1
|
Chadda A, Kozlov AG, Nguyen B, Lohman TM, Galburt EA. Mycobacterium tuberculosis Ku Stimulates Multi-round DNA Unwinding by UvrD1 Monomers. J Mol Biol 2024; 436:168367. [PMID: 37972687 PMCID: PMC10836237 DOI: 10.1016/j.jmb.2023.168367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of Tuberculosis. During the host response to infection, the bacterium is exposed to both reactive oxygen species and nitrogen intermediates that can cause DNA damage. It is becoming clear that the DNA damage response in Mtb and related actinobacteria function via distinct pathways as compared to well-studied model bacteria. For example, we have previously shown that the DNA repair helicase UvrD1 is activated for processive unwinding via redox-dependent dimerization. In addition, mycobacteria contain a homo-dimeric Ku protein, homologous to the eukaryotic Ku70/Ku80 dimer, that plays roles in double-stranded break repair via non-homologous end-joining. Kuhas been shown to stimulate the helicase activity of UvrD1, but the molecular mechanism, as well as which redox form of UvrD1 is activated, is unknown. We show here that Ku specifically stimulates multi-round unwinding by UvrD1 monomers which are able to slowly unwind DNA, but at rates 100-fold slower than the dimer. We also demonstrate that the UvrD1 C-terminal Tudor domain is required for the formation of a Ku-UvrD1 protein complex and activation. We show that Mtb Ku dimers bind with high nearest neighbor cooperativity to duplex DNA and that UvrD1 activation is observed when the DNA substrate is bound with two or three Ku dimers. Our observations reveal aspects of the interactions between DNA, Mtb Ku, and UvrD1 and highlight the potential role of UvrD1 in multiple DNA repair pathways through different mechanisms of activation.
Collapse
Affiliation(s)
- Ankita Chadda
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Wang P, Fang X, Du R, Wang J, Liu M, Xu P, Li S, Zhang K, Ye S, You Q, Yang Y, Wang C. Principles of Amino Acid and Nucleotide Revealed by Binding Affinities between Homogeneous Oligopeptides and Single-stranded DNA Molecule s. Chembiochem 2022; 23:e202200048. [PMID: 35191574 DOI: 10.1002/cbic.202200048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Indexed: 11/11/2022]
Abstract
We have determined the binding strengths between nucleotides of adenine, thymine, guanine and cytosine in homogeneous single stranded DNAs and homo-octapeptides consisting of 20 common amino acids. We use a bead-based fluorescence assay for these measurements in which octapeptides are immobilized on the bead surface and ssDNAs are in solutions. The results provide a molecular basis for analyzing selectivity, specificity and polymorphisms of amino-acid-nucleotide interactions. Comparative analyses of the distribution of the binding energies reveal unique binding strengths patterns assignable to each pair of DNA nucleotide and amino acid originating from the chemical structures. Pronounced favorable (such as Arg-G , etc.) and unfavorable (such as Ile-T , etc.) binding interactions can be identified in selected groups of amino acid and nucleotide pairs that could provide basis to elucidate energetics of amino-acid-nucleotide interactions. Such interaction selectivity, specificity and polymorphism manifest the contributions from DNA backbone, DNA bases, as well as main chain and side chain of the amino acids.
Collapse
Affiliation(s)
- Pengyu Wang
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Xiaocui Fang
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Rong Du
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Jiali Wang
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Mingpeng Liu
- Tsinghua University, Department of Chemistry, CHINA
| | - Peng Xu
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Shiqi Li
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Kaiyue Zhang
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Siyuan Ye
- Tsinghua University, Department of Chemistry, CHINA
| | - Qing You
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Yanlian Yang
- NCNST: National Center for Nanoscience and Technology, Key Laboratory for Biological Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), Key Laboratory of Standardization and Measurement for Nanotechnology (Chinese Academy of Sciences), and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CHINA
| | - Chen Wang
- National Center for NanoScience and Technology, China(NCNST), Beijing, CHINA
| |
Collapse
|
3
|
Zahid S, Seif El Dahan M, Iehl F, Fernandez-Varela P, Le Du MH, Ropars V, Charbonnier JB. The Multifaceted Roles of Ku70/80. Int J Mol Sci 2021; 22:ijms22084134. [PMID: 33923616 PMCID: PMC8073936 DOI: 10.3390/ijms22084134] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
DNA double-strand breaks (DSBs) are accidental lesions generated by various endogenous or exogenous stresses. DSBs are also genetically programmed events during the V(D)J recombination process, meiosis, or other genome rearrangements, and they are intentionally generated to kill cancer during chemo- and radiotherapy. Most DSBs are processed in mammalian cells by the classical nonhomologous end-joining (c-NHEJ) pathway. Understanding the molecular basis of c-NHEJ has major outcomes in several fields, including radiobiology, cancer therapy, immune disease, and genome editing. The heterodimer Ku70/80 (Ku) is a central actor of the c-NHEJ as it rapidly recognizes broken DNA ends in the cell and protects them from nuclease activity. It subsequently recruits many c-NHEJ effectors, including nucleases, polymerases, and the DNA ligase 4 complex. Beyond its DNA repair function, Ku is also involved in several other DNA metabolism processes. Here, we review the structural and functional data on the DNA and RNA recognition properties of Ku implicated in DNA repair and in telomeres maintenance.
