrated that IQSEC3 interacts with the GlyR complex by binding to the GPHN G domain at the N-terminal of the IQSEC3 IQ-like domain. The data provide direct evidence of the interaction of IQSEC3 with GlyR-GPHN complexes, underscoring a potential role of these ArfGEFs in the function of glycinergic synapses.
Collapse
Affiliation(s)
- Sophie J F van der Spek
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Frank Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Iryna Paliukhovich
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Sarah L Ramsden
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick square, WC1N 1AX, London, UK
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick square, WC1N 1AX, London, UK
| | - Robert J Harvey
- School of Health and Sport Sciences, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia.,Sunshine Coast Health Institute, Birtinya, Queensland, 4575, Australia
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Lara CO, Burgos CF, Silva-Grecchi T, Muñoz-Montesino C, Aguayo LG, Fuentealba J, Castro PA, Guzmán JL, Corringer PJ, Yévenes GE, Moraga-Cid G. Large Intracellular Domain-Dependent Effects of Positive Allosteric Modulators on Glycine Receptors. ACS Chem Neurosci 2019; 10:2551-2559. [PMID: 30893555 DOI: 10.1021/acschemneuro.9b00050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glycine receptors (GlyRs) are members of the pentameric ligand-gated ionic channel family (pLGICs) and mediate fast inhibitory neurotransmission in the brain stem and spinal cord. The function of GlyRs can be modulated by positive allosteric modulators (PAMs). So far, it is largely accepted that both the extracellular (ECD) and transmembrane (TMD) domains constitute the primary target for many of these PAMs. On the other hand, the contribution of the intracellular domain (ICD) to the PAM effects on GlyRs remains poorly understood. To gain insight about the role of the ICD in the pharmacology of GlyRs, we examined the contribution of each domain using a chimeric receptor. Two chimeras were generated, one consisting of the ECD of the prokaryotic homologue Gloeobacter violaceus ligand-gated ion channel (GLIC) fused to the TMD of the human α1GlyR lacking the ICD (Lily) and a second with the ICD (Lily-ICD). The sensitivity to PAMs of both chimeric receptors was studied using electrophysiological techniques. The Lily receptor showed a significant decrease in the sensitivity to four recognized PAMs. Remarkably, the incorporation of the ICD into the Lily background was sufficient to restore the wild-type α1GlyR sensitivity to these PAMs. Based on these data, we can suggest that the ICD is necessary to form a pLGIC having full sensitivity to positive allosteric modulators.
Collapse
Affiliation(s)
- Cesar O. Lara
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Carlos F. Burgos
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Tiare Silva-Grecchi
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Carola Muñoz-Montesino
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Luis G. Aguayo
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Jorge Fuentealba
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Patricio A. Castro
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Jose L. Guzmán
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | | | - Gonzalo E. Yévenes
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Gustavo Moraga-Cid
- Departamento de Fisiologı́a, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| |
Collapse
|
9
|
Kankowski S, Förstera B, Winkelmann A, Knauff P, Wanker EE, You XA, Semtner M, Hetsch F, Meier JC. A Novel RNA Editing Sensor Tool and a Specific Agonist Determine Neuronal Protein Expression of RNA-Edited Glycine Receptors and Identify a Genomic APOBEC1 Dimorphism as a New Genetic Risk Factor of Epilepsy. Front Mol Neurosci 2018; 10:439. [PMID: 29375302 PMCID: PMC5768626 DOI: 10.3389/fnmol.2017.00439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/18/2017] [Indexed: 01/30/2023] Open
Abstract
C-to-U RNA editing of glycine receptors (GlyR) can play an important role in disease progression of temporal lobe epilepsy (TLE) as it may contribute in a neuron type-specific way to neuropsychiatric symptoms of the disease. It is therefore necessary to develop tools that allow identification of neuron types that express RNA-edited GlyR protein. In this study, we identify NH4 as agonist of C-to-U RNA edited GlyRs. Furthermore, we generated a new molecular C-to-U RNA editing sensor tool that detects Apobec-1- dependent RNA editing in HEPG2 cells and rat primary hippocampal neurons. Using this sensor combined with NH4 application, we were able to identify C-to-U RNA editing-competent neurons and expression of C-to-U RNA-edited GlyR protein in neurons. Bioinformatic analysis of 1,000 Genome Project Phase 3 allele frequencies coding for human Apobec-1 80M and 80I variants showed differences between populations, and the results revealed a preference of the 80I variant to generate RNA-edited GlyR protein. Finally, we established a new PCR-based restriction fragment length polymorphism (RFLP) approach to profile mRNA expression with regard to the genetic APOBEC1 dimorphism of patients with intractable temporal lobe epilepsy (iTLE) and found that the patients fall into two groups. Patients with expression of the Apobec-1 80I variant mostly suffered from simple or complex partial seizures, whereas patients with 80M expression exhibited secondarily generalized seizure activity. Thus, our method allows the characterization of Apobec-1 80M and 80l variants in the brain and provides a new way to epidemiologically and semiologically classify iTLE according to the two different APOBEC1 alleles. Together, these results demonstrate Apobec-1-dependent expression of RNA-edited GlyR protein in neurons and identify the APOBEC1 80I/M-coding alleles as new genetic risk factors for iTLE patients.
