1
|
Čadež T, Maček Hrvat N, Šinko G, Kalisiak J, Radić Z, Fokin VV, Sharpless KB, Taylor P, Kovarik Z. Click-chemistry-derived oxime library reveals efficient reactivators of nerve agent-inhibited butyrylcholinesterase suitable for pseudo-catalytic bioscavenging. Arch Toxicol 2025; 99:2107-2131. [PMID: 40032685 DOI: 10.1007/s00204-025-03985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
A library of 100 click-chemistry-derived oximes was evaluated as reactivators of butyrylcholinesterase (BChE) inhibited by the nerve agents (NAs) sarin, cyclosarin, VX, and tabun. While reactivation efficiency was highly dependent on the structure of both the NA and the oxime, for each NA-BChE conjugate, we identified reactivators more effective than currently approved oximes for NA poisoning. Detailed kinetic analysis indicated that this enhancement results from both improved molecular recognition-specifically, enhanced binding affinity of the phosphylated conjugates for the oximes-and increased maximal reactivation rates. Molecular modeling of oximes in a near-attack conformation within inhibited BChE revealed critical interactions for productive reactivation. Among all tested oximes, 5B [1-hexyl-2-((hydroxyimino)methyl)pyridinium chloride] emerged as a particularly efficient reactivator for BChE phosphorylated with cyclosarin, with the highest observed overall reactivation rate of 34,120 M-1 min-1, which is 525-fold and 44-fold higher than the reference oximes 2-PAM and HI-6, respectively. In general, three mono-pyridinium mono-oximes demonstrated more efficient recovery of BChE activity than bis-pyridinium triazole-annulated click-chemistry bis-oximes, which were previously identified as potent reactivators for inhibited acetylcholinesterase (AChE). Ex vivo assessment of reactivation potency demonstrated that the combined addition of BChE with one efficient reactivator for BChE and another for AChE achieved > 90% reactivation of cyclosarin-inhibited cholinesterases in whole blood (WB), demonstrating near-complete degradation of a 100-fold excess of cyclosarin within 6 min. These results confirm that oxime-assisted catalysis is feasible for NA bioscavenging in blood and underscore BChE's potential as a target for developing therapies against NA poisoning.
Collapse
Affiliation(s)
- Tena Čadež
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nikolina Maček Hrvat
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Goran Šinko
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Jarosław Kalisiak
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Valery V Fokin
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
- The Bridge@USC and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, USA
| | - Karl Barry Sharpless
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Palmer Taylor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Zrinka Kovarik
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
- Faculty of Science, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
2
|
Miller KA, He Y, Allen SK, McElroy CA, Callam CS, Hadad CM. Unprecedented Alkylation of the Catalytic Histidine in the Aging of Cholinesterases after Inhibition by Organophosphorus Pesticides. Chem Res Toxicol 2025; 38:503-518. [PMID: 40043018 DOI: 10.1021/acs.chemrestox.5c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Organophosphorus (OP) compounds pose a serious risk to human health by covalently modifying acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Currently approved oxime therapeutics can reactivate OP-inhibited AChE and BChE, despite significant limitations. The OP-inhibited enzymes undergo a secondary O-dealkylation event, known as aging, for which no currently approved therapeutics are effective as treatments. Many decades of research have studied the aging mechanism in AChE and BChE. It has previously been accepted that aging occurs via a spontaneous O-dealkylation event, by loss of a carbocation or by water hydrolysis of the OP-adducted serine residue. Here, we present a novel mechanism of aging in which the catalytic histidine acts as a nucleophile to induce aging and, as a result, becomes alkylated after exposure to methyl paraoxon (MP) and other pesticides. Using bottom-up proteomics, we identify that upon aging of MP-inhibited AChE and BChE, a methyl transfer occurs from the phosphylated serine residue to the catalytic histidine residue. The extent of histidine methylation is pH-dependent as less methylation is observed at lower pH, while increased methylation is observed at higher pH. At near physiological pH (7.5), the ratio of N-MeHis/His is 3:1 for AChE and 1.3:1 for BChE after 24 h. When other OP compounds were also tested for histidine modification, ethyl paraoxon was shown to result in ethylation of the catalytic histidine; however, when the alkoxy group was branched in the case of an isopropoxy group present in diisopropyl fluorophosphate, no alkylation of histidine was observed. Recent advances in the development of quinone methide precursors show promise in the recovery of OP-aged AChE. In this work, we discuss the importance of this novel aging mechanism and its impact on the recoverability of OP-aged AChE or BChE as it appears that the histidine modification limits the overall recovery of active AChE.
Collapse
Affiliation(s)
- Kevin A Miller
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Yiran He
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Stacey K Allen
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Craig A McElroy
- InfinixBio, 1507 Chambers Road, Columbus, Ohio 43212, United States
| | - Christopher S Callam
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Pashirova T, Salah-Tazdaït R, Tazdaït D, Masson P. Applications of Microbial Organophosphate-Degrading Enzymes to Detoxification of Organophosphorous Compounds for Medical Countermeasures against Poisoning and Environmental Remediation. Int J Mol Sci 2024; 25:7822. [PMID: 39063063 PMCID: PMC11277490 DOI: 10.3390/ijms25147822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Mining of organophosphorous (OPs)-degrading bacterial enzymes in collections of known bacterial strains and in natural biotopes are important research fields that lead to the isolation of novel OP-degrading enzymes. Then, implementation of strategies and methods of protein engineering and nanobiotechnology allow large-scale production of enzymes, displaying improved catalytic properties for medical uses and protection of the environment. For medical applications, the enzyme formulations must be stable in the bloodstream and upon storage and not susceptible to induce iatrogenic effects. This, in particular, includes the nanoencapsulation of bioscavengers of bacterial origin. In the application field of bioremediation, these enzymes play a crucial role in environmental cleanup by initiating the degradation of OPs, such as pesticides, in contaminated environments. In microbial cell configuration, these enzymes can break down chemical bonds of OPs and usually convert them into less toxic metabolites through a biotransformation process or contribute to their complete mineralization. In their purified state, they exhibit higher pollutant degradation efficiencies and the ability to operate under different environmental conditions. Thus, this review provides a clear overview of the current knowledge about applications of OP-reacting enzymes. It presents research works focusing on the use of these enzymes in various bioremediation strategies to mitigate environmental pollution and in medicine as alternative therapeutic means against OP poisoning.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Rym Salah-Tazdaït
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, 10 Rue des Frères Oudek, El Harrach, Algiers 16200, Algeria; (R.S.-T.); (D.T.)
| | - Djaber Tazdaït
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, 10 Rue des Frères Oudek, El Harrach, Algiers 16200, Algeria; (R.S.-T.); (D.T.)
- Department of Nature and Life Sciences, University of Algiers, Benyoucef Benkhedda, 2 Rue Didouche Mourad, Algiers 16000, Algeria
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia;
| |
Collapse
|
4
|
Lovins AR, Miller KA, Buck AK, Ensey DS, Homoelle RK, Murtha MC, Ward NA, Shanahan LA, Gutti G, Shriwas P, McElroy CA, Callam CS, Hadad CM. 4-Amidophenol Quinone Methide Precursors: Effective and Broad-Scope Nonoxime Reactivators of Organophosphorus-Inhibited Cholinesterases and Resurrectors of Organophosphorus-Aged Acetylcholinesterase. ACS Chem Neurosci 2024; 15:1813-1827. [PMID: 38621296 DOI: 10.1021/acschemneuro.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Acetylcholinesterase (AChE) inhibition by organophosphorus (OP) compounds poses a serious health risk to humans. While many therapeutics have been tested for treatment after OP exposure, there is still a need for efficient reactivation against all kinds of OP compounds, and current oxime therapeutics have poor blood-brain barrier penetration into the central nervous system, while offering no recovery in activity from the OP-aged forms of AChE. Herein, we report a novel library of 4-amidophenol quinone methide precursors (QMP) that provide effective reactivation against multiple OP-inhibited forms of AChE in addition to resurrecting the aged form of AChE after exposure to a pesticide or some phosphoramidates. Furthermore, these QMP compounds also reactivate OP-inhibited butyrylcholinesterase (BChE) which is an in vivo, endogenous scavenger of OP compounds. The in vitro efficacies of these QMP compounds were tested for reactivation and resurrection of soluble forms of human AChE and BChE and for reactivation of cholinesterases within human blood as well as blood and brain samples from a humanized mouse model. We identify compound 10c as a lead candidate due to its broad-scope efficacy against multiple OP compounds as well as both cholinesterases. With methylphosphonates, compound 10c (250 μM, 1 h) shows >60% recovered activity from OEt-inhibited AChE in human blood as well as mouse blood and brain, thus highlighting its potential for future in vivo analysis. For 10c, the effective concentration (EC50) is less than 25 μM for reactivation of three different methylphosphonate-inhibited forms of AChE, with a maximum reactivation yield above 80%. Similarly, for OP-inhibited BChE, 10c has EC50 values that are less than 150 μM for two different methylphosphonate compounds. Furthermore, an in vitro kinetic analysis show that 10c has a 2.2- and 92.1-fold superior reactivation efficiency against OEt-inhibited and OiBu-inhibited AChE, respectively, when compared to an oxime control. In addition to 10c being a potent reactivator of AChE and BChE, we also show that 10c is capable of resurrecting (ethyl paraoxon)-aged AChE, which is another current limitation of oximes.
Collapse
Affiliation(s)
- Alex R Lovins
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Kevin A Miller
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Anne K Buck
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - D Sophia Ensey
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Rose K Homoelle
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Megan C Murtha
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Nathan A Ward
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Liam A Shanahan
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Gopichand Gutti
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, United States
| | - Pratik Shriwas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, United States
| | - Craig A McElroy
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher S Callam
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Gerlits O, Fajer M, Cheng X, Blumenthal DK, Radić Z, Kovalevsky A. Structural and dynamic effects of paraoxon binding to human acetylcholinesterase by X-ray crystallography and inelastic neutron scattering. Structure 2022; 30:1538-1549.e3. [PMID: 36265484 PMCID: PMC9637784 DOI: 10.1016/j.str.2022.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022]
Abstract
Organophosphorus (OP) compounds, including nerve agents and some pesticides, covalently bind to the catalytic serine of human acetylcholinesterase (hAChE), thereby inhibiting acetylcholine hydrolysis necessary for efficient neurotransmission. Oxime antidotes can reactivate the OP-conjugated hAChE, but reactivation efficiency can be low for pesticides, such as paraoxon (POX). Understanding structural and dynamic determinants of OP inhibition and reactivation can provide insights to design improved reactivators. Here, X-ray structures of hAChE with unaged POX, with POX and oximes MMB4 and RS170B, and with MMB4 are reported. A significant conformational distortion of the acyl loop was observed upon POX binding, being partially restored to the native conformation by oximes. Neutron vibrational spectroscopy combined with molecular dynamics simulations showed that picosecond vibrational dynamics of the acyl loop soften in the ∼20-50 cm-1 frequency range. The acyl loop structural perturbations may be correlated with its picosecond vibrational dynamics to yield more comprehensive template for structure-based reactivator design.