Collapse
|
4
|
Measurements of Protein-DNA Complexes Interactions by Isothermal Titration Calorimetry (ITC) and Microscale Thermophoresis (MST). Methods Mol Biol 2021; 2247:125-143. [PMID: 33301115 DOI: 10.1007/978-1-0716-1126-5_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interactions between protein complexes and DNA are central regulators of the cell life. They control the activation and inactivation of a large set of nuclear processes including transcription, replication, recombination, repair, and chromosome structures. In the literature, protein-DNA interactions are characterized by highly complementary approaches including large-scale studies and analyses in cells. Biophysical approaches with purified materials help to evaluate if these interactions are direct or not. They provide quantitative information on the strength and specificity of the interactions between proteins or protein complexes and their DNA substrates. Isothermal titration calorimetry (ITC) and microscale thermophoresis (MST) are widely used and are complementary methods to characterize nucleo-protein complexes and quantitatively measure protein-DNA interactions. We present here protocols to analyze the interactions between a DNA repair complex, Ku70-Ku80 (Ku) (154 kDa), and DNA substrates. ITC is a label-free method performed with both partners in solution. It serves to determine the dissociation constant (Kd), the enthalpy (ΔH), and the stoichiometry N of an interaction. MST is used to measure the Kd between the protein or the DNA labeled with a fluorescent probe. We report the data obtained on Ku-DNA interactions with ITC and MST and discuss advantages and drawbacks of both the methods.
Collapse
|
5
|
Amirbekyan KY, Shahinyan GA, Ghazoyan HH, Sargsyan HR, Markarian SA. Fluorescence anisotropy studies on the Hoechst 33258-DNA interaction: the solvent effect. J Biomol Struct Dyn 2020; 39:4902-4906. [PMID: 32568619 DOI: 10.1080/07391102.2020.1782267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Fluorescence anisotropy method was applied to characterize the interactions of DNA minor groove binder Hoechst 33258 with different solvents without and in the presence of DNA. It is important to study the interaction of small molecules with DNA for the purpose of better understanding the mechanism of their action, as well as to design novel and more effective compounds. Spectroscopic study of the ligand in different binary mixed solvents containing DMSO, alcohols and buffer was carried out. Studies were performed without and in the presence of DNA. Fluorescence anisotropy studies reveal the characteristics of Hoechst 33258 in different mixed solvents. The results show the strong dependence of the anisotropy of Hoechst 33258 on solvent content, viscosity and intermolecular interactions. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Karen Yu Amirbekyan
- Department of Physical Chemistry, Yerevan State University, Yerevan, Armenia
| | - Gohar A Shahinyan
- Department of Physical Chemistry, Yerevan State University, Yerevan, Armenia
| | - Heghine H Ghazoyan
- Department of Physical Chemistry, Yerevan State University, Yerevan, Armenia
| | - Hasmik R Sargsyan
- Department of Physical Chemistry, Yerevan State University, Yerevan, Armenia
| | - Shiraz A Markarian
- Department of Physical Chemistry, Yerevan State University, Yerevan, Armenia
| |
Collapse
|
6
|
Mondal S, Bandyopadhyay S. Heterogeneous Dynamical Environment at the Interface of a Protein-DNA Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4567-4581. [PMID: 32267701 DOI: 10.1021/acs.langmuir.9b03175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Binding between protein and DNA is an essential process to regulate different biological activities. Two puzzling questions in protein-DNA recognition are (i) how the protein's binding domain identifies the DNA sequence in an aqueous solution and (ii) how the formation of the complex alters the dynamical environment around it. In this work, we present results obtained from molecular dynamics simulations of the N-terminal α-helical domain of the λ-repressor protein (in dimeric form) bound to the corresponding operator DNA. Effects of formation of the complex in modifying the microscopic dynamics of water as well as the kinetics of hydrogen bonds at the interface have been explored. Locally heterogeneous restricted water motions at the complex interface have been observed, the extent of restriction being more significant around the directly bound residues of the protein and the DNA. In particular, the calculation revealed the existence of significantly constrained motionally restricted water layer that can form either bridges around the directly bound residues of the protein and DNA or are engaged in forming water-mediated contacts between a fraction of the unbound residues. More importantly, it is observed that the restricted water motion around the complex is correlated with the hydrogen bond relaxation time scale at the interface. It is further demonstrated that the kinetics of water-water hydrogen bonds involving the bridged water are influenced more due to complex formation.