Collapse
Affiliation(s)
- Svenja Kankowski
- Division Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Benjamin Förstera
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, Germany
| | - Aline Winkelmann
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Pina Knauff
- Institute of Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Erich E Wanker
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Xintian A You
- Bioinformatics in Medicine, Zuse Institute Berlin, Berlin, Germany
| | - Marcus Semtner
- Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Florian Hetsch
- Division Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jochen C Meier
- Division Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
10
|
Söderpalm B, Lidö HH, Ericson M. The Glycine Receptor-A Functionally Important Primary Brain Target of Ethanol. Alcohol Clin Exp Res 2017; 41:1816-1830. [PMID: 28833225 DOI: 10.1111/acer.13483] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022]
Abstract
Identification of ethanol's (EtOH) primary molecular brain targets and determination of their functional role is an ongoing, important quest. Pentameric ligand-gated ion channels, that is, the nicotinic acetylcholine receptor, the γ-aminobutyric acid type A receptor, the 5-hydroxytryptamine3 , and the glycine receptor (GlyR), are such targets. Here, aspects of the structure and function of these receptors and EtOH's interaction with them are briefly reviewed, with special emphasis on the GlyR and the importance of this receptor and its ligands for EtOH pharmacology. It is suggested that GlyRs are involved in (i) the dopamine-activating effect of EtOH, (ii) regulating EtOH intake, and (iii) the relapse preventing effect of acamprosate. Exploration of the GlyR subtypes involved and efforts to develop subtype specific agonists or antagonists may offer new pharmacotherapies for alcohol use disorders.
Collapse
Affiliation(s)
- Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Helga H Lidö
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Zhang Y, Ho TNT, Harvey RJ, Lynch JW, Keramidas A. Structure-Function Analysis of the GlyR α2 Subunit Autism Mutation p.R323L Reveals a Gain-of-Function. Front Mol Neurosci 2017; 10:158. [PMID: 28588452 PMCID: PMC5440463 DOI: 10.3389/fnmol.2017.00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/08/2017] [Indexed: 11/17/2022] Open
Abstract
Glycine receptors (GlyRs) containing the α2 subunit regulate cortical interneuron migration. Disruption of the GlyR α2 subunit gene (Glra2) in mice leads to disrupted dorsal cortical progenitor homeostasis, leading to a depletion of projection neurons and moderate microcephaly in newborn mice. In humans, rare variants in GLRA2, which is located on the X chromosome, are associated with autism spectrum disorder (ASD) in the hemizygous state in males. These include a microdeletion (GLRA2∆ex8-9) and missense mutations in GLRA2 (p.N109S and p.R126Q) that impair cell-surface expression of GlyR α2, and either abolish or markedly reduce sensitivity to glycine. We report the functional characterization of a third missense variant in GLRA2 (p.R323L), associated with autism, macrocephaly, epilepsy and hypothyroidism in a female proband. Using heterosynapse and macroscopic current recording techniques, we reveal that GlyR α2R323L exhibits reduced glycine sensitivity, but significantly increased inhibitory postsynaptic current (IPSC) rise and decay times. Site-directed mutagenesis revealed that the nature of the amino acid switch at position 323 is critical for impairment of GlyR function. Single-channel recordings revealed that the conductance of α2R323Lβ channels was higher than α2β channels. Longer mean opening durations induced by p.R323L may be due to a change in the gating pathway that enhances the stability of the GlyR open state. The slower synaptic decay times, longer duration active periods and increase in conductance demonstrates that the GlyR α2 p.R323L mutation results in an overall gain of function, and that GlyR α2 mutations can be pathogenic in the heterozygous state in females.
Collapse
Affiliation(s)
- Yan Zhang
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Thi Nhu Thao Ho
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Robert J Harvey
- Department of Pharmacology, UCL School of PharmacyLondon, United Kingdom
| | - Joseph W Lynch
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia.,School of Biomedical Sciences, The University of QueenslandBrisbane, QLD, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
12
|
Langlhofer G, Villmann C. The role of charged residues in independent glycine receptor folding domains for intermolecular interactions and ion channel function. J Neurochem 2017; 142:41-55. [PMID: 28429370 DOI: 10.1111/jnc.14049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/18/2017] [Accepted: 04/12/2017] [Indexed: 01/03/2023]
Abstract
Glycine receptor (GlyR) truncations in the intracellular TM3-4 loop, documented in patients suffering from hyperekplexia and in the mouse mutant oscillator, lead to non-functionality of GlyRs. The missing part that contains the TM3-4 loop, TM4 and C-terminal sequences is essential for pentameric receptor arrangements. In vitro co-expressions of GlyRα1-truncated N-domains and C-domains were able to restore ion channel function. An ionic interaction between both domains was hypothesized as the underlying mechanism. Here, we analysed the proposed ionic interaction between GlyR N- and C-domains using C-terminal constructs with either positively or negatively charged N-termini. Charged residues at the N-terminus of the C-domain did interfere with receptor surface expression and ion channel function. In particular, presence of negatively charged residues at the N-terminus led to significantly decreased ion channel function. Presence of positive charges resulted in reduced maximal currents possibly as a result of repulsion of both domains. If the C-domain was tagged by a myc-epitope, low maximal current amplitudes were detected. Intrinsic charges of the myc-epitope and charged N-terminal ends of the C-domain most probably induce intramolecular interactions. These interactions might hinder the close proximity of C-domains and N-domains, which is a prerequisite for functional ion channel configurations. The remaining basic subdomains close to TM3 and 4 were sufficient for domain complementation and functional ion channel formation. Thus, these basic subdomains forming α-helical elements or an intracellular portal represent attractants for incoming negatively charged chloride ions and interact with the phospholipids thereby stabilizing the GlyR in a conformation that allows ion channel opening.