Collapse
Affiliation(s)
- Oksana Gerlits
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, TN 37303, USA
| | - Mikolai Fajer
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Donald K Blumenthal
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093-0657, USA.
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
6
|
Thiermann H, Worek F. Oximes should be used routinely in organophosphate poisoning. Br J Clin Pharmacol 2022; 88:5064-5069. [PMID: 35023196 DOI: 10.1111/bcp.15215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
In poisoning with organophosphorus compounds, patients can only profit from the regeneration of acetylcholinesterase, when the poison load has dropped below a toxic level. Every measure that allows an increase of synaptic AChE activity at the earliest is essential for timely termination of the cholinergic crisis. Only a drug induced reactivation allows to achieve fast restoration of the inhibited AChE. Obidoxime and pralidoxime have proved to be able to reactivate inhibited cholinesterase thereby saving life of poisoned animals. A plasma level of obidoxime or pralidoxime allowing reactivation in humans poisoned by OP can be adjusted. There is no doubt that obidoxime and pralidoxime are able to reactivate OP inhibited AChE activity in poisoned patients thereby increasing AChE activity and contributing substantially to terminate cholinergic crisis. Hence, a benefit may be expected when substantial reactivation is achieved. A test system allowing determination of red blood cell AChE activity, reactivatability, inhibitory equivalents and BChE activity is available for relatively low cost. If any reactivation is possible while inhibiting equivalents are present, oxime therapy should be maintained. In particular, when balancing the benefit risk assessment, obidoxime or palidoxime should be given as soon as possible and as long as a substantial reactivation may be expected.
Collapse
Affiliation(s)
- Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
7
|
Assessment of four organophosphorus pesticides as inhibitors of human acetylcholinesterase and butyrylcholinesterase. Sci Rep 2021; 11:21486. [PMID: 34728713 PMCID: PMC8563940 DOI: 10.1038/s41598-021-00953-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 11/08/2022] Open
Abstract
Toxicity of organophosphorus compounds (OPs) remains a major public health concern due to their widespread use as pesticides and the existence of nerve agents. Their common mechanism of action involves inhibition of enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) which are crucial for neurotransmission. Both chronic and acute poisoning by OPs can leave long-lasting health effects even when the patients are treated with standard medical therapy. Therefore, an increasing urgency exists to find more effective oxime reactivators for compounds which are resistant to reactivation, especially phosphoramidates. Here, we investigated in silico and in vitro interactions and kinetics of inhibition for human cholinesterases with four organophosphate pesticides-ethoprophos, fenamiphos, methamidophos and phosalone. Overall, ethoprophos and fenamiphos displayed higher potency as inhibitors for tested cholinesterases. Our results show that methamidophos-inhibited hAChE was more susceptible to reactivation than hAChE inhibited by fenamiphos by selected oximes. Molecular modelling enabled an evaluation of interactions important for specificity and selectivity of both inhibition and reactivation of cholinesterases. Two newly developed reactivators-bispyridinium triazole oxime 14A and zwitterionic oxime RS194B possess remarkable potential for further development of antidotes directed against pesticides and related phosphoramidate exposures, such as nerve agents tabun or Novichoks.
Collapse
|
8
|
Gerlits O, Blakeley MP, Keen DA, Radić Z, Kovalevsky A. Room temperature crystallography of human acetylcholinesterase bound to a substrate analogue 4K-TMA: Towards a neutron structure. Curr Res Struct Biol 2021; 3:206-215. [PMID: 34541552 PMCID: PMC8435639 DOI: 10.1016/j.crstbi.2021.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 11/19/2022] Open
Abstract
Acetylcholinesterase (AChE) catalyzes hydrolysis of acetylcholine thereby terminating cholinergic nerve impulses for efficient neurotransmission. Human AChE (hAChE) is a target of nerve agent and pesticide organophosphorus compounds that covalently attach to the catalytic Ser203 residue. Reactivation of inhibited hAChE can be achieved with nucleophilic antidotes, such as oximes. Understanding structural and electrostatic (i.e. protonation states) determinants of the catalytic and reactivation processes is crucial to improve design of oxime reactivators. Here we report X-ray structures of hAChE conjugated with a reversible covalent inhibitor 4K-TMA (4K-TMA:hAChE) at 2.8 Å resolution and of 4K-TMA:hAChE conjugate with oxime reactivator methoxime, MMB4 (4K-TMA:hAChE:MMB4) at 2.6 Å resolution, both at physiologically relevant room temperature, as well as cryo-crystallographic structure of 4K-TMA:hAChE at 2.4 Å resolution. 4K-TMA acts as a substrate analogue reacting with the hydroxyl of Ser203 and generating a reversible tetrahedral hemiketal intermediate that closely resembles the first tetrahedral intermediate state during hAChE-catalyzed acetylcholine hydrolysis. Structural comparisons of room temperature with cryo-crystallographic structures of 4K-TMA:hAChE and published mAChE complexes with 4K-TMA, as well as the effect of MMB4 binding to the peripheral anionic site (PAS) of the 4K-TMA:hAChE complex, revealed only discrete, minor differences. The active center geometry of AChE, already highly evolved for the efficient catalysis, was thus indicative of only minor conformational adjustments to accommodate the tetrahedral intermediate in the hydrolysis of the neurotransmitter acetylcholine (ACh). To map protonation states in the hAChE active site gorge we collected 3.5 Å neutron diffraction data paving the way for obtaining higher resolution datasets that will be needed to determine locations of individual hydrogen atoms.
Collapse
Affiliation(s)
- Oksana Gerlits
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, TN, 37303, USA
| | - Matthew P. Blakeley
- Large Scale Structures Group, Institut Laue–Langevin, 38000, Grenoble, France
| | - David A. Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093-0751, USA
- Corresponding author.
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Corresponding author.
| |
Collapse
|
9
|
Alabugin IV, Kuhn L, Medvedev MG, Krivoshchapov NV, Vil' VA, Yaremenko IA, Mehaffy P, Yarie M, Terent'ev AO, Zolfigol MA. Stereoelectronic power of oxygen in control of chemical reactivity: the anomeric effect is not alone. Chem Soc Rev 2021; 50:10253-10345. [PMID: 34263287 DOI: 10.1039/d1cs00386k] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although carbon is the central element of organic chemistry, oxygen is the central element of stereoelectronic control in organic chemistry. Generally, a molecule with a C-O bond has both a strong donor (a lone pair) and a strong acceptor (e.g., a σ*C-O orbital), a combination that provides opportunities to influence chemical transformations at both ends of the electron demand spectrum. Oxygen is a stereoelectronic chameleon that adapts to the varying situations in radical, cationic, anionic, and metal-mediated transformations. Arguably, the most historically important stereoelectronic effect is the anomeric effect (AE), i.e., the axial preference of acceptor groups at the anomeric position of sugars. Although AE is generally attributed to hyperconjugative interactions of σ-acceptors with a lone pair at oxygen (negative hyperconjugation), recent literature reports suggested alternative explanations. In this context, it is timely to evaluate the fundamental connections between the AE and a broad variety of O-functional groups. Such connections illustrate the general role of hyperconjugation with oxygen lone pairs in reactivity. Lessons from the AE can be used as the conceptual framework for organizing disjointed observations into a logical body of knowledge. In contrast, neglect of hyperconjugation can be deeply misleading as it removes the stereoelectronic cornerstone on which, as we show in this review, the chemistry of organic oxygen functionalities is largely based. As negative hyperconjugation releases the "underutilized" stereoelectronic power of unshared electrons (the lone pairs) for the stabilization of a developing positive charge, the role of orbital interactions increases when the electronic demand is high and molecules distort from their equilibrium geometries. From this perspective, hyperconjugative anomeric interactions play a unique role in guiding reaction design. In this manuscript, we discuss the reactivity of organic O-functionalities, outline variations in the possible hyperconjugative patterns, and showcase the vast implications of AE for the structure and reactivity. On our journey through a variety of O-containing organic functional groups, from textbook to exotic, we will illustrate how this knowledge can predict chemical reactivity and unlock new useful synthetic transformations.
Collapse
Affiliation(s)
- Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.,A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova St., 119991 Moscow, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.,Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow, 119991, Russian Federation
| | - Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Patricia Mehaffy
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran
| |
Collapse
|
10
|
Blumenthal DK, Cheng X, Fajer M, Ho KY, Rohrer J, Gerlits O, Taylor P, Juneja P, Kovalevsky A, Radić Z. Covalent inhibition of hAChE by organophosphates causes homodimer dissociation through long-range allosteric effects. J Biol Chem 2021; 297:101007. [PMID: 34324828 PMCID: PMC8384907 DOI: 10.1016/j.jbc.2021.101007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022] Open
Abstract
Acetylcholinesterase (EC 3.1.1.7), a key acetylcholine-hydrolyzing enzyme in cholinergic neurotransmission, is present in a variety of states in situ, including monomers, C-terminally disulfide-linked homodimers, homotetramers, and up to three tetramers covalently attached to structural subunits. Could oligomerization that ensures high local concentrations of catalytic sites necessary for efficient neurotransmission be affected by environmental factors? Using small-angle X-ray scattering (SAXS) and cryo-EM, we demonstrate that homodimerization of recombinant monomeric human acetylcholinesterase (hAChE) in solution occurs through a C-terminal four-helix bundle at micromolar concentrations. We show that diethylphosphorylation of the active serine in the catalytic gorge or isopropylmethylphosphonylation by the RP enantiomer of sarin promotes a 10-fold increase in homodimer dissociation. We also demonstrate the dissociation of organophosphate (OP)-conjugated dimers is reversed by structurally diverse oximes 2PAM, HI6, or RS194B, as demonstrated by SAXS of diethylphosphoryl-hAChE. However, binding of oximes to the native ligand-free hAChE, binding of high-affinity reversible ligands, or formation of an SP-sarin-hAChE conjugate had no effect on homodimerization. Dissociation monitored by time-resolved SAXS occurs in milliseconds, consistent with rates of hAChE covalent inhibition. OP-induced dissociation was not observed in the SAXS profiles of the double-mutant Y337A/F338A, where the active center gorge volume is larger than in wildtype hAChE. These observations suggest a key role of the tightly packed acyl pocket in allosterically triggered OP-induced dimer dissociation, with the potential for local reduction of acetylcholine-hydrolytic power in situ. Computational models predict allosteric correlated motions extending from the acyl pocket toward the four-helix bundle dimerization interface 25 Å away.