Collapse
Affiliation(s)
- Sandip Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
- Centre for Computational and Data Sciences, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
7
|
Mondal S, Bandyopadhyay S. Flexibility of the Binding Regions of a Protein-DNA Complex and the Structure and Ordering of Interfacial Water. J Chem Inf Model 2019; 59:4427-4437. [PMID: 31580657 DOI: 10.1021/acs.jcim.9b00685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Noncovalent interactions between protein and DNA are important to comprehend different biological activities in living organisms. One important issue is how the protein identifies the target DNA and the influence of the resulting protein-DNA complex on the hydration environment around it. In this study, we have carried out atomistic molecular dynamics simulations of the protein-DNA complex formed by the dimeric form of the α-helical N-terminal domain of the λ-repressor protein with its operator DNA. Local heterogeneous flexibilities of the residues of the protein and the DNA components that are involved in binding and the microscopic structure and ordering of water around those have been investigated in detail. The calculations revealed concurrent existence of highly ordered as well as disordered water molecules at the interface. It is found that a fraction of doubly coordinated water molecules exhibit high degree of ordering at the interface, while the randomly oriented ones are coordinated with three water molecules. The effect has been found to be more around the protein and DNA residues that are in contact in the complexed state. We believe that such highly ordered two-coordinated water molecules are likely to act as an adhesive to facilitate the formation of a protein-DNA complex and maintain its structural stability.
Collapse
|
8
|
Kutnowski N, Shmulevich F, Davidov G, Shahar A, Bar-Zvi D, Eichler J, Zarivach R, Shaanan B. Specificity of protein-DNA interactions in hypersaline environment: structural studies on complexes of Halobacterium salinarum oxidative stress-dependent protein hsRosR. Nucleic Acids Res 2019; 47:8860-8873. [PMID: 31310308 PMCID: PMC7145548 DOI: 10.1093/nar/gkz604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/13/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Interactions between proteins and DNA are crucial for all biological systems. Many studies have shown the dependence of protein–DNA interactions on the surrounding salt concentration. How these interactions are maintained in the hypersaline environments that halophiles inhabit remains puzzling. Towards solving this enigma, we identified the DNA motif recognized by the Halobactrium salinarum ROS-dependent transcription factor (hsRosR), determined the structure of several hsRosR–DNA complexes and investigated the DNA-binding process under extreme high-salt conditions. The picture that emerges from this work contributes to our understanding of the principles underlying the interplay between electrostatic interactions and salt-mediated protein–DNA interactions in an ionic environment characterized by molar salt concentrations.
Collapse
Affiliation(s)
- Nitzan Kutnowski
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Fania Shmulevich
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Geula Davidov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel.,National Institute of Biotechnology in the Negev, Ben-Gurion University, Beer Sheva 8410510, Israel
| | - Anat Shahar
- Macromolecular Crystallography Research Center, National Institute of Biotechnology in the Negev, Ben-Gurion University, Beer Sheva 8410510, Israel
| | - Dudy Bar-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel.,National Institute of Biotechnology in the Negev, Ben-Gurion University, Beer Sheva 8410510, Israel
| | - Boaz Shaanan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| |
Collapse
|
9
|
Agarwal S, Cho TY. Biochemical and structural characterization of a novel cooperative binding mode by Pit-1 with CATT repeats in the macrophage migration inhibitory factor promoter. Nucleic Acids Res 2019; 46:929-941. [PMID: 29186613 PMCID: PMC5778499 DOI: 10.1093/nar/gkx1183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/14/2017] [Indexed: 12/25/2022] Open
Abstract
Overexpression of the proinflammatory cytokine macrophage migration inhibitory factor (MIF) is linked to a number of autoimmune diseases and cancer. MIF production has been correlated to the number of CATT repeats in a microsatellite region upstream of the MIF gene. We have characterized the interaction of pituitary-specific positive transcription factor 1 (Pit-1) with a portion of the MIF promoter region flanking a microsatellite polymorphism (-794 CATT5-8). Using fluorescence anisotropy, we quantified tight complex formation between Pit-1 and an oligonucleotide consisting of eight consecutive CATT repeats (8xCATT) with an apparent Kd of 35 nM. Using competition experiments we found a 23 base pair oligonucleotide with 4xCATT repeats to be the minimum DNA sequence necessary for high affinity interaction with Pit-1. The stoichiometry of the Pit-1 DNA interaction was determined to be 2:1 and binding is cooperative in nature. We subsequently structurally characterized the complex and discovered a completely novel binding mode for Pit-1 in contrast to previously described Pit-1 complex structures. The affinity of Pit-1 for the CATT target sequence was found to be highly dependent on cooperativity. This work lays the groundwork for understanding transcriptional regulation of MIF and pursuing Pit-1 as a therapeutic target to treat MIF-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Sorabh Agarwal
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Thomas Yoonsang Cho
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.,Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
10
|
Plugged into the Ku-DNA hub: The NHEJ network. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 147:62-76. [PMID: 30851288 DOI: 10.1016/j.pbiomolbio.2019.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022]
Abstract
In vertebrates, double-strand breaks in DNA are primarily repaired by Non-Homologous End-Joining (NHEJ). The ring-shaped Ku heterodimer rapidly senses and threads onto broken DNA ends forming a recruiting hub. Through protein-protein contacts eventually reinforced by protein-DNA interactions, the Ku-DNA hub attracts a series of specialized proteins with scaffolding and/or enzymatic properties. To shed light on these dynamic interplays, we review here current knowledge on proteins directly interacting with Ku and on the contact points involved, with a particular accent on the different classes of Ku-binding motifs identified in several Ku partners. An integrated structural model of the core NHEJ network at the synapsis step is proposed.