Collapse
Affiliation(s)
- Georg Langlhofer
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Langlhofer G, Villmann C. The Intracellular Loop of the Glycine Receptor: It's not all about the Size. Front Mol Neurosci 2016; 9:41. [PMID: 27330534 PMCID: PMC4891346 DOI: 10.3389/fnmol.2016.00041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/17/2016] [Indexed: 11/15/2022] Open
Abstract
The family of Cys-loop receptors (CLRs) shares a high degree of homology and sequence identity. The overall structural elements are highly conserved with a large extracellular domain (ECD) harboring an α-helix and 10 β-sheets. Following the ECD, four transmembrane domains (TMD) are connected by intracellular and extracellular loop structures. Except the TM3–4 loop, their length comprises 7–14 residues. The TM3–4 loop forms the largest part of the intracellular domain (ICD) and exhibits the most variable region between all CLRs. The ICD is defined by the TM3–4 loop together with the TM1–2 loop preceding the ion channel pore. During the last decade, crystallization approaches were successful for some members of the CLR family. To allow crystallization, the intracellular loop was in most structures replaced by a short linker present in prokaryotic CLRs. Therefore, no structural information about the large TM3–4 loop of CLRs including the glycine receptors (GlyRs) is available except for some basic stretches close to TM3 and TM4. The intracellular loop has been intensively studied with regard to functional aspects including desensitization, modulation of channel physiology by pharmacological substances, posttranslational modifications, and motifs important for trafficking. Furthermore, the ICD interacts with scaffold proteins enabling inhibitory synapse formation. This review focuses on attempts to define structural and functional elements within the ICD of GlyRs discussed with the background of protein-protein interactions and functional channel formation in the absence of the TM3–4 loop.
Collapse
Affiliation(s)
- Georg Langlhofer
- Institute of Clinical Neurobiology, University of Würzburg Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University of Würzburg Würzburg, Germany
| |
Collapse
|
14
|
Nishtala SN, Mnatsakanyan N, Pandhare A, Leung C, Jansen M. Direct interaction of the resistance to inhibitors of cholinesterase type 3 protein with the serotonin receptor type 3A intracellular domain. J Neurochem 2016; 137:528-38. [PMID: 26875553 PMCID: PMC4860158 DOI: 10.1111/jnc.13578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
Pentameric ligand-gated ion channels (pLGIC) are expressed in both excitable and non-excitable cells that are targeted by numerous clinically used drugs. Assembly from five identical or homologous subunits yields homo- or heteromeric pentamers, respectively. The protein known as Resistance to Inhibitors of Cholinesterase (RIC-3) was identified to interfere with assembly and functional maturation of pLGICs. We have shown previously for serotonin type 3A homopentamers (5-HT3A ) that the interaction with RIC-3 requires the intracellular domain (ICD) of this pLGIC. After expression in Xenopus laevis oocytes RIC-3 attenuated serotonin-induced currents in 5-HT3A wild-type channels, but not in functional 5-HT3A glvM3M4 channels that have the 115-amino acid ICD replaced by a heptapeptide. In complementary experiments we have shown that engineering the Gloeobacter violaceus ligand-gated ion channel (GLIC) to contain the 5-HT3A -ICD confers sensitivity to RIC-3 in oocytes to otherwise insensitive GLIC. In this study, we identify endogenous RIC-3 protein expression in X. laevis oocytes. We purified RIC-3 to homogeneity after expression in Echericia coli. By using heterologously over-expressed and purified RIC-3 and the chimera consisting of the 5-HT3A -ICD and the extracellular and transmembrane domains of GLIC in pull-down experiments, we demonstrate a direct and specific interaction between the two proteins. This result further underlines that the domain within 5-HT3 A R that mediates the interaction with RIC-3 is the ICD. Importantly, this is the first experimental evidence that the interaction between 5-HT3 A R-ICD and RIC-3 does not require other proteins. In addition, we demonstrate that the pentameric assembly of the GLIC-5-HT3A -ICD chimera interacts with RIC-3. We hypothesized that pentameric ligand-gated ion channels (pLGICs) associate directly with the chaperone protein RIC-3 (resistance to inhibitors of cholinesterase type 3), and that the interaction does not require other protein factors. We found that the two proteins indeed interact directly, that the pLGIC intracellular domain is required for the effect, and that pLGICs in their pentameric form associate with RIC-3. These results provide the basis for future studies aimed at investigating which motifs provide the interaction surfaces, and at delineating the mechanism(s) of RIC-3 modulation of functional pLGIC surface expression.
Collapse
Affiliation(s)
- Sita Nirupama Nishtala
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Nelli Mnatsakanyan
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Akash Pandhare
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Chun Leung
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
- Medical Student Summer Research Program, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
- Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| |
Collapse
|
15
|
Abstract
The human genome encodes seven isoforms of importin α which are grouped into three subfamilies known as α1, α2 and α3. All isoforms share a fundamentally conserved architecture that consists of an N-terminal, autoinhibitory, importin-β-binding (IBB) domain and a C-terminal Arm (Armadillo)-core that associates with nuclear localization signal (NLS) cargoes. Despite striking similarity in amino acid sequence and 3D structure, importin-α isoforms display remarkable substrate specificity in vivo. In the present review, we look at key differences among importin-α isoforms and provide a comprehensive inventory of known viral and cellular cargoes that have been shown to associate preferentially with specific isoforms. We illustrate how the diversification of the adaptor importin α into seven isoforms expands the dynamic range and regulatory control of nucleocytoplasmic transport, offering unexpected opportunities for pharmacological intervention. The emerging view of importin α is that of a key signalling molecule, with isoforms that confer preferential nuclear entry and spatiotemporal specificity on viral and cellular cargoes directly linked to human diseases.