Collapse
Affiliation(s)
- Donald K Blumenthal
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Mikolai Fajer
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Kwok-Yiu Ho
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, USA
| | - Jacqueline Rohrer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, USA
| | - Oksana Gerlits
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, Tennessee, USA
| | - Palmer Taylor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, USA
| | - Puneet Juneja
- Cryo-EM Facility, Iowa State University, Ames, Iowa, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, USA.
| |
Collapse
|
11
|
Figueroa-Villar JD, Petronilho EC, Kuca K, Franca TCC. Review about Structure and Evaluation of Reactivators of Acetylcholinesterase Inhibited with Neurotoxic Organophosphorus Compounds. Curr Med Chem 2021; 28:1422-1442. [PMID: 32334495 DOI: 10.2174/0929867327666200425213215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/08/2020] [Accepted: 04/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurotoxic chemical warfare agents can be classified as some of the most dangerous chemicals for humanity. The most effective of those agents are the Organophosphates (OPs) capable of restricting the enzyme Acetylcholinesterase (AChE), which in turn, controls the nerve impulse transmission. When AChE is inhibited by OPs, its reactivation can be usually performed through cationic oximes. However, until today, it has not been developed one universal defense agent, with complete effective reactivation activity for AChE inhibited by any of the many types of existing neurotoxic OPs. For this reason, before treating people intoxicated by an OP, it is necessary to determine the neurotoxic compound that was used for contamination, in order to select the most effective oxime. Unfortunately, this task usually requires a relatively long time, raising the possibility of death. Cationic oximes also display a limited capacity of permeating the Blood-Brain Barrier (BBB). This fact compromises their capacity to reactivating AChE inside the nervous system. METHODS We performed a comprehensive search on the data about OPs available on the scientific literature today in order to cover all the main drawbacks still faced in the research for the development of effective antidotes against those compounds. RESULTS Therefore, this review about neurotoxic OPs and the reactivation of AChE, provides insights for the new agents' development. The most expected defense agent is a molecule without toxicity and effective to reactivate AChE inhibited by all neurotoxic OPs. CONCLUSION To develop these new agents, the application of diverse scientific areas of research, especially theoretical procedures as computational science (computer simulation, docking and dynamics), organic synthesis, spectroscopic methodologies, biology, biochemical and biophysical information, medicinal chemistry, pharmacology and toxicology, is necessary.
Collapse
Affiliation(s)
- José Daniel Figueroa-Villar
- Medicinal Chemistry Group, Department of Chemical Engineering, Military Institute of Engineering, 22270- 090, Rio de Janeiro, Brazil
| | - Elaine C Petronilho
- Medicinal Chemistry Group, Department of Chemical Engineering, Military Institute of Engineering, 22270- 090, Rio de Janeiro, Brazil
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 50003, Czech Republic
| | - Tanos C C Franca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 50003, Czech Republic
| |
Collapse
|
12
|
Poirier L, Jacquet P, Plener L, Masson P, Daudé D, Chabrière E. Organophosphorus poisoning in animals and enzymatic antidotes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25081-25106. [PMID: 29959732 DOI: 10.1007/s11356-018-2465-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Organophosphorus compounds (OPs) are neurotoxic molecules developed as pesticides and chemical warfare nerve agents (CWNAs). Most of them are covalent inhibitors of acetylcholinesterase (AChE), a key enzyme in nervous systems, and are therefore responsible for numerous poisonings around the world. Many animal models have been studied over the years in order to decipher the toxicity of OPs and to provide insights for therapeutic and decontamination purposes. Environmental impact on wild animal species has been analyzed to understand the consequences of OP uses in agriculture. In complement, various laboratory models, from invertebrates to aquatic organisms, rodents and primates, have been chosen to study chronic and acute toxicity as well as neurobehavioral impact, immune response, developmental disruption, and other pathological signs. Several decontamination approaches were developed to counteract the poisoning effects of OPs. Among these, enzyme-based strategies are particularly attractive as they allow efficient external decontamination without toxicity or environmental impact and may be of interest for treatment. Approaches using bioscavengers for prophylaxis, treatment, and external decontamination are emphasized and their potential is discussed in the light of toxicological observations from various animal models. The relevance of animal models, regarding their cholinergic system and the abundance of naturally protecting enzymes, is also discussed for better extrapolation of results to human.
Collapse
Affiliation(s)
- Laetitia Poirier
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, Marseille, France
| | - Pauline Jacquet
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Laure Plener
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russia
| | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
| | - Eric Chabrière
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, Marseille, France.
| |
Collapse
|
13
|
Hrvat NM, Kovarik Z. Counteracting poisoning with chemical warfare nerve agents. Arh Hig Rada Toksikol 2020; 71:266-284. [PMID: 33410774 PMCID: PMC7968514 DOI: 10.2478/aiht-2020-71-3459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/01/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphylation of the pivotal enzyme acetylcholinesterase (AChE) by nerve agents (NAs) leads to irreversible inhibition of the enzyme and accumulation of neurotransmitter acetylcholine, which induces cholinergic crisis, that is, overstimulation of muscarinic and nicotinic membrane receptors in the central and peripheral nervous system. In severe cases, subsequent desensitisation of the receptors results in hypoxia, vasodepression, and respiratory arrest, followed by death. Prompt action is therefore critical to improve the chances of victim's survival and recovery. Standard therapy of NA poisoning generally involves administration of anticholinergic atropine and an oxime reactivator of phosphylated AChE. Anticholinesterase compounds or NA bioscavengers can also be applied to preserve native AChE from inhibition. With this review of 70 years of research we aim to present current and potential approaches to counteracting NA poisoning.
Collapse
Affiliation(s)
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
14
|
Zhang L, Murata H, Amitai G, Smith PN, Matyjaszewski K, Russell AJ. Catalytic Detoxification of Organophosphorus Nerve Agents by Butyrylcholinesterase-Polymer-Oxime Bioscavengers. Biomacromolecules 2020; 21:3867-3877. [DOI: 10.1021/acs.biomac.0c00959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Libin Zhang
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gabriel Amitai
- Wohl Drug Discovery Institute, Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot 760001, Israel
| | - Paige N. Smith
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J. Russell
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
15
|
Efficient detoxification of nerve agents by oxime-assisted reactivation of acetylcholinesterase mutants. Neuropharmacology 2020; 171:108111. [PMID: 32333945 DOI: 10.1016/j.neuropharm.2020.108111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 01/06/2023]
Abstract
The recent advancements in crystallography and kinetics studies involving reactivation mechanism of acetylcholinesterase (AChE) inhibited by nerve agents have enabled a new paradigm in the search for potent medical countermeasures in case of nerve agents exposure. Poisonings by organophosphorus compounds (OP) that lead to life-threatening toxic manifestations require immediate treatment that combines administration of anticholinergic drugs and an aldoxime as a reactivator of AChE. An alternative approach to reduce the in vivo toxicity of OP centers on the use of bioscavengers against the parent organophosphate. Our recent research showed that site-directed mutagenesis of AChE can enable aldoximes to substantially accelerate the reactivation of OP-enzyme conjugates while dramatically slowing down rates of OP-conjugate dealkylation (aging). Therefore, this review focuses on oxime-assisted catalysis by AChE mutants that provides a potential means for degradation of organophosphates in the plasma before reaching the cellular target site. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
|
16
|
Šagud I, Maček Hrvat N, Grgičević A, Čadež T, Hodak J, Dragojević M, Lasić K, Kovarik Z, Škorić I. Design, synthesis and cholinesterase inhibitory properties of new oxazole benzylamine derivatives. J Enzyme Inhib Med Chem 2020; 35:460-467. [PMID: 31899981 PMCID: PMC6968547 DOI: 10.1080/14756366.2019.1707197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are primary targets in attenuating the symptoms of neurodegenerative diseases. Their inhibition results in elevated concentrations of the neurotransmitter acetylcholine which supports communication among nerve cells. It was previously shown for trans-4/5-arylethenyloxazole compounds to have moderate AChE and BChE inhibitory properties. A preliminary docking study showed that elongating oxazole molecules and adding a new NH group could make them more prone to bind to the active site of both enzymes. Therefore, new trans-amino-4-/5-arylethenyl-oxazoles were designed and synthesised by the Buchwald-Hartwig amination of a previously synthesised trans-chloro-arylethenyloxazole derivative. Additionally, naphthoxazole benzylamine photoproducts were obtained by efficient photochemical electrocyclization reaction. Novel compounds were tested as inhibitors of both AChE and BChE. All of the compounds exhibited binding preference for BChE over AChE, especially for trans-amino-4-/5-arylethenyl-oxazole derivatives which inhibited BChE potently (IC50 in µM range) and AChE poorly (IC50≫100 µM). Therefore, due to the selectivity of all of the tested compounds for binding to BChE, these compounds could be applied for further development of cholinesterase selective inhibitors.HIGHLIGHTS Series of oxazole benzylamines were designed and synthesised The tested compounds showed binding selectivity for BChE Naphthoxazoles were more potent AChE inhibitors
Collapse
Affiliation(s)
- Ivana Šagud
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Nikolina Maček Hrvat
- Institute for Medical Research and Occupational Health, Biochemistry and Analytic Organic Chemistry Unit, Zagreb, Croatia
| | - Ana Grgičević
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Tena Čadež
- Institute for Medical Research and Occupational Health, Biochemistry and Analytic Organic Chemistry Unit, Zagreb, Croatia
| | - Josipa Hodak
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Milena Dragojević
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | | | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Biochemistry and Analytic Organic Chemistry Unit, Zagreb, Croatia
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
17
|
Maček Hrvat N, Kalisiak J, Šinko G, Radić Z, Sharpless KB, Taylor P, Kovarik Z. Evaluation of high-affinity phenyltetrahydroisoquinoline aldoximes, linked through anti-triazoles, as reactivators of phosphylated cholinesterases. Toxicol Lett 2019; 321:83-89. [PMID: 31863869 DOI: 10.1016/j.toxlet.2019.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 01/22/2023]
Abstract
Acetylcholinesterase (AChE) is a pivotal enzyme in neurotransmission. Its inhibition leads to cholinergic crises and could ultimately result in death. A related enzyme, butyrylcholinesterase (BChE), may act in the CNS as a co-regulator in terminating nerve impulses and is a natural plasma scavenger upon exposure to organophosphate (OP) nerve agents that irreversibly inhibit both enzymes. With the aim of improving reactivation of cholinesterases phosphylated by nerve agents sarin, VX, cyclosarin, and tabun, ten phenyltetrahydroisoquinoline (PIQ) aldoximes were synthesized by Huisgen 1,3 dipolar cycloaddition between alkyne- and azide-building blocks. The PIQ moiety may serve as a peripheral site anchor positioning the aldoxime moiety at the AChE active site. In terms of evaluated dissociation inhibition constants, the aldoximes could be characterized as high-affinity ligands. Nevertheless, high binding affinity of these oximes to AChE or its phosphylated conjugates did not assure rapid and selective AChE reactivation. Rather, potential reactivators of phosphylated BChE, with its enlarged acyl pocket, were identified, especially in case of cyclosarin, where the reactivation rates of the lead reactivator was 100- and 6-times that of 2-PAM and HI-6, respectively. Nevertheless, the return of the enzyme activity was affected by the nerve agent conjugated to catalytic serine, which highlights the lack of the universality of reactivators with respect to both the target enzyme and OP structure.