Collapse
|
11
|
Mondal S, Chakraborty K, Bandyopadhyay S. Microscopic understanding of the conformational features of a protein–DNA complex. Phys Chem Chem Phys 2017; 19:32459-32472. [DOI: 10.1039/c7cp05161a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein–DNA interactions play crucial roles in different stages of genetic activities, such as replication of genome, initiation of transcription,etc.
Collapse
Affiliation(s)
- Sandip Mondal
- Molecular Modeling Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Kaushik Chakraborty
- Molecular Modeling Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| |
Collapse
|
12
|
Chakraborty K, Bandyopadhyay S. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules. J Chem Phys 2015; 143:045106. [DOI: 10.1063/1.4927568] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Kaushik Chakraborty
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
13
|
The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation – No simple task. DNA Repair (Amst) 2014; 17:64-73. [DOI: 10.1016/j.dnarep.2014.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/10/2014] [Accepted: 01/24/2014] [Indexed: 01/03/2023]
|
14
|
Xeroderma pigmentosum complementation group C protein (XPC) serves as a general sensor of damaged DNA. DNA Repair (Amst) 2013; 12:947-53. [PMID: 24051049 DOI: 10.1016/j.dnarep.2013.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 11/22/2022]
Abstract
The Xeroderma pigmentosum complementation group C protein (XPC) serves as the primary initiating factor in the global genome nucleotide excision repair pathway (GG-NER). Recent reports suggest XPC also stimulates repair of oxidative lesions by base excision repair. However, whether XPC distinguishes among various types of DNA lesions remains unclear. Although the DNA binding properties of XPC have been studied by several groups, there is a lack of consensus over whether XPC discriminates between DNA damaged by lesions associated with NER activity versus those that are not. In this study we report a high-throughput fluorescence anisotropy assay used to measure the DNA binding affinity of XPC for a panel of DNA substrates containing a range of chemical lesions in a common sequence. Our results demonstrate that while XPC displays a preference for binding damaged DNA, the identity of the lesion has little effect on the binding affinity of XPC. Moreover, XPC was equally capable of binding to DNA substrates containing lesions not repaired by GG-NER. Our results suggest XPC may act as a general sensor of damaged DNA that is capable of recognizing DNA containing lesions not repaired by NER.
Collapse
|
15
|
Valton J, Dupuy A, Daboussi F, Thomas S, Maréchal A, Macmaster R, Melliand K, Juillerat A, Duchateau P. Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 2012; 287:38427-32. [PMID: 23019344 DOI: 10.1074/jbc.c112.408864] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Within the past 2 years, transcription activator-like effector (TALE) DNA binding domains have emerged as the new generation of engineerable platform for production of custom DNA binding domains. However, their recently described sensitivity to cytosine methylation represents a major bottleneck for genome engineering applications. Using a combination of biochemical, structural, and cellular approaches, we were able to identify the molecular basis of such sensitivity and propose a simple, drug-free, and universal method to overcome it.
Collapse
Affiliation(s)
- Julien Valton
- Cellectis S.A., 8 rue de la croix Jarry, 75013 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li Y, Qian H, Wang Y, Cucinotta FA. A stochastic model of DNA fragments rejoining. PLoS One 2012; 7:e44293. [PMID: 23028515 PMCID: PMC3441539 DOI: 10.1371/journal.pone.0044293] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/01/2012] [Indexed: 11/18/2022] Open
Abstract
When cells are exposed to ionizing radiation, DNA damages in the form of single strand breaks (SSBs), double strand breaks (DSBs), base damage or their combinations are frequent events. It is known that the complexity and severity of DNA damage depends on the quality of radiation, and the microscopic dose deposited in small segments of DNA, which is often related to the linear transfer energy (LET) of the radiation. Experimental studies have suggested that under the same dose, high LET radiation induces more small DNA fragments than low-LET radiation, which affects Ku efficiently binding with DNA end and might be a main reason for high-LET radiation induced RBE [1] since DNA DSB is a major cause for radiation-induced cell death. In this work, we proposed a mathematical model of DNA fragments rejoining according to non-homologous end joining (NHEJ) mechanism. By conducting Gillespie's stochastic simulation, we found several factors that impact the efficiency of DNA fragments rejoining. Our results demonstrated that aberrant DNA damage repair can result predominantly from the occurrence of a spatial distribution of DSBs leading to short DNA fragments. Because of the low efficiency that short DNA fragments recruit repair protein and release the protein residue after fragments rejoining, Ku-dependent NHEJ is significantly interfered with short fragments. Overall, our work suggests that inhibiting the Ku-dependent NHEJ may significantly contribute to the increased efficiency for cell death and mutation observed for high LET radiation.