Collapse
|
16
|
Burgos CF, Castro PA, Mariqueo T, Bunster M, Guzmán L, Aguayo LG. Evidence for α-helices in the large intracellular domain mediating modulation of the α1-glycine receptor by ethanol and Gβγ. J Pharmacol Exp Ther 2015; 352:148-55. [PMID: 25339760 PMCID: PMC4279101 DOI: 10.1124/jpet.114.217976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 10/21/2014] [Indexed: 12/19/2022] Open
Abstract
The α1-subunit containing glycine receptors (GlyRs) is potentiated by ethanol, in part, by intracellular Gβγ actions. Previous studies have suggested that molecular requirements in the large intracellular domain are involved; however, the lack of structural data about this region has made it difficult to describe a detailed mechanism. Using circular dichroism and molecular modeling, we generated a full model of the α1-GlyR, which includes the large intracellular domain and provides new information on structural requirements for allosteric modulation by ethanol and Gβγ. The data strongly suggest the existence of an α-helical conformation in the regions near transmembrane (TM)-3 and TM4 of the large intracellular domain. The secondary structure in the N-terminal region of the large intracellular domain near TM3 appeared critical for ethanol action, and this was tested using the homologous domain of the γ2-subunit of the GABAA receptor predicted to have little helical conformation. This region of γ2 was able to bind Gβγ and form a functional channel when combined with α1-GlyR, but it was not sensitive to ethanol. Mutations in the N- and C-terminal regions introduced to replace corresponding amino acids of the α1-GlyR sequence restored the ability to be modulated by ethanol and Gβγ. Recovery of the sensitivity to ethanol was associated with the existence of a helical conformation similar to α1-GlyR, thus being an essential secondary structural requirement for GlyR modulation by ethanol and G protein.
Collapse
Affiliation(s)
- Carlos F Burgos
- Laboratory of Neurophysiology, Department of Physiology (C.F.B., .P.A.C., T.M., L.G.A.), Laboratory of Molecular Neurobiology, Department of Physiology (L.G.), Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology (M.B.), and Ph.D. program in Pharmacology (T.M.), University of Concepción, Concepción, Chile
| | - Patricio A Castro
- Laboratory of Neurophysiology, Department of Physiology (C.F.B., .P.A.C., T.M., L.G.A.), Laboratory of Molecular Neurobiology, Department of Physiology (L.G.), Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology (M.B.), and Ph.D. program in Pharmacology (T.M.), University of Concepción, Concepción, Chile
| | - Trinidad Mariqueo
- Laboratory of Neurophysiology, Department of Physiology (C.F.B., .P.A.C., T.M., L.G.A.), Laboratory of Molecular Neurobiology, Department of Physiology (L.G.), Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology (M.B.), and Ph.D. program in Pharmacology (T.M.), University of Concepción, Concepción, Chile
| | - Marta Bunster
- Laboratory of Neurophysiology, Department of Physiology (C.F.B., .P.A.C., T.M., L.G.A.), Laboratory of Molecular Neurobiology, Department of Physiology (L.G.), Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology (M.B.), and Ph.D. program in Pharmacology (T.M.), University of Concepción, Concepción, Chile
| | - Leonardo Guzmán
- Laboratory of Neurophysiology, Department of Physiology (C.F.B., .P.A.C., T.M., L.G.A.), Laboratory of Molecular Neurobiology, Department of Physiology (L.G.), Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology (M.B.), and Ph.D. program in Pharmacology (T.M.), University of Concepción, Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology (C.F.B., .P.A.C., T.M., L.G.A.), Laboratory of Molecular Neurobiology, Department of Physiology (L.G.), Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology (M.B.), and Ph.D. program in Pharmacology (T.M.), University of Concepción, Concepción, Chile
| |
Collapse
|
17
|
Aguayo LG, Castro P, Mariqueo T, Muñoz B, Xiong W, Zhang L, Lovinger DM, Homanics GE. Altered sedative effects of ethanol in mice with α1 glycine receptor subunits that are insensitive to Gβγ modulation. Neuropsychopharmacology 2014; 39:2538-48. [PMID: 24801766 PMCID: PMC4207329 DOI: 10.1038/npp.2014.100] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 12/17/2022]
Abstract
Alcohol abuse and alcoholism are major health problems and one of the leading preventable causes of death. Before achieving better treatments for alcoholism, it is necessary to understand the critical actions of alcohol on membrane proteins that regulate fundamental functions in the central nervous system. After generating a genetically modified knock-in (KI) mouse having a glycine receptor (GlyR) with phenotypical silent mutations at KK385/386AA, we studied its cellular and in vivo ethanol sensitivity. Analyses with western blotting and immunocytochemistry indicated that the expression of α1 GlyRs in nervous tissues and spinal cord neurons (SCNs) were similar between WT and KI mice. The analysis of synaptic currents recorded from KI mice showed that the glycinergic synaptic transmission had normal properties, but the sensitivity to ethanol was significantly reduced. Furthermore, the glycine-evoked current in SCNs from KI was resistant to ethanol and G-protein activation by GTP-γ-S. In behavioral studies, KI mice did not display the foot-clasping behavior upon lifting by the tail and lacked an enhanced startle reflex response that are characteristic of other glycine KI mouse lines with markedly impaired glycine receptor function. The most notable characteristic of the KI mice was their significant lower sensitivity to ethanol (∼40%), expressed by shorter times in loss of righting reflex (LORR) in response to a sedative dose of ethanol (3.5 g/Kg). These data provide the first evidence to link a molecular site in the GlyR with the sedative effects produced by intoxicating doses of ethanol.