Collapse
Affiliation(s)
- Nikolina Maček Hrvat
- Institute for Medical Research and Occupational Health, HR-10000 Zagreb, Croatia
| | - Jarosław Kalisiak
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Goran Šinko
- Institute for Medical Research and Occupational Health, HR-10000 Zagreb, Croatia
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, United States
| | - K Barry Sharpless
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Palmer Taylor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, United States
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, HR-10000 Zagreb, Croatia.
| |
Collapse
|
18
|
Wong PT, Bhattacharjee S, Cannon J, Tang S, Yang K, Bowden S, Varnau V, O'Konek JJ, Choi SK. Reactivity and mechanism of α-nucleophile scaffolds as catalytic organophosphate scavengers. Org Biomol Chem 2019; 17:3951-3963. [PMID: 30942252 DOI: 10.1039/c9ob00503j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite their unique benefits imparted by their structure and reactivity, certain α-nucleophile molecules remain underexplored as chemical inactivators for the topical decontamination of reactive organophosphates (OPs). Here, we present a library of thirty α-nucleophile scaffolds, each designed with either a pyridinium aldoxime (PAM) or hydroxamic acid (HA) α-nucleophile core tethered to a polar or charged scaffold for optimized physicochemical properties and reactivity. These library compounds were screened for their abilities to catalyze the hydrolysis of a model OP, paraoxon (POX), in kinetic assays. These screening experiments led to the identification of multiple lead compounds with the ability to inactivate POX two- to four-times more rapidly than Dekon 139-the active ingredient currently used for skin decontamination of OPs. Our mechanistic studies, performed under variable pH and temperature conditions suggested that the differences in the reactivity and activation energy of these compounds are fundamentally attributable to the core nucleophilicity and pKa. Following their screening and mechanistic studies, select lead compounds were further evaluated and demonstrated greater efficacy than Dekon 139 in the topical decontamination of POX in an ex vivo porcine skin model. In addition to OP reactivity, several compounds in the PAM class displayed a dual mode of activity, as they retained the ability to reactivate POX-inhibited acetylcholine esterase (AChE). In summary, this report describes a rationale for the hydrophilic scaffold design of α-nucleophiles, and it offers advanced insights into their chemical reactivity, mechanism, and practical utility as OP decontaminants.
Collapse
Affiliation(s)
- Pamela T Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Marinho CS, Matias MVF, Brandão IGF, Santos EL, Machado SS, Zanta CLPS. Characterization and kinetic study of the brain and muscle acetylcholinesterase from Danio rerio. Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:11-18. [PMID: 30981910 DOI: 10.1016/j.cbpc.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/09/2019] [Accepted: 04/08/2019] [Indexed: 11/26/2022]
Abstract
Acetylcholinesterase (AChE) plays an important role in the therapy of Alzheimer's disease and in the detection of pesticides such as organophosphates which are also widely used in chemical warfare. The aim of this study is the physicochemical and kinetic characterization of brain and muscle ChE from Danio rerio (Zebrafish). Optimal activity was found for brain ChE at alkaline pH 9.0 at 30 °C, and for muscle ChE at alkaline pH 8.5 at temperatures between 20 °C and 35 °C. The apparent kinetic constants, Kmapp and Vmaxapp, for brain ChE were determined as 0.191 ± 0.024 mM and 0.566 ± 0.028 U/mg protein, and for muscle ChE as 0.230 ± 0.030 mM and 0.677 ± 0.039 U/mg protein. Both brain and muscle ChE showed inhibition at high substrate concentrations. Brain and muscle ChE showed IC50 values for physostigmine of 0.61 μM and 0.37 μM, respectively. The ChE activity in brain was significantly inhibited by BW254c51 in all concentrations tested, but not by Iso-OMPA, while muscle ChE presented a moderate decrease (13 to 29%) in the activity values, indicating that BuChE is present.
Collapse
Affiliation(s)
- Claudiane S Marinho
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió, AL, Brazil
| | - Marcos V F Matias
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió, AL, Brazil
| | - Iago G F Brandão
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió, AL, Brazil
| | - Elton L Santos
- Federal University of Alagoas, Agricultural Sciences Center, BR-104, Rio Largo, AL, Brazil
| | - Sonia S Machado
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió, AL, Brazil.
| | - Carmem L P S Zanta
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió, AL, Brazil
| |
Collapse
|
20
|
[Organophosphorus poisoning: Towards enzymatic treatments]. ANNALES PHARMACEUTIQUES FRANÇAISES 2019; 77:349-362. [PMID: 31253354 DOI: 10.1016/j.pharma.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 11/22/2022]
Abstract
Organophosphorus compounds (OP) are toxic molecules developed as insecticides and chemical warfare nerve agents (CWNAs). Most OP are neurotoxic and act as nervous system disruptors by blocking cholinergic transmission. They are therefore responsible for many poisonings worldwide. OP toxicity may result either from acute or chronic exposure, and their poisoning effect were evaluated using several animal models. These latter were also used for evaluating the efficacy of antidotes. Strategies based on enzymes that can trap (stoichiometric bioscavengers) or degrade (catalytic bioscavengers) OP, were particularly studied since they allow effective decontamination, without toxicity or environmental impact. This review summarizes the results obtained in vivo with enzymes through three levels: prophylaxis, treatment and external decontamination. The efficiency of enzymatic treatments in different animal models is presented and the relevance of these models is also discussed for a better extrapolation to humans.
Collapse
|
21
|
Gerlits O, Ho KY, Cheng X, Blumenthal D, Taylor P, Kovalevsky A, Radić Z. A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies. Chem Biol Interact 2019; 309:108698. [PMID: 31176713 DOI: 10.1016/j.cbi.2019.06.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/26/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
Structure-guided design of novel pharmacologically active molecules relies at least in part on functionally relevant accuracy of macromolecular structures for template based drug design. Currently, about 95% of all macromolecular X-ray structures available in the PDB (Protein Data Bank) were obtained from diffraction experiments at low, cryogenic temperatures. However, it is known that functionally relevant conformations of both macromolecules and pharmacological ligands can differ at higher, physiological temperatures. We describe in this article development and properties of new human acetylcholinesterase (AChE) crystals of space group P31 and a new unit cell, amenable for room-temperature X-ray diffraction studies. We co-crystallized hAChE in P31 unit cell with the reversible inhibitor 9-aminoacridine that binds at the base of the active center gorge in addition to inhibitors that span the full length of the gorge, donepezil (Aricept, E2020) and AChE specific inhibitor BW284c51. Their new low temperature P31 space group structures appear similar to those previously obtained in the different P3121 unit cell. Successful solution of the new room temperature 3.2 Å resolution structure of BW284c51*hAChE complex from large P31 crystals enables us to proceed with studying room temperature structures of lower affinity complexes, such as oxime reactivators bound to hAChE, where temperature-related conformational diversity could be expected in both oxime and hAChE, which could lead to better informed structure-based design under conditions approaching physiological temperature.
Collapse
Affiliation(s)
- Oksana Gerlits
- (a)Bredesen Center, University of Tennessee, Knoxville, TN, 37996, USA
| | - Kwok-Yiu Ho
- (b)Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093-0650, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Donald Blumenthal
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Palmer Taylor
- (b)Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093-0650, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Zoran Radić
- (b)Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093-0650, USA.
| |
Collapse
|
22
|
Gerlits O, Kong X, Cheng X, Wymore T, Blumenthal DK, Taylor P, Radić Z, Kovalevsky A. Productive reorientation of a bound oxime reactivator revealed in room temperature X-ray structures of native and VX-inhibited human acetylcholinesterase. J Biol Chem 2019; 294:10607-10618. [PMID: 31138650 DOI: 10.1074/jbc.ra119.008725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/21/2019] [Indexed: 11/06/2022] Open
Abstract
Exposure to organophosphorus compounds (OPs) may be fatal if untreated, and a clear and present danger posed by nerve agent OPs has become palpable in recent years. OPs inactivate acetylcholinesterase (AChE) by covalently modifying its catalytic serine. Inhibited AChE cannot hydrolyze the neurotransmitter acetylcholine leading to its build-up at the cholinergic synapses and creating an acute cholinergic crisis. Current antidotes, including oxime reactivators that attack the OP-AChE conjugate to free the active enzyme, are inefficient. Better reactivators are sought, but their design is hampered by a conformationally rigid portrait of AChE extracted exclusively from 100K X-ray crystallography and scarcity of structural knowledge on human AChE (hAChE). Here, we present room temperature X-ray structures of native and VX-phosphonylated hAChE with an imidazole-based oxime reactivator, RS-170B. We discovered that inhibition with VX triggers substantial conformational changes in bound RS-170B from a "nonproductive" pose (the reactive aldoxime group points away from the VX-bound serine) in the reactivator-only complex to a "semi-productive" orientation in the VX-modified complex. This observation, supported by concurrent molecular simulations, suggested that the narrow active-site gorge of hAChE may be significantly more dynamic than previously thought, allowing RS-170B to reorient inside the gorge. Furthermore, we found that small molecules can bind in the choline-binding site hindering approach to the phosphorous of VX-bound serine. Our results provide structural and mechanistic perspectives on the reactivation of OP-inhibited hAChE and demonstrate that structural studies at physiologically relevant temperatures can deliver previously overlooked insights applicable for designing next-generation antidotes.
Collapse
Affiliation(s)
- Oksana Gerlits
- From the Bredesen Center, University of Tennessee, Knoxville, Tennessee 37996
| | - Xiaotian Kong
- the Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Xiaolin Cheng
- the Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Troy Wymore
- the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Donald K Blumenthal
- the Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112
| | - Palmer Taylor
- the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0751, and
| | - Zoran Radić
- the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0751, and
| | - Andrey Kovalevsky
- the Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| |
Collapse
|
23
|
Kovarik Z, Maček Hrvat N, Kalisiak J, Katalinić M, Sit RK, Zorbaz T, Radić Z, Fokin VV, Sharpless KB, Taylor P. Counteracting tabun inhibition by reactivation by pyridinium aldoximes that interact with active center gorge mutants of acetylcholinesterase. Toxicol Appl Pharmacol 2019; 372:40-46. [PMID: 30978400 DOI: 10.1016/j.taap.2019.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 11/28/2022]
Abstract
Tabun represents the phosphoramidate class of organophosphates that are covalent inhibitors of acetylcholinesterase (AChE), an essential enzyme in neurotransmission. Currently used therapy in counteracting excessive cholinergic stimulation consists of a muscarinic antagonist (atropine) and an oxime reactivator of inhibited AChE, but the classical oximes are particularly ineffective in counteracting tabun exposure. In a recent publication (Kovarik et al., 2019), we showed that several oximes prepared by the Huisgen 1,3 dipolar cycloaddition and related precursors efficiently reactivate the tabun-AChE conjugate. Herein, we pursue the antidotal question further and examine a series of lead precursor molecules, along with triazole compounds, as reactivators of two AChE mutant enzymes. Such studies should reveal structural subtleties that reside within the architecture of the active center gorge of AChE and uncover intimate mechanisms of reactivation of alkylphosphate conjugates of AChE. The designated mutations appear to minimize steric constraints of the reactivating oximes within the impacted active center gorge. Indeed, after initial screening of the triazole oxime library and its precursors for the reactivation efficacy on Y337A and Y337A/F338A human AChE mutants, we found potentially active oxime-mutant enzyme pairs capable of degrading tabun in cycles of inhibition and reactivation. Surprisingly, the most sensitive ex vivo reactivation of mutant AChEs occurred with the alkylpyridinium aldoximes. Hence, although the use of mutant enzyme bio-scavengers in humans may be limited in practicality, bioscavenging and efficient neutralization of tabun itself or phosphoramidate mixtures of organophosphates might be achieved efficiently in vitro or ex vivo with these mutant AChE combinations.