Collapse
Affiliation(s)
- Yongfeng Li
- Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, United States of America
| | - Hong Qian
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| | - Ya Wang
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, United States of America
| | - Francis A. Cucinotta
- NASA, Lyndon B. Johnson Space Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
17
|
Valton J, Daboussi F, Leduc S, Molina R, Redondo P, Macmaster R, Montoya G, Duchateau P. 5'-Cytosine-phosphoguanine (CpG) methylation impacts the activity of natural and engineered meganucleases. J Biol Chem 2012; 287:30139-50. [PMID: 22740697 DOI: 10.1074/jbc.m112.379966] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this study, we asked whether CpG methylation could influence the DNA binding affinity and activity of meganucleases used for genome engineering applications. A combination of biochemical and structural approaches enabled us to demonstrate that CpG methylation decreases I-CreI DNA binding affinity and inhibits its endonuclease activity in vitro. This inhibition depends on the position of the methylated cytosine within the DNA target and was almost total when it is located inside the central tetrabase. Crystal structures of I-CreI bound to methylated cognate target DNA suggested a molecular basis for such inhibition, although the precise mechanism still has to be specified. Finally, we demonstrated that the efficacy of engineered meganucleases can be diminished by CpG methylation of the targeted endogenous site, and we proposed a rational design of the meganuclease DNA binding domain to alleviate such an effect. We conclude that although activity and sequence specificity of engineered meganucleases are crucial parameters, target DNA epigenetic modifications need to be considered for successful gene editions.
Collapse
Affiliation(s)
- Julien Valton
- CELLECTIS S.A., 8 Rue de la Croix Jarry, 75013 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sinha SK, Bandyopadhyay S. Conformational fluctuations of a protein-DNA complex and the structure and ordering of water around it. J Chem Phys 2012; 135:245104. [PMID: 22225189 DOI: 10.1063/1.3670877] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Protein-DNA binding is an important process responsible for the regulation of genetic activities in living organisms. The most crucial issue in this problem is how the protein recognizes the DNA and identifies its target base sequences. Water molecules present around the protein and DNA are also expected to play an important role in mediating the recognition process and controlling the structure of the complex. We have performed atomistic molecular dynamics simulations of an aqueous solution of the protein-DNA complex formed between the DNA binding domain of human TRF1 protein and a telomeric DNA. The conformational fluctuations of the protein and DNA and the microscopic structure and ordering of water around them in the complex have been explored. In agreement with experimental studies, the calculations reveal conformational immobilization of the terminal segments of the protein on complexation. Importantly, it is discovered that both structural adaptations of the protein and DNA, and the subsequent correlation between them to bind, contribute to the net entropy loss associated with the complex formation. Further, it is found that water molecules around the DNA are more structured with significantly higher density and ordering than that around the protein in the complex.
Collapse
Affiliation(s)
- Sudipta Kumar Sinha
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| | | |
Collapse
|
19
|
Sinha SK, Bandyopadhyay S. Dynamic properties of water around a protein-DNA complex from molecular dynamics simulations. J Chem Phys 2012; 135:135101. [PMID: 21992339 DOI: 10.1063/1.3634004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Formation of protein-DNA complex is an important step in regulation of genes in living organisms. One important issue in this problem is the role played by water in mediating the protein-DNA interactions. In this work, we have carried out atomistic molecular dynamics simulations to explore the heterogeneous dynamics of water molecules present in different regions around a complex formed between the DNA binding domain of human TRF1 protein and a telomeric DNA. It is demonstrated that such heterogeneous water motions around the complex are correlated with the relaxation time scales of hydrogen bonds formed by those water molecules with the protein and DNA. The calculations reveal the existence of a fraction of extraordinarily restricted water molecules forming a highly rigid thin layer in between the binding motifs of the protein and DNA. It is further proved that higher rigidity of water layers around the complex originates from more frequent reformations of broken water-water hydrogen bonds. Importantly, it is found that the formation of the complex affects the transverse and longitudinal degrees of freedom of surrounding water molecules in a nonuniform manner.
Collapse
Affiliation(s)
- Sudipta Kumar Sinha
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302, India
| | | |
Collapse
|
20
|
Hu S, Cucinotta FA. Computational studies on full-length Ku70 with DNA duplexes: base interactions and a helical path. J Mol Model 2011; 18:1935-49. [DOI: 10.1007/s00894-011-1220-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 08/09/2011] [Indexed: 11/30/2022]
|
21
|
Privalov PL, Dragan AI, Crane-Robinson C. Interpreting protein/DNA interactions: distinguishing specific from non-specific and electrostatic from non-electrostatic components. Nucleic Acids Res 2010; 39:2483-91. [PMID: 21071403 PMCID: PMC3074165 DOI: 10.1093/nar/gkq984] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We discuss the effectiveness of existing methods for understanding the forces driving the formation of specific protein-DNA complexes. Theoretical approaches using the Poisson-Boltzmann (PB) equation to analyse interactions between these highly charged macromolecules to form known structures are contrasted with an empirical approach that analyses the effects of salt on the stability of these complexes and assumes that release of counter-ions associated with the free DNA plays the dominant role in their formation. According to this counter-ion condensation (CC) concept, the salt-dependent part of the Gibbs energy of binding, which is defined as the electrostatic component, is fully entropic and its dependence on the salt concentration represents the number of ionic contacts present in the complex. It is shown that although this electrostatic component provides the majority of the Gibbs energy of complex formation and does not depend on the DNA sequence, the salt-independent part of the Gibbs energy--usually regarded as non-electrostatic--is sequence specific. The CC approach thus has considerable practical value for studying protein/DNA complexes, while practical applications of PB analysis have yet to demonstrate their merit.