Collapse
Affiliation(s)
- Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion, Concepcion, Chile,Department of Physiology, University of Concepcion, PO BOX 160C, Concepcion 4030001, Chile. E-mail:
| | - Patricio Castro
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion, Concepcion, Chile
| | - Trinidad Mariqueo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion, Concepcion, Chile
| | - Braulio Muñoz
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion, Concepcion, Chile
| | - Wei Xiong
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gregg E Homanics
- Departments of Anesthesiology and Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA,Departments of Anesthesiology and Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA. E-mail:
| |
Collapse
|
18
|
Meiselbach H, Vogel N, Langlhofer G, Stangl S, Schleyer B, Bahnassawy L, Sticht H, Breitinger HG, Becker CM, Villmann C. Single expressed glycine receptor domains reconstitute functional ion channels without subunit-specific desensitization behavior. J Biol Chem 2014; 289:29135-47. [PMID: 25143388 DOI: 10.1074/jbc.m114.559138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cys loop receptors are pentameric arrangements of independent subunits that assemble into functional ion channels. Each subunit shows a domain architecture. Functional ion channels can be reconstituted even from independent, nonfunctional subunit domains, as shown previously for GlyRα1 receptors. Here, we demonstrate that this reconstitution is not restricted to α1 but can be transferred to other members of the Cys loop receptor family. A nonfunctional GlyR subunit, truncated at the intracellular TM3-4 loop by a premature stop codon, can be complemented by co-expression of the missing tail portion of the receptor. Compared with α1 subunits, rescue by domain complementation was less efficient when GlyRα3 or the GABAA/C subunit ρ1 was used. If truncation disrupted an alternative splicing cassette within the intracellular TM3-4 loop of α3 subunits, which also regulates receptor desensitization, functional rescue was not possible. When α3 receptors were restored by complementation using domains with and without the spliced insert, no difference in desensitization was found. In contrast, desensitization properties could even be transferred between α1/α3 receptor chimeras harboring or lacking the α3 splice cassette proving that functional rescue depends on the integrity of the alternative splicing cassette in α3. Thus, an intact α3 splicing cassette in the TM3-4 loop environment is indispensable for functional rescue, and the quality of receptor restoration can be assessed from desensitization properties.
Collapse
Affiliation(s)
| | - Nico Vogel
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | - Georg Langlhofer
- the Institute for Clinical Neurobiology, University of Würzburg, Versbacherstrasse 5, 97078 Würzburg, Germany, and
| | - Sabine Stangl
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | - Barbara Schleyer
- the Institute for Clinical Neurobiology, University of Würzburg, Versbacherstrasse 5, 97078 Würzburg, Germany, and
| | - Lamia'a Bahnassawy
- the Biochemistry Department, German University Cairo, New Cairo City, Cairo 11835, Egypt
| | | | - Hans-Georg Breitinger
- the Biochemistry Department, German University Cairo, New Cairo City, Cairo 11835, Egypt
| | - Cord-Michael Becker
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | - Carmen Villmann
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany, the Institute for Clinical Neurobiology, University of Würzburg, Versbacherstrasse 5, 97078 Würzburg, Germany, and
| |
Collapse
|
19
|
Schaefer N, Langlhofer G, Kluck CJ, Villmann C. Glycine receptor mouse mutants: model systems for human hyperekplexia. Br J Pharmacol 2014; 170:933-52. [PMID: 23941355 DOI: 10.1111/bph.12335] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/19/2013] [Accepted: 08/02/2013] [Indexed: 11/30/2022] Open
Abstract
Human hyperekplexia is a neuromotor disorder caused by disturbances in inhibitory glycine-mediated neurotransmission. Mutations in genes encoding for glycine receptor subunits or associated proteins, such as GLRA1, GLRB, GPHN and ARHGEF9, have been detected in patients suffering from hyperekplexia. Classical symptoms are exaggerated startle attacks upon unexpected acoustic or tactile stimuli, massive tremor, loss of postural control during startle and apnoea. Usually patients are treated with clonazepam, this helps to dampen the severe symptoms most probably by up-regulating GABAergic responses. However, the mechanism is not completely understood. Similar neuromotor phenotypes have been observed in mouse models that carry glycine receptor mutations. These mouse models serve as excellent tools for analysing the underlying pathomechanisms. Yet, studies in mutant mice looking for postsynaptic compensation of glycinergic dysfunction via an up-regulation in GABAA receptor numbers have failed, as expression levels were similar to those in wild-type mice. However, presynaptic adaptation mechanisms with an unusual switch from mixed GABA/glycinergic to GABAergic presynaptic terminals have been observed. Whether this presynaptic adaptation explains the improvement in symptoms or other compensation mechanisms exist is still under investigation. With the help of spontaneous glycine receptor mouse mutants, knock-in and knock-out studies, it is possible to associate behavioural changes with pharmacological differences in glycinergic inhibition. This review focuses on the structural and functional characteristics of the various mouse models used to elucidate the underlying signal transduction pathways and adaptation processes and describes a novel route that uses gene-therapeutic modulation of mutated receptors to overcome loss of function mutations.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
20
|
Bracamontes JR, Li P, Akk G, Steinbach JH. Mutations in the main cytoplasmic loop of the GABA(A) receptor α4 and δ subunits have opposite effects on surface expression. Mol Pharmacol 2014; 86:20-7. [PMID: 24723490 PMCID: PMC4054001 DOI: 10.1124/mol.114.092791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/10/2014] [Indexed: 11/22/2022] Open
Abstract
We examined the role of putative trafficking sequences in two GABA(A) receptor subunits: α4 and δ. These subunits assemble with a β subunit to form a subtype of GABA(A) receptor involved in generating the "tonic" outward current. Both α4 and δ subunits contain dibasic retention motifs in homologous positions. When basic residues are mutated to alanine in the α4 subunit, surface expression of epitope-tagged δ subunits is increased. When basic residues in homologous regions of the δ subunit are mutated, however, surface expression is reduced. We focused on the mutants that had the maximal effects to increase (in α4) or reduce (in δ) surface expression. The total expression of δ subunits is significantly decreased by the δ mutation, suggesting an effect on subunit maturation. We also examined surface expression of the β2 subunit. Expression of the mutated α4 subunit resulted in increased surface expression of β2 compared with wild-type α4, indicating enhanced forward trafficking. In contrast, mutated δ resulted in decreased surface expression of β2 compared with wild-type δ and to α4 and β2 in the absence of any δ. This observation suggests that the mutated δ incorporates into multimeric receptors and reduces the overall forward trafficking of receptors. These observations indicate that the roles of trafficking motifs are complex, even when located in homologous positions in related subunits. The physiologic properties of receptors containing mutated subunits were not significantly affected, indicating that the mutations in the α4 subunit will be useful to enhance surface expression.