Collapse
Affiliation(s)
- Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | | | - Jarosław Kalisiak
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, USA
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Rakesh K Sit
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, USA
| | - Tamara Zorbaz
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, USA
| | - Valery V Fokin
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, USA
| | - K Barry Sharpless
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, USA
| | - Palmer Taylor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, USA.
| |
Collapse
|
24
|
Kloske M, Witkiewicz Z. Novichoks - The A group of organophosphorus chemical warfare agents. CHEMOSPHERE 2019; 221:672-682. [PMID: 30677728 DOI: 10.1016/j.chemosphere.2019.01.054] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 05/22/2023]
Abstract
Novichok use has become symbol for the chemical substances use to carry out political assassinations. In the last century, poisonous warfare agents were used for the first time on the battlefields, almost all over the world. After the World War II, new types of organophosphorus chemical warfare agents were developed. Novichoks are only ones, but the most important part of them - the 4th generation of chemical warfare agents. Despite the Chemical Weapons Convention, entered into force in 1997, there is still real threat of use of chemical weapons. This weapon can be used by both states, and transnational terrorist organisations. Novichoks, A code-named substances, should be permanently introduced into a number of chemical substances contained in organophosphorus chemical warfare poisonous agents. This article presents a short fourth-generation nerve agents' description. Group A compounds together with G and V groups compounds are organophosphorus chemical warfare agents which are very dangerous ones. Our article is an attempt to provide answer for the question - what are Novichoks? And why they should be introduced into Chemical Weapons Convention.
Collapse
Affiliation(s)
- Marcin Kloske
- Institute of Chemistry, Military University of Technology, Warsaw, Poland
| | - Zygfryd Witkiewicz
- Institute of Chemistry, Military University of Technology, Warsaw, Poland.
| |
Collapse
|
25
|
Kovarik Z, Kalisiak J, Hrvat NM, Katalinić M, Zorbaz T, Žunec S, Green C, Radić Z, Fokin VV, Sharpless KB, Taylor P. Reversal of Tabun Toxicity Enabled by a Triazole-Annulated Oxime Library-Reactivators of Acetylcholinesterase. Chemistry 2019; 25:4100-4114. [PMID: 30458057 DOI: 10.1002/chem.201805051] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/09/2018] [Indexed: 11/09/2022]
Abstract
Acetylcholinesterase (AChE), an enzyme that degrades the neurotransmitter acetylcholine, when covalently inhibited by organophosphorus compounds (OPs), such as nerve agents and pesticides, can be reactivated by oximes. However, tabun remains among the most dangerous nerve agents due to the low reactivation efficacy of standard pyridinium aldoxime antidotes. Therefore, finding an optimal reactivator for prophylaxis against tabun toxicity and for post-exposure treatment is a continued challenge. In this study, we analyzed the reactivation potency of 111 novel nucleophilic oximes mostly synthesized using the CuAAC triazole ligation between alkyne and azide building blocks. We identified several oximes with significantly improved in vitro reactivating potential for tabun-inhibited human AChE, and in vivo antidotal efficacies in tabun-exposed mice. Our findings offer a significantly improved platform for further development of antidotes and scavengers directed against tabun and related phosphoramidate exposures, such as the Novichok compounds.
Collapse
Affiliation(s)
- Zrinka Kovarik
- Institute for Medical Research and Occupational Health, HR-10000, Zagreb, Croatia
| | - Jarosław Kalisiak
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nikolina Maček Hrvat
- Institute for Medical Research and Occupational Health, HR-10000, Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, HR-10000, Zagreb, Croatia
| | - Tamara Zorbaz
- Institute for Medical Research and Occupational Health, HR-10000, Zagreb, Croatia
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, HR-10000, Zagreb, Croatia
| | - Carol Green
- SRI International, Menlo Park, CA, 94025-3493, USA
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, 92093-0650, USA
| | - Valery V Fokin
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,The Bridge@USC, University of Southern California, Los Angeles, CA, 90089, USA
| | - K Barry Sharpless
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Palmer Taylor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, 92093-0650, USA
| |
Collapse
|
26
|
Lushchekina S, Masson P. Catalytic bioscavengers against organophosphorus agents: mechanistic issues of self-reactivating cholinesterases. Toxicology 2018; 409:91-102. [DOI: 10.1016/j.tox.2018.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022]
|
27
|
Tang S, Wong PT, Cannon J, Yang K, Bowden S, Bhattacharjee S, O'Konek JJ, Choi SK. Hydrophilic scaffolds of oxime as the potent catalytic inactivator of reactive organophosphate. Chem Biol Interact 2018; 297:67-79. [PMID: 30393113 DOI: 10.1016/j.cbi.2018.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/12/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022]
Abstract
Despite its efficacy as a skin decontaminant of reactive organophosphates (OP), Dekon 139-a potassium salt of 2,3-butanedione monooxime (DAM)-is associated with adverse events related to percutaneous absorption largely due to its small size and lipophilicity. In order to address this physicochemical issue, we synthesized and evaluated the activity of a focused library of 14 hydrophilic oxime compounds, each designed with either a DAM or monoisonitrosoacetone (MINA) oxime tethered to a polar or charged scaffold in order to optimize the size, hydrophilicity, and oxime acidity. High-throughput colorimetric assays were performed with paraoxon (POX) as a model OP to determine the kinetics of POX inactivation by these compounds under various pH and temperature conditions. This primary screening led to the identification of 6 lead compounds, predominantly in the MINA series, which displayed superb catalytic activity by reducing the POX half-life (t1/2) by 2-3 fold relative to Dekon 139. Our mechanistic studies show that POX inactivation by the oxime compounds occurred faster at a higher temperature and in a pH-dependent manner in which the negatively charged oximate species is ≥ 10-fold more effective than the neutral oxime species. Lastly, using one of the lead compounds, we demonstrated its promising efficacy for POX decontamination in porcine skin ex vivo, and showed its potent ability to protect acetylcholine esterase (AChE) through POX inactivation. In summary, we report the rational design and chemical biological validation of novel hydrophilic oximes which address an unmet need in therapeutic OP decontamination.
Collapse
Affiliation(s)
- Shengzhuang Tang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Pamela T Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jayme Cannon
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Kelly Yang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Sierra Bowden
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Somnath Bhattacharjee
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jessica J O'Konek
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Seok Ki Choi
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
28
|
Oxime-assisted reactivation of tabun-inhibited acetylcholinesterase analysed by active site mutations. Toxicology 2018; 406-407:104-113. [DOI: 10.1016/j.tox.2018.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/08/2018] [Accepted: 05/13/2018] [Indexed: 11/18/2022]
|
29
|
Maček Hrvat N, Zorbaz T, Šinko G, Kovarik Z. The estimation of oxime efficiency is affected by the experimental design of phosphylated acetylcholinesterase reactivation. Toxicol Lett 2017; 293:222-228. [PMID: 29180286 DOI: 10.1016/j.toxlet.2017.11.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 11/27/2022]
Abstract
Reactivation of acetylcholinesterase (AChE), an essential enzyme in neurotransmission, is a key point in the treatment of acute poisoning by nerve agents and pesticides, which structurally belong to organophosphorus compounds (OP). Due to the high diversity of substituents on the phosphorous atom, there is a variety of OP-AChE conjugates deriving from AChE inhibition, and therefore not only is there no universal reactivator efficient enough for the most toxic OPs, but for some nerve agents there is still a lack of any reactivator at all. The endeavor of many chemists to find more efficient reactivators resulted in thousands of newly-designed and synthesized oximes-potential reactivators of AChE. For an evaluation of the oximés reactivation efficiency, many research groups employ a simple spectrophotometric Ellman method. Since parameters that describe reactivator efficiency are often incomparable among laboratories, we tried to emphasize the critical steps in the determination of reactivation parameters as well as in the experimental design of a reactivation assay. We highlighted the important points in evaluation of reactivation kinetic parameters with an aim to achieve better agreement and comparability between the results obtained by different laboratories and overall, a more efficient evaluation of in vitro reactivation potency.
Collapse
Affiliation(s)
- Nikolina Maček Hrvat
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia.
| | - Tamara Zorbaz
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia.
| | - Goran Šinko
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia.
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia.
| |
Collapse
|
30
|
Rodrigues de Souza F, Rodrigues Garcia D, Cuya T, Kuca K, de Alencastro RB, França TCC. Behavior of uncharged oximes compared to HI6 and 2-PAM in the human AChE-tabun conjugate: a molecular modeling approach. J Biomol Struct Dyn 2017; 36:1430-1438. [PMID: 28446076 DOI: 10.1080/07391102.2017.1324322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tabun is one of the most dangerous nerve agents because it has deleterious effects like inhibition of the essential enzymes acetylcholinesterase (AChE) and butyrylcholinesterase. Some oximes such HI6 as 2-PAM are nucleophiles that are capable to reactivate inhibited human AChE under some conditions. Zwitterionic and cationic species have the best chance of productive action on inhibited AChE. However uncharged oximes can give important interaction information. In order to investigate the interaction and behavior of cationic and uncharged oximes, we performed molecular docking simulations and molecular dynamics and calculated binding energies of complexes of these compounds with human AChE. The uncharged oximes of larger structure were more susceptible to the influence of the substituents on the phosphorus atom and presented low binding energies. In contrast, HI 6 and 2-PAM showed high binding energy values with great contribution of the amino acid Asp74, demonstrating the importance of the quaternary nitrogen to the affinity and interaction of the oximes/AChE tabun-inhibited complexes.