Collapse
Affiliation(s)
- Peter L Privalov
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
22
|
Wang H, Zhang X, Wang P, Yu X, Essers J, Chen D, Kanaar R, Takeda S, Wang Y. Characteristics of DNA-binding proteins determine the biological sensitivity to high-linear energy transfer radiation. Nucleic Acids Res 2010; 38:3245-51. [PMID: 20150414 PMCID: PMC2879532 DOI: 10.1093/nar/gkq069] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Non-homologous end-joining (NHEJ) and homologous recombination repair (HRR), contribute to repair ionizing radiation (IR)-induced DNA double-strand breaks (DSBs). Mre11 binding to DNA is the first step for activating HRR and Ku binding to DNA is the first step for initiating NHEJ. High-linear energy transfer (LET) IR (such as high energy charged particles) killing more cells at the same dose as compared with low-LET IR (such as X or γ rays) is due to inefficient NHEJ. However, these phenomena have not been demonstrated at the animal level and the mechanism by which high-LET IR does not affect the efficiency of HRR remains unclear. In this study, we showed that although wild-type and HRR-deficient mice or DT40 cells are more sensitive to high-LET IR than to low-LET IR, NHEJ deficient mice or DT40 cells are equally sensitive to high- and low-LET IR. We also showed that Mre11 and Ku respond differently to shorter DNA fragments in vitro and to the DNA from high-LET irradiated cells in vivo. These findings provide strong evidence that the different DNA DSB binding properties of Mre11 and Ku determine the different efficiencies of HRR and NHEJ to repair high-LET radiation induced DSBs.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sperber BLHM, Cohen Stuart MA, Schols HA, Voragen AGJ, Norde W. Binding of β-Lactolobulin to Pectins Varying in their Overall and Local Charge Density. Biomacromolecules 2009; 10:3246-52. [DOI: 10.1021/bm900812x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bram L. H. M. Sperber
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands, Laboratory of Physical Chemistry and Colloid Science, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8038, 6700 EK Wageningen, The Netherlands, and Department of Biomedical Engineering, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Martien A. Cohen Stuart
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands, Laboratory of Physical Chemistry and Colloid Science, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8038, 6700 EK Wageningen, The Netherlands, and Department of Biomedical Engineering, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henk A. Schols
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands, Laboratory of Physical Chemistry and Colloid Science, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8038, 6700 EK Wageningen, The Netherlands, and Department of Biomedical Engineering, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alphons G. J. Voragen
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands, Laboratory of Physical Chemistry and Colloid Science, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8038, 6700 EK Wageningen, The Netherlands, and Department of Biomedical Engineering, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Willem Norde
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands, Laboratory of Physical Chemistry and Colloid Science, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8038, 6700 EK Wageningen, The Netherlands, and Department of Biomedical Engineering, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
24
|
Merkle D, Zheng D, Ohrt T, Crell K, Schwille P. Cellular dynamics of Ku: characterization and purification of Ku-eGFP. Chembiochem 2008; 9:1251-9. [PMID: 18435448 DOI: 10.1002/cbic.200700750] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ku is a predominantly nuclear protein that functions as a DNA double-strand-break (DSB) binding protein and regulatory subunit of the DNA-dependent protein kinase (DNA-PK). DNA-PK is involved in synapsis and remodeling of broken DNA ends during nonhomologous end-joining (NHEJ) of DNA DSBs. It has also recently been demonstrated that Ku plays roles in cytoplasmic and membrane processes, namely: interaction with matrix metalloproteinase 9, acting as a co-receptor for parvoviral infection, and also interacting with cell polarity protein, Par3. We present a method for creating stable expression of Ku-eGFP in CHO cells and extend the procedure to purify Ku-eGFP for in vitro assaying. We demonstrated that Ku-eGFP localizes to the nucleus of HeLa cells upon microinjection into the cytoplasm as well as localizing to laser induced DNA damage. We also characterized the diffusional dynamics of Ku in the nucleus and in the cytoplasm using fluorescence correlation spectroscopy (FCS). The FCS data suggest that whereas the majority of Ku (70%) in the nucleus is mobile and freely diffusing, in a cellular context, there also exists a significant slow process fraction (30%). Strikingly, in the cytoplasm, this immobile/slow moving fraction is even more pronounced (45%).