Collapse
Affiliation(s)
- John R Bracamontes
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Ping Li
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Gustav Akk
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Joe Henry Steinbach
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
21
|
Winkelmann A, Maggio N, Eller J, Caliskan G, Semtner M, Häussler U, Jüttner R, Dugladze T, Smolinsky B, Kowalczyk S, Chronowska E, Schwarz G, Rathjen FG, Rechavi G, Haas CA, Kulik A, Gloveli T, Heinemann U, Meier JC. Changes in neural network homeostasis trigger neuropsychiatric symptoms. J Clin Invest 2014; 124:696-711. [PMID: 24430185 PMCID: PMC3904623 DOI: 10.1172/jci71472] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/31/2013] [Indexed: 12/13/2022] Open
Abstract
The mechanisms that regulate the strength of synaptic transmission and intrinsic neuronal excitability are well characterized; however, the mechanisms that promote disease-causing neural network dysfunction are poorly defined. We generated mice with targeted neuron type-specific expression of a gain-of-function variant of the neurotransmitter receptor for glycine (GlyR) that is found in hippocampectomies from patients with temporal lobe epilepsy. In this mouse model, targeted expression of gain-of-function GlyR in terminals of glutamatergic cells or in parvalbumin-positive interneurons persistently altered neural network excitability. The increased network excitability associated with gain-of-function GlyR expression in glutamatergic neurons resulted in recurrent epileptiform discharge, which provoked cognitive dysfunction and memory deficits without affecting bidirectional synaptic plasticity. In contrast, decreased network excitability due to gain-of-function GlyR expression in parvalbumin-positive interneurons resulted in an anxiety phenotype, but did not affect cognitive performance or discriminative associative memory. Our animal model unveils neuron type-specific effects on cognition, formation of discriminative associative memory, and emotional behavior in vivo. Furthermore, our data identify a presynaptic disease-causing molecular mechanism that impairs homeostatic regulation of neural network excitability and triggers neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Aline Winkelmann
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Nicola Maggio
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Joanna Eller
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Gürsel Caliskan
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Marcus Semtner
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Ute Häussler
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - René Jüttner
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Tamar Dugladze
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Birthe Smolinsky
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Sarah Kowalczyk
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Ewa Chronowska
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Günter Schwarz
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Fritz G. Rathjen
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Gideon Rechavi
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Carola A. Haas
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Akos Kulik
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Tengis Gloveli
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Uwe Heinemann
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Jochen C. Meier
- FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany.
RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel.
Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany.
Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany.
Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany.
Department of Physiology II, University of Freiburg, Freiburg, Germany.
Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
BrainLinks-BrainTools, Cluster of Excellence and
BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
22
|
Förstera B, a Dzaye OD, Winkelmann A, Semtner M, Benedetti B, Markovic DS, Synowitz M, Wend P, Fähling M, Junier MP, Glass R, Kettenmann H, Meier JC. Intracellular glycine receptor function facilitates glioma formation in vivo. J Cell Sci 2014; 127:3687-98. [DOI: 10.1242/jcs.146662] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The neuronal function of Cys-loop neurotransmitter receptors is established; however, their role in non-neuronal cells is poorly defined. As brain tumors accumulate the neurotransmitter glycine, we studied expression and function of glycine receptors (GlyR) in glioma cells. Human brain tumor biopsies selectively expressed GlyR subunits with nuclear import signal (NLS, α1 and α3). The mouse glioma cell line GL261 expressed GlyR α1, and knock-down of α1 protein expression impaired self-renewal capacity and tumorigenicity of GL261 glioma cells as evidenced by the neurosphere assay and GL261 cell inoculation in vivo, respectively. We furthermore show that the pronounced tumorigenic effect of GlyR α1 relies on a new intracellular signaling function that depends on the NLS region in the large cytosolic loop and impacts on GL261 glioma cell gene regulation. Stable expression of GlyR α1 and α3 loops rescued self-renewal capacity of GlyR α1 knock-down cells, which demonstrates their functional equivalence. The new intracellular signaling function identified here goes beyond the well-established role of GlyRs as neuronal ligand-gated ion channels and defines NLS-containing GlyRs as novel potential targets for brain tumor therapies.
Collapse
|
23
|
Fischer C, Kugler A, Hoth S, Dietrich P. An IQ domain mediates the interaction with calmodulin in a plant cyclic nucleotide-gated channel. PLANT & CELL PHYSIOLOGY 2013; 54:573-84. [PMID: 23385145 PMCID: PMC3612182 DOI: 10.1093/pcp/pct021] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/28/2013] [Indexed: 05/04/2023]
Abstract
Cyclic nucleotide-gated channels (CNGCs) form non-selective cation entry pathways regulated by calmodulin (CaM), a universal Ca(2+) sensor in eukaryotes. Although CaM binding has been shown to be important for Ca(2+)-dependent feedback regulation of CNGC activity, the CaM-binding properties of these channels have been investigated in a few cases only. We show that CNGC20 from Arabidopsis thaliana binds CaM in a Ca(2+)-dependent manner and interacts with all AtCaM isoforms but not with the CaM-like proteins CML8 and CML9. CaM interaction with the full-length channel was demonstrated in planta, using bimolecular fluorescence complementation. This interaction occurred at the plasma membrane, in accordance with our localization data of green fluorescent protein (GFP)-fused CNGC20 proteins. The CaM-binding site was mapped to an isoleucine glutamine (IQ) motif, which has not been characterized in plant CNGCs so far. Our results show that compared with the overlapping binding sites for cyclic nucleotides and CaM in CNGCs studied so far, they are sequentially organized in CNGC20. The presence of two alternative CaM-binding modes indicates that ligand regulation of plant CNGCs is more complex than previously expected. Since the IQ domain is conserved among plant CNGCs, this domain adds to the variability of Ca(2+)-dependent channel control mechanisms underlining the functional diversity within this multigene family.