Collapse
Affiliation(s)
- Felipe Rodrigues de Souza
- a Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD) Military Institute of Engineering , Rio de Janeiro , Brazil
| | - Danielle Rodrigues Garcia
- a Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD) Military Institute of Engineering , Rio de Janeiro , Brazil
| | - Teobaldo Cuya
- b Faculty of Technology , University of the State of Rio de Janeiro , Resende , Brazil
| | - Kamil Kuca
- c Center for Basic and Applied Research, Faculty of Informatics and Management , University of Hradec Králové , Hradec Králové , Czech Republic.,d University Hospital Hradec Králové , Hradec Králové , Czech Republic
| | | | - Tanos Celmar Costa França
- a Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD) Military Institute of Engineering , Rio de Janeiro , Brazil.,c Center for Basic and Applied Research, Faculty of Informatics and Management , University of Hradec Králové , Hradec Králové , Czech Republic
| |
Collapse
|
31
|
Moss DE, Perez RG, Kobayashi H. Cholinesterase Inhibitor Therapy in Alzheimer's Disease: The Limits and Tolerability of Irreversible CNS-Selective Acetylcholinesterase Inhibition in Primates. J Alzheimers Dis 2017; 55:1285-1294. [PMID: 27858711 DOI: 10.3233/jad-160733] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Irreversible acetylcholinesterase (AChE) inhibition accumulates to high levels in the central nervous system (CNS) because AChE turnover in the brain is much slower than in peripheral tissues. As expected from this CNS selectivity, the irreversible AChE inhibitor methanesulfonyl fluoride (MSF) produces significant cognitive improvement in Alzheimer's disease patients without the gastrointestinal toxicity that plagues other AChE inhibitors. However, without dose-limiting gastrointestinal toxicity, one shortcoming of the prior human studies of MSF is that the upper limits of CNS AChE inhibition that might be tolerated could not be tested. Therefore, in this study, monkeys were treated with escalating intramuscular (IM) doses of MSF that culminated with several weeks of 1.5 mg/kg dosing, more than eight times the prior human clinical dose, still without signs of toxicity. Brain biopsies showed that ∼80% AChE inhibition had been produced and that the new synthesis of cortical AChE had a half-time (t1/2) of ∼12 days. A single IM dose of 1.5 mg/kg MSF produced ∼59% inhibition in cerebrospinal fluid (CSF) AChE as measured one day later. This corresponds to a peak of ∼80% inhibition in CSF AChE at the time of the injection, recovering with a t1/2 of 2.4 days. Computational analyses suggest that MSF at clinically relevant doses could theoretically produce a steady-state AChE inhibition between 65% and 85% in the CNS. These data suggest that the full therapeutic advantage of AChE inhibition therapy can be realized without interference from dose-limiting gastrointestinal toxicity if an irreversible inhibitor is employed.
Collapse
Affiliation(s)
- Donald E Moss
- Department of Psychology, University of Texas at El Paso, El Paso, TX, USA
| | - Ruth G Perez
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University of the Health Sciences El Paso, El Paso, TX, USA
| | - Haruo Kobayashi
- Department of Veterinary Pharmacology, Iwate University, Ueda, Morioka, Japan
| |
Collapse
|
32
|
Maček Hrvat N, Žunec S, Taylor P, Radić Z, Kovarik Z. HI-6 assisted catalytic scavenging of VX by acetylcholinesterase choline binding site mutants. Chem Biol Interact 2016; 259:148-153. [PMID: 27083141 PMCID: PMC5061595 DOI: 10.1016/j.cbi.2016.04.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 11/23/2022]
Abstract
The high toxicity of organophosphorus compounds originates from covalent inhibition of acetylcholinesterase (AChE), an essential enzyme in cholinergic neurotransmission. Poisonings that lead to life-threatening toxic manifestations require immediate treatment that combines administration of anticholinergic drugs and an aldoxime as a reactivator of AChE. An alternative approach to reduce the in vivo toxicity of OPs focuses on the use of bioscavengers against the parent organophosphate. Our previous research showed that AChE mutagenesis can enable aldoximes to substantially accelerate the reactivation of OP-enzyme conjugates, while dramatically slowing down rates of OP-conjugate dealkylation (aging). Herein, we demonstrate an efficient HI-6-assisted VX detoxification, both ex vivo in human blood and in vivo in mice by hAChE mutants modified at the choline binding site (Y337A and Y337A/F338A). The catalytic scavenging of VX in mice improved therapeutic outcomes preventing lethality and resulted in a delayed onset of toxicity symptoms.
Collapse
Affiliation(s)
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Palmer Taylor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| |
Collapse
|
33
|
Chao CK, Ahmed SK, Gerdes JM, Thompson CM. Novel Organophosphate Ligand O-(2-Fluoroethyl)-O-(p-Nitrophenyl)Methylphosphonate: Synthesis, Hydrolytic Stability and Analysis of the Inhibition and Reactivation of Cholinesterases. Chem Res Toxicol 2016; 29:1810-1817. [PMID: 27551891 PMCID: PMC5575788 DOI: 10.1021/acs.chemrestox.6b00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The organophosphate O-(2-fluoroethyl)-O-(p-nitrophenyl) methyphosphonate 1 is the first-in-class, fluorine-18 radiolabeled organophosphate inhibitor ([18F]1) of acetylcholinesterase (AChE). In rats, [18F]1 localizes in AChE rich regions of the brain and other tissues where it likely exists as the (CH3)(18FCH2CH2O)P(O)-AChE adduct (ChE-1). Characterization of this adduct would define the inhibition mechanism and subsequent postinhibitory pathways and reactivation rates. To validate this adduct, the stability (hydrolysis) of 1 and ChE-1 reactivation rates were determined. Base hydrolysis of 1 yields p-nitrophenol and (CH3) (FCH2CH2O)P(O)OH with pseudo first order rate constants (kobsd) at pH 7.4 (PBS) of 3.25 × 10-4 min-1 (t1/2 = 35.5 h) at 25 °C and 8.70 × 10-4 min-1 (t1/2 = 13.3 h) at 37 °C. Compound 1 was a potent inhibitor of human acetylcholinesterase (HuAChE; ki = 7.5 × 105 M-1 min-1), electric eel acetylcholinesterase (EEAChE) (ki = 3.0 × 106 M-1 min-1), and human serum butyrylcholinesterase (HuBChE; 1.95 × 105 M-1 min-1). Spontaneous and oxime-mediated reactivation rates for the (CH3) (FCH2CH2O)P(O)-serine ChE adducts using 2-PAM (10 μM) were (a) HuAChE 8.8 × 10-5 min-1 (t1/2 = 131.2 h) and 2.41 × 10-2 min-1 (t1/2 = 0.48 h), (b) EEAChE 9.32 × 10-3 min-1 (t1/2 = 1.24 h) and 3.33 × 10-2 min-1 (t1/2 = 0.35 h), and (c) HuBChE 1.16 × 10-4 min-1 (t1/2 = 99.6 h) and 4.19 × 10-2 min-1 (t1/2 = 0.27 h). All ChE-1 adducts undergo rapid and near complete restoration of enzyme activity following addition of 2-PAM (30 min), and no aging was observed for either reactivation process. The fast reactivation rates and absence of aging of ChE-1 adducts are explained on the basis of the electron-withdrawing fluorine group that favors the nucleophilic reactivation processes but disfavors cation-based dealkylation aging mechanisms. Therefore, the likely fate of radiolabeled compound 1 in vivo is the formation of (CH3)(FCH2CH2O)P(O)-serine adducts and monoacid (CH3)(FCH2CH2O)P(O)OH from hydrolysis and reactivation.
Collapse
Affiliation(s)
- Chih-Kai Chao
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
| | - S. Kaleem Ahmed
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
- Center for Neuromolecular Research, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - John M. Gerdes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
- Center for Neuromolecular Research, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - Charles M. Thompson
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
34
|
Iyengar ARS, Pande AH. Organophosphate-Hydrolyzing Enzymes as First-Line of Defence Against Nerve Agent-Poisoning: Perspectives and the Road Ahead. Protein J 2016; 35:424-439. [DOI: 10.1007/s10930-016-9686-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Masson P, Lushchekina SV. Emergence of catalytic bioscavengers against organophosphorus agents. Chem Biol Interact 2016; 259:319-326. [DOI: 10.1016/j.cbi.2016.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/16/2015] [Accepted: 02/10/2016] [Indexed: 02/05/2023]
|
36
|
de Lima WEA, Francisco A, da Cunha EFF, Radic Z, Taylor P, França TCC, Ramalho TC. Mechanistic studies of new oximes reactivators of human butyryl cholinesterase inhibited by cyclosarin and sarin. J Biomol Struct Dyn 2016; 35:1272-1282. [PMID: 27125569 DOI: 10.1080/07391102.2016.1178173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Butyryl cholinesterase (BChE) has been seen as a key enzyme in the search for new strategies in the treatment of poisoning by organophosphates (OPs), since human BChE (HssBChE), complexed with the appropriate oxime, can be a suitable scavenger and deactivator for OPs in the blood stream. However, the efficacy of HssBChE is limited by its strict stoichiometric scavenging, slow reactivation, and propensity for aging. The improvement of the reactivation rate by new and more efficient oximes could contribute to mitigate this problem and increase the HssBChE efficiency as scavenger. Several oximes have been synthesized and tested with this goal, some with promising results, but the mechanistic aspects of the reactivation reaction are not fully understood yet. In order to better investigate this mechanism, docking and mixed quantum and molecular mechanics combined with principal components analysis were performed here to evaluate the capacity of reactivation and determine the preferred route for the reactivation reaction of two new oximes on HssBChE inhibited by the neurotoxic agents cyclosarin and sarin. Plots of potential energies were calculated and all the transition states of the reactional mechanism were determined. Our results showed a good correlation with experimental data and pointed to the most efficient oxime with both OPs. The protocol used could be a suitable tool for a preliminary evaluation of the HssBChE reactivation rates by new oximes.
Collapse
Affiliation(s)
- Willian E Amaral de Lima
- a Laboratory of Molecular Modeling, Chemistry Department , Federal University of Lavras , Lavras , MG 37200-000 , Brazil
| | - Ander Francisco
- a Laboratory of Molecular Modeling, Chemistry Department , Federal University of Lavras , Lavras , MG 37200-000 , Brazil
| | - Elaine F F da Cunha
- a Laboratory of Molecular Modeling, Chemistry Department , Federal University of Lavras , Lavras , MG 37200-000 , Brazil
| | - Zoran Radic
- b Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California at San Diego , San Diego , CA , USA
| | - Palmer Taylor
- b Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California at San Diego , San Diego , CA , USA
| | - Tanos C C França
- c Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD) , Military Institute of Engineering , Rio de Janeiro , RJ 22290-270 , Brazil.,d Department of Chemistry & Biochemistry , Concordia University , Montreal , QC , Canada.,e Faculty of Informatics and Management, Center for Basic and Applied Research , University of Hradec Kralove , Hradec Kralove , Czech Republic
| | - Teodorico C Ramalho
- a Laboratory of Molecular Modeling, Chemistry Department , Federal University of Lavras , Lavras , MG 37200-000 , Brazil.,e Faculty of Informatics and Management, Center for Basic and Applied Research , University of Hradec Kralove , Hradec Kralove , Czech Republic
| |
Collapse
|
37
|
Lo R, Chandar NB, Ghosh S, Ganguly B. The reactivation of tabun-inhibited mutant AChE with Ortho-7: steered molecular dynamics and quantum chemical studies. MOLECULAR BIOSYSTEMS 2016; 12:1224-31. [PMID: 26879641 DOI: 10.1039/c5mb00735f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly toxic nerve agent, tabun, can inhibit acetylcholinesterase (AChE) at cholinergic sites, which leads to serious cardiovascular complications, respiratory compromise and death. We have examined the structural features of the tabun-conjugated AChE complex with an oxime reactivator, Ortho-7, to provide a strategy for designing new and efficient reactivators. Mutation of mAChE within the choline binding site by Y337A and F338A and its interaction with Ortho-7 has been investigated using steered molecular dynamics (SMD) and quantum chemical methods. The overall study shows that after mutagenesis (Y337A), the reactivator can approach more freely towards the phosphorylated active site of serine without any significant steric hindrance in the presence of tabun compared to the wild type and double mutant. Furthermore, the poor binding of Ortho-7 with the peripheral residues of mAChE in the case of the single mutant compared to that of the wild-type and double mutant (Y337A/F338A) can contribute to better efficacy in the former case. Ortho-7 has formed a greater number of hydrogen bonds with the active site surrounding residues His447 and Phe295 in the case of the single mutant (Y337A), and that stabilizes the drug molecule for an effective reactivation process. The DFT M05-2X/6-31+G(d) level of theory shows that the binding energy of Ortho-7 with the single mutant (Y337A) is energetically more preferred (-19.8 kcal mol(-1)) than the wild-type (-8.1 kcal mol(-1)) and double mutant (Y337A/F338A) (-16.0 kcal mol(-1)). The study reveals that both the orientation of the oxime reactivator for nucleophilic attack and the stabilization of the reactivator at the active site would be crucial for the design of an efficient reactivator.