Collapse
Affiliation(s)
- Dennis Merkle
- Philips Research, High Tech Campus 11, 5656AE Eindhoven, The Netherlands.
| | | | | | | | | |
Collapse
|
25
|
The Ku-dependent non-homologous end-joining but not other repair pathway is inhibited by high linear energy transfer ionizing radiation. DNA Repair (Amst) 2008; 7:725-33. [DOI: 10.1016/j.dnarep.2008.01.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 01/17/2008] [Accepted: 01/18/2008] [Indexed: 11/17/2022]
|
26
|
Hargreaves VV, Schleif RF. The salt dependence of the interferon regulatory factor 1 DNA binding domain binding to DNA reveals ions are localized around protein and DNA. Biochemistry 2008; 47:4119-28. [PMID: 18324782 DOI: 10.1021/bi702082q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The equilibrium dissociation constant of the DNA binding domain of interferon regulatory factor 1 (IRF1 DBD) for its DNA binding site depends strongly on salt concentration and salt type. These dependencies are consistent with IRF1 DBD binding to DNA, resulting in the release of cations from the DNA and both release of anions from the protein and uptake of a cation by the protein. We demonstrated this by utilizing the fact that the release of fluoride from protein upon complex formation does not contribute to the salt concentration dependence of binding and by studying mutants in which charged residues in IRF1 DBD that form salt bridges with DNA phosphates are changed to alanine. The salt concentration dependencies of the dissociation constants of wild-type IRF1 DBD and the mutants R64A, D73A, K75A, and D73A/K75A were measured in buffer containing NaF, NaCl, or NaBr. The salt concentration and type dependencies of the mutants relative to wild-type IRF1 DBD provide evidence of charge neutralization by solution ions for R64 and by a salt bridge between D73 and K75 in buffer containing chloride or bromide salts. These data also allowed us to determine the number, type, and localization of condensed ions around both IRF1 DBD and its DNA binding site.
Collapse
|
27
|
Costantini S, Woodbine L, Andreoli L, Jeggo PA, Vindigni A. Interaction of the Ku heterodimer with the DNA ligase IV/Xrcc4 complex and its regulation by DNA-PK. DNA Repair (Amst) 2007; 6:712-22. [PMID: 17241822 DOI: 10.1016/j.dnarep.2006.12.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/30/2006] [Accepted: 12/06/2006] [Indexed: 12/12/2022]
Abstract
DNA non-homologous end-joining (NHEJ) is a major mechanism for repairing DNA double-stranded (ds) breaks in mammalian cells. Here, we characterize the interaction between two key components of the NHEJ machinery, the Ku heterodimer and the DNA ligase IV/Xrcc4 complex. Our results demonstrate that Ku interacts with DNA ligase IV via its tandem BRCT domain and that this interaction is enhanced in the presence of Xrcc4 and dsDNA. Moreover, residues 644-748 of DNA ligase IV encompassing the first BRCT motif are necessary for binding. We show that Ku needs to be in its heterodimeric form to bind DNA ligase IV and that the C-terminal tail of Ku80, which mediates binding to DNA-PKcs, is dispensable for DNA ligase IV recognition. Although the interaction between Ku and DNA ligase IV/Xrcc4 occurs in the absence of DNA-PKcs, the presence of the catalytic subunit of DNA-PK kinase enhances complex formation. Previous studies have shown that DNA-PK kinase activity causes disassembly of DNA-PKcs from Ku at the DNA end. Here, we show that DNA-PK kinase activity also results in disassembly of the Ku/DNA ligase IV/Xrcc4 complex. Collectively, our findings provide novel information on the protein-protein interactions that regulate NHEJ in cells.
Collapse
Affiliation(s)
- Silvia Costantini
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012 Trieste, Italy
| | | | | | | | | |
Collapse
|
28
|
Andrews BJ, Lehman JA, Turchi JJ. Kinetic analysis of the Ku-DNA binding activity reveals a redox-dependent alteration in protein structure that stimulates dissociation of the Ku-DNA complex. J Biol Chem 2006; 281:13596-13603. [PMID: 16537541 PMCID: PMC2432111 DOI: 10.1074/jbc.m512787200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ku is a heterodimeric protein comprising 70- and 80-kDa subunits that participate in the non-homologous end-joining (NHEJ) repair pathway for rejoining DNA double strand breaks. We have analyzed the pre-steady state binding of Ku with various DNA duplex substrates and identified a redox-sensitive Ku-DNA interaction. Pre-steady state analysis of Ku DNA binding was monitored via intrinsic Ku quenching upon binding DNA and revealed that, under fully reduced conditions, binding occurred in a single-step process. Reactions performed under limited reduction revealed a two-step binding process, whereas under fully oxidized conditions, we were unable to detect quenching of Ku fluorescence upon binding DNA. The differential quenching observed under the different redox conditions could not be attributed to two Ku molecules binding to a single substrate or Ku sliding inward on the substrate. Although only modest differences in Ku DNA binding activity were observed in the stoichiometric anisotropy and electrophoretic mobility shift assay studies, as a function of redox conditions, a dramatic difference in the rate of Ku dissociation from DNA was observed. This effect was also induced by diamide treatment of Ku and could be abrogated by dithiothreitol treatment, demonstrating a reversible redox effect on the stability of the Ku-DNA complex. The redox-dependent alteration in Ku-DNA interactions is manifested by a redox-dependent alteration in Ku structure, which was confirmed by limited proteolysis and mass spectrometry analyses. The results support a model for the interaction of Ku with DNA that is regulated by redox status and is achieved by altering the dissociation of the Ku-DNA complex.