Collapse
Affiliation(s)
- Cornelia Fischer
- Molekulare Pflanzenphysiologie and Erlangen Center of Plant Science, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Annette Kugler
- Molekulare Pflanzenphysiologie and Erlangen Center of Plant Science, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
- Present address: Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Stefan Hoth
- Molekulare Pflanzenphysiologie and Erlangen Center of Plant Science, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
- Present address: Molekulare Pflanzenphysiologie, Universität Hamburg, Biozentrum Klein Flottbek, Ohnhorststraße 18, D-22609 Hamburg, Germany
| | - Petra Dietrich
- Molekulare Pflanzenphysiologie and Erlangen Center of Plant Science, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
| |
Collapse
|
24
|
Abstract
Strychnine-sensitive glycine receptors (GlyRs) mediate synaptic inhibition in the spinal cord, brainstem, and other regions of the mammalian central nervous system. In this minireview, we summarize our current view of the structure, ligand-binding sites, and chloride channel of these receptors and discuss recently emerging functions of distinct GlyR isoforms. GlyRs not only regulate the excitability of motor and afferent sensory neurons, including pain fibers, but also are involved in the processing of visual and auditory signals. Hence, GlyRs constitute promising targets for the development of therapeutically useful compounds.
Collapse
Affiliation(s)
- Sébastien Dutertre
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cord-Michael Becker
- the Institute of Biochemistry, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Heinrich Betz
- the Max-Planck-Institute for Medical Research, 69120 Heidelberg, Germany, and
- the Department of Molecular Neurobiology, Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany
| |
Collapse
|
25
|
San Martin L, Cerda F, Jimenez V, Fuentealba J, Muñoz B, Aguayo LG, Guzman L. Inhibition of the ethanol-induced potentiation of α1 glycine receptor by a small peptide that interferes with Gβγ binding. J Biol Chem 2012; 287:40713-21. [PMID: 23035114 DOI: 10.1074/jbc.m112.393603] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Gβγ interaction with GlyR is an important determinant in ethanol potentiation of this channel. RESULTS A small peptide, RQH(C7), can inhibit ethanol potentiation of GlyR currents. CONCLUSION Results with RQH(C7) indicate that ethanol mediated potentiation of GlyR is in part by Gβγ activation. SIGNIFICANCE Molecular interaction between Gβγ and GlyR could be used as a target for pharmacological modification of ethanol effects. Previous studies indicate that ethanol can modulate glycine receptors (GlyR), in part, through Gβγ interaction with basic residues in the intracellular loop. In this study, we show that a seven-amino acid peptide (RQH(C7)), which has the primary structure of a motif in the large intracellular loop of GlyR (GlyR-IL), was able to inhibit the ethanol-elicited potentiation of this channel from 47 ± 2 to 16 ± 4%, without interfering with the effect of Gβγ on GIRK (G protein activated inwardly rectifying potassium channel) activation. RQH(C7) displayed a concentration-dependent effect on ethanol action in evoked and synaptic currents. A fragment of GlyR-IL without the basic amino acids did not interact with Gβγ or inhibit ethanol potentiation of GlyR. In silico analysis using docking and molecular dynamics allowed to identify a region of ~350Å(2) involving aspartic acids 186, 228, and 246 in Gβγ where we propose that RQH(C7) binds and exerts its blocking action on the effect of ethanol in GlyR.
Collapse
Affiliation(s)
- Loreto San Martin
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, 403901 Concepcion, Chile
| | | | | | | | | | | | | |
Collapse
|
26
|
Unterer B, Becker CM, Villmann C. The importance of TM3-4 loop subdomains for functional reconstitution of glycine receptors by independent domains. J Biol Chem 2012; 287:39205-15. [PMID: 22995908 DOI: 10.1074/jbc.m112.376053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Truncated glycine receptors that have been found in human patients suffering from the neuromotor disorder hyperekplexia or in spontaneous mouse models resulted in non-functional ion channels. Rescue of function experiments with the lacking protein portion expressed as a separate independent domain demonstrated restoration of glycine receptor functionality in vitro. This construct harbored most of the TM3-4 loop, TM4, and the C terminus and was required for concomitant transport of the truncated α1 and the complementation domain from the endoplasmic reticulum toward the cell surface, thereby enabling complex formation of functional glycine receptors. Here, the complementation domain was stepwise truncated from its N terminus in the TM3-4 loop. Truncation of more than 49 amino acids led again to loss of functionality in the receptor complex expressed from two independent domain constructs. We identified residues 357-418 in the intracellular TM3-4 loop as being required for reconstitution of functional glycine-gated channels. All complementation constructs showed cell surface protein expression and correct orientation according to glycine receptor topology. Moreover, we demonstrated that the truncations did not result in a decreased protein-protein interaction between both glycine receptor domains. Rather, deletions of more than 49 amino acids abolished conformational changes necessary for ion channel opening. When the TM3-4 loop subdomain harboring residues 357-418 was expressed as a third independent construct together with the truncated N-terminal and C-terminal glycine receptor domains, functionality of the glycine receptor was again restored. Thus, residues 357-418 represent an important determinant in the process of conformational rearrangements following ligand binding resulting in channel opening.