Collapse
Affiliation(s)
- Rabindranath Lo
- Computation and Simulation Unit (Analytical Division and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India-364 002.
| | | | | | | |
Collapse
|
38
|
In silico studies on the role of mutant Y337A to reactivate tabun inhibited mAChE with K048. Chem Biol Interact 2015; 242:299-306. [DOI: 10.1016/j.cbi.2015.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/11/2015] [Accepted: 10/15/2015] [Indexed: 01/18/2023]
|
39
|
Terekhov S, Smirnov I, Bobik T, Shamborant O, Zenkova M, Chernolovskaya E, Gladkikh D, Murashev A, Dyachenko I, Palikov V, Palikova Y, Knorre V, Belogurov A, Ponomarenko N, Blackburn GM, Masson P, Gabibov A. A novel expression cassette delivers efficient production of exclusively tetrameric human butyrylcholinesterase with improved pharmacokinetics for protection against organophosphate poisoning. Biochimie 2015; 118:51-9. [DOI: 10.1016/j.biochi.2015.07.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
|
40
|
Kovarik Z, Hrvat NM, Katalinić M, Sit RK, Paradyse A, Žunec S, Musilek K, Fokin VV, Taylor P, Radić Z. Catalytic Soman Scavenging by the Y337A/F338A Acetylcholinesterase Mutant Assisted with Novel Site-Directed Aldoximes. Chem Res Toxicol 2015; 28:1036-44. [PMID: 25835984 PMCID: PMC4791098 DOI: 10.1021/acs.chemrestox.5b00060] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure to the nerve agent soman is difficult to treat due to the rapid dealkylation of the soman-acetylcholinesterase (AChE) conjugate known as aging. Oxime antidotes commonly used to reactivate organophosphate inhibited AChE are ineffective against soman, while the efficacy of the recommended nerve agent bioscavenger butyrylcholinesterase is limited by strictly stoichiometric scavenging. To overcome this limitation, we tested ex vivo, in human blood, and in vivo, in soman exposed mice, the capacity of aging-resistant human AChE mutant Y337A/F338A in combination with oxime HI-6 to act as a catalytic bioscavenger of soman. HI-6 was previously shown in vitro to efficiently reactivate this mutant upon soman, as well as VX, cyclosarin, sarin, and paraoxon, inhibition. We here demonstrate that ex vivo, in whole human blood, 1 μM soman was detoxified within 30 min when supplemented with 0.5 μM Y337A/F338A AChE and 100 μM HI-6. This combination was further tested in vivo. Catalytic scavenging of soman in mice improved the therapeutic outcome and resulted in the delayed onset of toxicity symptoms. Furthermore, in a preliminary in vitro screen we identified an even more efficacious oxime than HI-6, in a series of 42 pyridinium aldoximes, and 5 imidazole 2-aldoxime N-propylpyridinium derivatives. One of the later imidazole aldoximes, RS-170B, was a 2-3-fold more effective reactivator of Y337A/F338A AChE than HI-6 due to the smaller imidazole ring, as indicated by computational molecular models, that affords a more productive angle of nucleophilic attack.
Collapse
Affiliation(s)
- Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Nikolina Maček Hrvat
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Rakesh K. Sit
- Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alexander Paradyse
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Valery V. Fokin
- Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Palmer Taylor
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| | - Zoran Radić
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650, USA
| |
Collapse
|
41
|
Schmidt HR, Radić Z, Taylor P, Fradinger EA. Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system. Toxicol Appl Pharmacol 2015; 284:197-203. [DOI: 10.1016/j.taap.2015.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/28/2015] [Accepted: 02/05/2015] [Indexed: 11/29/2022]
|
42
|
Mangas I, Taylor P, Vilanova E, Estévez J, França TCC, Komives E, Radić Z. Resolving pathways of interaction of mipafox and a sarin analog with human acetylcholinesterase by kinetics, mass spectrometry and molecular modeling approaches. Arch Toxicol 2015; 90:603-16. [PMID: 25743373 DOI: 10.1007/s00204-015-1481-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/12/2015] [Indexed: 01/07/2023]
Abstract
The hydroxyl oxygen of the catalytic triad serine in the active center of serine hydrolase acetylcholinesterase (AChE) attacks organophosphorus compounds (OPs) at the phosphorus atom to displace the primary leaving group and to form a covalent bond. Inhibited AChE can be reactivated by cleavage of the Ser-phosphorus bond either spontaneously or through a reaction with nucleophilic agents, such as oximes. At the same time, the inhibited AChE adduct can lose part of the molecule by progressive dealkylation over time in a process called aging. Reactivation of the aged enzyme has not yet been demonstrated. Here, our goal was to study oxime reactivation and aging reactions of human AChE inhibited by mipafox or a sarin analog (Flu-MPs, fluorescent methylphosphonate). Progressive reactivation was observed after Flu-MPs inhibition using oxime 2-PAM. However, no reactivation was observed after mipafox inhibition with 2-PAM or the more potent oximes used. A peptide fingerprinted mass spectrometry (MS) method, which clearly distinguished the peptide with the active serine (active center peptide, ACP) of the human AChE adducted with OPs, was developed by MALDI-TOF and MALDI-TOF/TOF. The ACP was detected with a diethyl-phosphorylated adduct after paraoxon inhibition, and with an isopropylmethyl-phosphonylated and a methyl-phosphonylated adduct after Flu-MPs inhibition and subsequent aging. Nevertheless, nonaged nonreactivated complexes were seen after mipafox inhibition and incubation with oximes, where MS data showed an ACP with an NN diisopropyl phosphoryl adduct. The kinetic experiments showed no reactivation of activity. The computational molecular model analysis of the mipafox-inhibited hAChE plots of energy versus distance between the atoms separated by dealkylation showed a high energy demand, thus little aging probability. However, with Flu-MPs and DFP, where aging was observed in our MS data and in previously published crystal structures, the energy demand calculated in modeling was lower and, consequently, aging appeared as a more likely reaction. We document here direct evidence for a phosphorylated hAChE refractory to oxime reactivation, although we observed no aging.
Collapse
Affiliation(s)
- I Mangas
- Unit of Toxicology and Chemical Safety, Institute of Bioengineering, University Miguel Hernandez of Elche, Alicante, Spain.
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, Brazil.
| | - P Taylor
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - E Vilanova
- Unit of Toxicology and Chemical Safety, Institute of Bioengineering, University Miguel Hernandez of Elche, Alicante, Spain
| | - J Estévez
- Unit of Toxicology and Chemical Safety, Institute of Bioengineering, University Miguel Hernandez of Elche, Alicante, Spain
| | - T C C França
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, Brazil
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Králové, Hradec Králové, Czech Republic
| | - E Komives
- Department of Chemistry-Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Z Radić
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
43
|
Chambers C, Luo C, Tong M, Yang Y, Saxena A. Probing the role of amino acids in oxime-mediated reactivation of nerve agent-inhibited human acetylcholinesterase. Toxicol In Vitro 2014; 29:408-14. [PMID: 25451328 DOI: 10.1016/j.tiv.2014.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/20/2014] [Accepted: 11/02/2014] [Indexed: 11/25/2022]
Abstract
In this study, we employed site-directed mutagenesis to understand the role of amino acids in the gorge in oxime-induced reactivation of nerve agent-inhibited human (Hu) acetylcholinesterase (AChE). The organophosphorus (OP) nerve agents studied included GA (tabun), GB (sarin), GF (cyclosarin), VX, and VR. The kinetics of reactivation were examined using both the mono-pyridinium oxime 2-PAM and bis-pyridinium oximes MMB4, HI-6, and HLö-7. The second-order reactivation rate constants were used to compare reactivation of nerve agent-inhibited wild-type (WT) and mutant enzymes. Residues including Y72, Y124 and W286 were found to play important roles in reactivation by bis-pyridinium, but not by mono-pyridinium oximes. Residue Y124 also was found to play a key role in reactivation by HI-6 and HLö-7, while E202 was important for reactivation by all oximes. Residue substitutions of F295 by Leu and Y337 by Ala showed enhanced reactivation by bis-pyridinium oximes MMB4, HI-6, and HLö-7, possibly by providing more accessibility of the OP moiety associated at the active-site serine to the oxime. These results are similar to those observed previously with bovine AChE and demonstrate that there is significant similarity between human and bovine AChEs with regard to oxime reactivation.
Collapse
Affiliation(s)
- Carolyn Chambers
- Walter Reed Army Institute of Research, Division of Biochemistry, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA
| | - Chunyuan Luo
- Walter Reed Army Institute of Research, Division of Biochemistry, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| | - Min Tong
- Walter Reed Army Institute of Research, Division of Biochemistry, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| | - Yerie Yang
- Walter Reed Army Institute of Research, Division of Biochemistry, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA
| | - Ashima Saxena
- Walter Reed Army Institute of Research, Division of Biochemistry, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA.
| |
Collapse
|
44
|
Sit RK, Fokin VV, Amitai G, Sharpless KB, Taylor P, Radić Z. Imidazole aldoximes effective in assisting butyrylcholinesterase catalysis of organophosphate detoxification. J Med Chem 2014; 57:1378-89. [PMID: 24571195 PMCID: PMC4167068 DOI: 10.1021/jm401650z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Intoxication
by organophosphate (OP) nerve agents and pesticides
should be addressed by efficient, quickly deployable countermeasures
such as antidotes reactivating acetylcholinesterase or scavenging
the parent OP. We present here synthesis and initial in vitro characterization of 14 imidazole aldoximes and their structural
refinement into three efficient reactivators of human butyrylcholinesterase
(hBChE) inhibited covalently by nerve agent OPs, sarin, cyclosarin,
VX, and the OP pesticide metabolite, paraoxon. Rapid reactivation
of OP–hBChE conjugates by uncharged and nonprotonated tertiary
imidazole aldoximes allows the design of a new OP countermeasure by
conversion of hBChE from a stoichiometric to catalytic OP bioscavenger
with the prospect of oral bioavailability and central nervous system
penetration. The enhanced in vitro reactivation efficacy
determined for tertiary imidazole aldoximes compared to that of their
quaternary N-methyl imidazolium analogues is attributed
to ion pairing of the cationic imidazolium with Asp 70, altering a
reactive alignment of the aldoxime with the phosphorus in the OP–hBChE
conjugate.