Collapse
Affiliation(s)
- Brooke J Andrews
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jason A Lehman
- Department of Biomedical Sciences, Wright State University, Dayton, Ohio 45435
| | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
29
|
Bujalowski W. Thermodynamic and kinetic methods of analyses of protein-nucleic acid interactions. From simpler to more complex systems. Chem Rev 2006; 106:556-606. [PMID: 16464018 DOI: 10.1021/cr040462l] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wlodzimierz Bujalowski
- Department of Biochemistry and Molecular Biology, the Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, 77555-1053, USA.
| |
Collapse
|
30
|
Dash C, Marino JP, Le Grice SFJ. Examining Ty3 polypurine tract structure and function by nucleoside analog interference. J Biol Chem 2006; 281:2773-83. [PMID: 16306041 DOI: 10.1074/jbc.m510369200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have combined nucleoside analog interference with chemical footprinting, thermal denaturation, NMR spectroscopy, and biochemical studies to understand recognition of the polypurine tract (PPT) primer of the Saccharomyces cerevisiae long terminal repeat-containing retrotransposon Ty3 by its cognate reverse transcriptase. Locked nucleic acid analogs, which constrain sugar ring geometry, were introduced pairwise throughout the PPT (-)-DNA template, whereas abasic tetrahydrofuran linkages, which lack the nucleobase but preserve the sugar phosphate backbone, were introduced throughout the (-)-strand DNA template and (+)-strand RNA primer. Collectively, our data suggest that both the 5'- and 3'-portions of the PPT-containing RNA/DNA hybrid are sensitive to nucleoside analog substitution, whereas the intervening region can be modified without altering cleavage specificity. These two regions most likely correspond to portions of the PPT that make close contact with the Ty3 reverse transcriptase thumb subdomain and RNase H catalytic center, respectively. Achieving a similar phenotype with nucleoside analogs that have different effects on duplex geometry reveals structural features that are important mediators of Ty3 PPT recognition. Finally, the results from introducing tetrahydrofuran lesions around the scissile PPT/unique 3'-sequence junction indicate that template nucleobase -1 is dispensable for catalysis, whereas a primer nucleobase on either side of the junction is necessary.
Collapse
Affiliation(s)
- Chandravanu Dash
- Resistance Mechanisms Laboratory, HIV Drug Resistance Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
31
|
Dragan AI, Li Z, Makeyeva EN, Milgotina EI, Liu Y, Crane-Robinson C, Privalov PL. Forces Driving the Binding of Homeodomains to DNA†. Biochemistry 2006; 45:141-51. [PMID: 16388589 DOI: 10.1021/bi051705m] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Homeodomains are helix-turn-helix type DNA-binding domains that exhibit sequence-specific DNA binding by insertion of their "recognition" alpha helices into the major groove and a short N-terminal arm into the adjacent minor groove without inducing substantial distortion of the DNA. The stability and DNA binding of four representatives of this family, MATalpha2, engrailed, Antennapedia, and NK-2, and truncated forms of the last two lacking their N-terminal arms have been studied by a combination of optical and microcalorimetric methods at different temperatures and salt concentrations. It was found that the stability of the free homeodomains in solution is rather low and, surprisingly, is reduced by the presence of the N-terminal arm for the Antennapedia and NK-2 domains. Their stabilities depend significantly upon the presence of salt: strongly for NaCl but less so for NaF, demonstrating specific interactions with chloride ions. The enthalpies of association of the homeodomains with their cognate DNAs are negative, at 20 degrees C varying only between -12 and -26 kJ/mol for the intact homeodomains, and the entropies of association are positive; i.e., DNA binding is both enthalpy- and entropy-driven. Analysis of the salt dependence of the association constants showed that the electrostatic component of the Gibbs energy of association resulting from the entropy of mixing of released ions dominates the binding, being about twice the magnitude of the nonelectrostatic component that results from dehydration of the protein/DNA interface, van der Waals interactions, and hydrogen bonding. A comparison of the effects of NaCl/KCl with NaF showed that homeodomain binding results in a release not only of cations from the DNA phosphates but also of chloride ions specifically associated with the proteins. The binding of the basic N-terminal arms in the minor groove is entirely enthalpic with a negative heat capacity effect, i.e., is due to sequence-specific formation of hydrogen bonds and hydrophobic interactions rather than electrostatic contacts with the DNA phosphates.
Collapse
Affiliation(s)
- Anatoly I Dragan
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | |
Collapse
|