Collapse
Affiliation(s)
- Bea Unterer
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander University Erlangen-Nuernberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | | | | |
Collapse
|
27
|
Bar-Lev DD, Degani-Katzav N, Perelman A, Paas Y. Molecular dissection of Cl--selective Cys-loop receptor points to components that are dispensable or essential for channel activity. J Biol Chem 2011; 286:43830-43841. [PMID: 21987577 DOI: 10.1074/jbc.m111.282715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cys-loop receptors are pentameric ligand-gated ion channels (pLGICs) that bind neurotransmitters to open an intrinsic transmembrane ion channel pore. The recent crystal structure of a prokaryotic pLGIC from the cyanobacterium Gloeobacter violaceus (GLIC) revealed that it naturally lacks an N-terminal extracellular α helix and an intracellular domain that are typical of eukaryotic pLGICs. GLIC does not respond to neurotransmitters acting at eukaryotic pLGICs but is activated by protons. To determine whether the structural differences account for functional differences, we used a eukaryotic chimeric acetylcholine-glutamate pLGIC that was modified to carry deletions corresponding to the sequences missing in the prokaryotic homolog GLIC. Deletions made in the N-terminal extracellular α helix did not prevent the expression of receptor subunits and the appearance of receptor assemblies on the cell surface but abolished the capability of the receptor to bind α-bungarotoxin (a competitive antagonist) and to respond to the neurotransmitter. Other truncated chimeric receptors that lacked the intracellular domain did bind ligands; displayed robust acetylcholine-elicited responses; and shared with the full-length chimeric receptor similar anionic selectivity, effective open pore diameter, and unitary conductance. We suggest that the integrity of the N-terminal α helix is crucial for ligand accommodation because it stabilizes the intersubunit interfaces adjacent to the neurotransmitter-binding pocket(s). We also conclude that the intracellular domain of the chimeric acetylcholine-glutamate receptor does not modulate the ion channel conductance and is not involved in positioning of the pore-lining helices in the conformation necessary for coordinating a Cl- ion within the intracellular vestibule of the ion channel pore.
Collapse
Affiliation(s)
- Dekel D Bar-Lev
- Laboratory of Ion Channels, Bar-Ilan University, Ramat Gan 52900, Israel; Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Nurit Degani-Katzav
- Laboratory of Ion Channels, Bar-Ilan University, Ramat Gan 52900, Israel; Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Alexander Perelman
- Scientific Equipment Unit, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Yoav Paas
- Laboratory of Ion Channels, Bar-Ilan University, Ramat Gan 52900, Israel; Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
28
|
Abstract
Cys-loop receptors are membrane-spanning neurotransmitter-gated ion channels that are responsible for fast excitatory and inhibitory transmission in the peripheral and central nervous systems. The best studied members of the Cys-loop family are nACh, 5-HT3, GABAA and glycine receptors. All these receptors share a common structure of five subunits, pseudo-symmetrically arranged to form a rosette with a central ion-conducting pore. Some are cation selective (e.g. nACh and 5-HT3) and some are anion selective (e.g. GABAA and glycine). Each receptor has an extracellular domain (ECD) that contains the ligand-binding sites, a transmembrane domain (TMD) that allows ions to pass across the membrane, and an intracellular domain (ICD) that plays a role in channel conductance and receptor modulation. Cys-loop receptors are the targets for many currently used clinically relevant drugs (e.g. benzodiazepines and anaesthetics). Understanding the molecular mechanisms of these receptors could therefore provide the catalyst for further development in this field, as well as promoting the development of experimental techniques for other areas of neuroscience.In this review, we present our current understanding of Cys-loop receptor structure and function. The ECD has been extensively studied. Research in this area has been stimulated in recent years by the publication of high-resolution structures of nACh receptors and related proteins, which have permitted the creation of many Cys loop receptor homology models of this region. Here, using the 5-HT3 receptor as a typical member of the family, we describe how homology modelling and ligand docking can provide useful but not definitive information about ligand interactions. We briefly consider some of the many Cys-loop receptors modulators. We discuss the current understanding of the structure of the TMD, and how this links to the ECD to allow channel gating, and consider the roles of the ICD, whose structure is poorly understood. We also describe some of the current methods that are beginning to reveal the differences between different receptor states, and may ultimately show structural details of transitions between them.
Collapse
|
29
|
Saiepour L, Fuchs C, Patrizi A, Sassoè-Pognetto M, Harvey RJ, Harvey K. Complex role of collybistin and gephyrin in GABAA receptor clustering. J Biol Chem 2010; 285:29623-31. [PMID: 20622020 DOI: 10.1074/jbc.m110.121368] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gephyrin and collybistin are key components of GABA(A) receptor (GABA(A)R) clustering. Nonetheless, resolving the molecular interactions between the plethora of GABA(A)R subunits and these clustering proteins is a significant challenge. We report a direct interaction of GABA(A)R α2 and α3 subunit intracellular M3-M4 domain (but not α1, α4, α5, α6, β1-3, or γ1-3) with gephyrin. Curiously, GABA(A)R α2, but not α3, binds to both gephyrin and collybistin using overlapping sites. The reciprocal binding sites on gephyrin for collybistin and GABA(A)R α2 also overlap at the start of the gephyrin E domain. This suggests that although GABA(A)R α3 interacts with gephyrin, GABA(A)R α2, collybistin, and gephyrin form a trimeric complex. In support of this proposal, tri-hybrid interactions between GABA(A)R α2 and collybistin or GABA(A)R α2 and gephyrin are strengthened in the presence of gephyrin or collybistin, respectively. Collybistin and gephyrin also compete for binding to GABA(A)R α2 in co-immunoprecipitation experiments and co-localize in transfected cells in both intracellular and submembrane aggregates. Interestingly, GABA(A)R α2 is capable of "activating " collybistin isoforms harboring the regulatory SH3 domain, enabling targeting of gephyrin to the submembrane aggregates. The GABA(A)R α2-collybistin interaction was disrupted by a pathogenic mutation in the collybistin SH3 domain (p.G55A) that causes X-linked intellectual disability and seizures by disrupting GABA(A)R and gephyrin clustering. Because immunohistochemistry in retina revealed a preferential co-localization of collybistin with α2 subunit containing GABA(A)Rs, but not GlyRs or other GABA(A)R subtypes, we propose that the collybistin-gephyrin complex has an intimate role in the clustering of GABA(A)Rs containing the α2 subunit.
Collapse
Affiliation(s)
- Leila Saiepour
- Department of Pharmacology, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | | | | | | | | | | |
Collapse
|