Collapse
Affiliation(s)
- Rakesh K Sit
- Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
45
|
Elsinghorst PW, Worek F, Thiermann H, Wille T. Drug development for the management of organophosphorus poisoning. Expert Opin Drug Discov 2013; 8:1467-77. [PMID: 24125474 DOI: 10.1517/17460441.2013.847920] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The continuous application of organophosphate pesticides in developing countries, in addition to the remaining stock piles of chemical warfare nerve agents and their possible use is a significant threat to the public. Yet, today's options for a treatment of organophosphorus poisonings are still inadequate. AREAS COVERED This article provides a concise overview of current and future research trying to improve both prophylaxis and treatment of organophosphorus intoxications. The authors provide a summary of current oxime therapy and highlight several new concepts to overcome existing gaps. This overview of therapeutic options is accompanied by two sections on cyclodextrins, related compounds and bioscavengers, which may be used for either prophylaxis or treatment. For both groups, the authors review current drug design and screening approaches, the resulting developments and future challenges. EXPERT OPINION While the search for one multipotent oxime has been a fruitless endeavor, combination of multiple oximes with complemental and systemic reactivity appears as a valuable concept. Development of potential scavengers, be it cyclodextrins or bioscavengers, is still hampered by insufficient efficacy of these compounds. Future strategies will aim at improving their catalytic efficacy while minimizing immunogenicity.
Collapse
Affiliation(s)
- Paul Wilhelm Elsinghorst
- Bundeswehr Institute of Pharmacology and Toxicology , Neuherbergstraße 11, D-80937 München , Germany +49 89 3168 2305 ; +49 89 3168 2333 ;
| | | | | | | |
Collapse
|
46
|
Nachon F, Brazzolotto X, Trovaslet M, Masson P. Progress in the development of enzyme-based nerve agent bioscavengers. Chem Biol Interact 2013; 206:536-44. [PMID: 23811386 DOI: 10.1016/j.cbi.2013.06.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 11/17/2022]
Abstract
Acetylcholinesterase is the physiological target for acute toxicity of nerve agents. Attempts to protect acetylcholinesterase from phosphylation by nerve agents, is currently achieved by reversible inhibitors that transiently mask the enzyme active site. This approach either protects only peripheral acetylcholinesterase or may cause side effects. Thus, an alternative strategy consists in scavenging nerve agents in the bloodstream before they can reach acetylcholinesterase. Pre- or post-exposure administration of bioscavengers, enzymes that neutralize and detoxify organophosphorus molecules, is one of the major developments of new medical counter-measures. These enzymes act either as stoichiometric or catalytic bioscavengers. Human butyrylcholinesterase is the leading stoichiometric bioscavenger. Current efforts are devoted to its mass production with care to pharmacokinetic properties of the final product for extended lifetime. Development of specific reactivators of phosphylated butyrylcholinesterase, or variants with spontaneous reactivation activity is also envisioned for rapid in situ regeneration of the scavenger. Human paraoxonase 1 is the leading catalytic bioscavenger under development. Research efforts focus on improving its catalytic efficiency toward the most toxic isomers of nerve agents, by means of directed evolution-based strategies. Human prolidase appears to be another promising human enzyme. Other non-human efficient enzymes like bacterial phosphotriesterases or squid diisopropylfluorophosphatase are also considered though their intrinsic immunogenic properties remain challenging for use in humans. Encapsulation, PEGylation and other modifications are possible solutions to address this problem as well as that of their limited lifetime. Finally, gene therapy for in situ generation and delivery of bioscavengers is for the far future, but its proof of concept has been established.
Collapse
Affiliation(s)
- Florian Nachon
- Institut de Recherche Biomédicale des Armées, BP87, 38702 La Tronche Cédex, France.
| | | | | | | |
Collapse
|
47
|
Catalytic detoxification of nerve agent and pesticide organophosphates by butyrylcholinesterase assisted with non-pyridinium oximes. Biochem J 2013; 450:231-42. [PMID: 23216060 DOI: 10.1042/bj20121612] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present paper we show a comprehensive in vitro, ex vivo and in vivo study on hydrolytic detoxification of nerve agent and pesticide OPs (organophosphates) catalysed by purified hBChE (human butyrylcholinesterase) in combination with novel non-pyridinium oxime reactivators. We identified TAB2OH (2-trimethylammonio-6-hydroxybenzaldehyde oxime) as an efficient reactivator of OP-hBChE conjugates formed by the nerve agents VX and cyclosarin, and the pesticide paraoxon. It was also functional in reactivation of sarin- and tabun-inhibited hBChE. A 3-5-fold enhancement of in vitro reactivation of VX-, cyclosarin- and paraoxon-inhibited hBChE was observed when compared with the commonly used N-methylpyridinium aldoxime reactivator, 2PAM (2-pyridinealdoxime methiodide). Kinetic analysis showed that the enhancement resulted from improved molecular recognition of corresponding OP-hBChE conjugates by TAB2OH. The unique features of TAB2OH stem from an exocyclic quaternary nitrogen and a hydroxy group, both ortho to an oxime group on a benzene ring. pH-dependences reveal participation of the hydroxy group (pKa=7.6) forming an additional ionizing nucleophile to potentiate the oxime (pKa=10) at physiological pH. The TAB2OH protective indices in therapy of sarin- and paraoxon-exposed mice were enhanced by 30-60% when they were treated with a combination of TAB2OH and sub-stoichiometric hBChE. The results of the present study establish that oxime-assisted catalysis is feasible for OP bioscavenging.
Collapse
|
48
|
Kovarik Z, Maček N, Sit RK, Radić Z, Fokin VV, Barry Sharpless K, Taylor P. Centrally acting oximes in reactivation of tabun-phosphoramidated AChE. Chem Biol Interact 2012; 203:77-80. [PMID: 22960624 DOI: 10.1016/j.cbi.2012.08.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
Abstract
Organophosphates (OP) inhibit acetylcholinesterase (AChE, EC 3.1.1.7), both in peripheral tissues and central nervous system (CNS), causing adverse and sometimes fatal effects due to the accumulation of neurotransmitter acetylcholine (ACh). The currently used therapy, focusing on the reactivation of inhibited AChE, is limited to peripheral tissues because commonly used quaternary pyridinium oxime reactivators do not cross the blood brain barrier (BBB) at therapeutically relevant levels. A directed library of thirty uncharged oximes that contain tertiary amine or imidazole protonable functional groups that should cross the BBB as unionized species was tested as tabun-hAChE conjugate reactivators along with three reference oximes: DAM (diacetylmonoxime), MINA (monoisonitrosoacetone), and 2-PAM. The oxime RS150D [N-((1-(3-(2-((hydroxyimino)methyl)-1H-imidazol-1-yl)propyl)-1H-1,2,3-triazol-4-yl)methyl)benzamide] was highlighted as the most promising reactivator of the tabun-hAChE conjugate. We also observed that oximes RS194B [N-(2-(azepan-1-yl)ethyl)-2-(hydroxyimino)acetamide] and RS41A [2-(hydroxyimino)-N-(2-(pyrrolidin-1-yl)ethyl)acetamide], which emerged as lead uncharged reactivators of phosphylated hAChE with other OPs (sarin, cyclosarin and VX), exhibited only moderate reactivation potency for tabun inhibited hAChE. This implies that geometry of oxime access to the phosphorus atom conjugated to the active serine is an important criterion for efficient reactivation, along with the chemical nature of the conjugated moiety: phosphorate, phosphonate, or phosphoramidate. Moreover, modification of the active center through mutagenesis enhances the rates of reactivation. The phosphoramidated-hAChE choline-binding site mutant Y337A showed three-times enhanced reactivation capacity with non-triazole imidazole containing aldoximes (RS113B, RS113A and RS115A) and acetamide derivative (RS194B) than with 2PAM.
Collapse
Affiliation(s)
- Zrinka Kovarik
- Institute for Medical Research and Occupational Health, HR-10001 Zagreb, Croatia.
| | | | | | | | | | | | | |
Collapse
|
49
|
Radić Z, Sit RK, Kovarik Z, Berend S, Garcia E, Zhang L, Amitai G, Green C, Radić B, Fokin VV, Sharpless KB, Taylor P. Refinement of structural leads for centrally acting oxime reactivators of phosphylated cholinesterases. J Biol Chem 2012; 287:11798-809. [PMID: 22343626 PMCID: PMC3320928 DOI: 10.1074/jbc.m111.333732] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/03/2012] [Indexed: 11/06/2022] Open
Abstract
We present a systematic structural optimization of uncharged but ionizable N-substituted 2-hydroxyiminoacetamido alkylamine reactivators of phosphylated human acetylcholinesterase (hAChE) intended to catalyze the hydrolysis of organophosphate (OP)-inhibited hAChE in the CNS. Starting with the initial lead oxime RS41A identified in our earlier study and extending to the azepine analog RS194B, reactivation rates for OP-hAChE conjugates formed by sarin, cyclosarin, VX, paraoxon, and tabun are enhanced severalfold in vitro. To analyze the mechanism of intrinsic reactivation of the OP-AChE conjugate and penetration of the blood-brain barrier, the pH dependence of the oxime and amine ionizing groups of the compounds and their nucleophilic potential were examined by UV-visible spectroscopy, (1)H NMR, and oximolysis rates for acetylthiocholine and phosphoester hydrolysis. Oximolysis rates were compared in solution and on AChE conjugates and analyzed in terms of the ionization states for reactivation of the OP-conjugated AChE. In addition, toxicity and pharmacokinetic studies in mice show significantly improved CNS penetration and retention for RS194B when compared with RS41A. The enhanced intrinsic reactivity against the OP-AChE target combined with favorable pharmacokinetic properties resulted in great improvement of antidotal properties of RS194B compared with RS41A and the standard peripherally active oxime, 2-pyridinealdoxime methiodide. Improvement was particularly noticeable when pretreatment of mice with RS194B before OP exposure was combined with RS194B reactivation therapy after the OP insult.
Collapse
Affiliation(s)
- Zoran Radić
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| | - Rakesh K. Sit
- the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Zrinka Kovarik
- the Institute for Medical Research and Occupational Health, HR-10001 Zagreb, Croatia
| | - Suzana Berend
- the Institute for Medical Research and Occupational Health, HR-10001 Zagreb, Croatia
| | - Edzna Garcia
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| | - Limin Zhang
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| | - Gabriel Amitai
- the Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel, and
| | - Carol Green
- SRI International, Menlo Park, California 94025-3493
| | - Božica Radić
- the Institute for Medical Research and Occupational Health, HR-10001 Zagreb, Croatia
| | - Valery V. Fokin
- the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - K. Barry Sharpless
- the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Palmer Taylor
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|