1
|
Arp AB, Abel Gutierrez A, Ter Beest M, Franken GA, Warner H, Rodgers Furones A, Kenyon AN, Jäger F, Cabrera-Orefice A, Kläsener K, van Deventer S, Droesen L, Dunlock VME, Classens R, Staniek J, Borst J, Reth M, Brandt U, Gros P, Kuijpers TW, Heemskerk MHM, Rizzi M, Querol Cano L, van Spriel AB. CD70 recruitment to the immunological synapse is dependent on CD20 in B cells. Proc Natl Acad Sci U S A 2025; 122:e2414002122. [PMID: 40232798 DOI: 10.1073/pnas.2414002122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
CD20 is a four-transmembrane protein expressed at the surface of B cells from late pro-B cells to memory B cells, with the exception of plasma cells. Its expression pattern makes it an attractive therapeutic target for different B cell malignancies and autoimmune diseases. Despite the clinical success of CD20-targeting antibodies, the biology of the CD20 protein is still not well understood. We investigated CD20 binding partners in the membrane of human B cells using immunoprecipitation followed by mass spectrometry analysis. We identified a molecular interaction between CD70 and CD20, and confirmed this using proximity ligation assays. CD20-CD70 spatiotemporal colocalization was validated at the plasma membrane of B cells using high-resolution microscopy. Cell surface expression of CD70 was found to be enhanced upon CD20 overexpression, suggesting a role for CD20 in stabilizing CD70 at the B cell membrane. Moreover, we observed impaired B-T cell synapse formation and defective recruitment of CD70 to the immunological synapse in the absence of CD20. Impaired synapse formation was confirmed by deleting CD20 in primary B cells, and analysis of B cells from a CD20-deficient patient. Finally, CD20-deletion resulted in diminished T cell activation and cytokine secretion. Together, this study demonstrates that CD20 interacts with CD70 at the B cell membrane, and that CD20 is required for immune synapse formation between B and T cells and consequent T cell activation.
Collapse
Affiliation(s)
- Abbey B Arp
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Andrea Abel Gutierrez
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Martin Ter Beest
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Guus A Franken
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Harry Warner
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Andrea Rodgers Furones
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Angelique N Kenyon
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Franziska Jäger
- Department of Chemistry, Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University Utrecht 3584 CH, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Kathrin Kläsener
- Department of Molecular Immunology, Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, Centre for Biological Signalling Studies, Biology III, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Sjoerd van Deventer
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Lenny Droesen
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Vera Marie E Dunlock
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - René Classens
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Julian Staniek
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Jannie Borst
- Department of Immunology, Leiden University Medical Center, Leiden 2333 ZG, The Netherlands
- Oncode Institute, Leiden University Medical Center, Leiden 2333 ZG, The Netherlands
| | - Michael Reth
- Department of Molecular Immunology, Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, Centre for Biological Signalling Studies, Biology III, Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Ulrich Brandt
- Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Piet Gros
- Department of Chemistry, Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University Utrecht 3584 CH, The Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden 2333 ZG, The Netherlands
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna 1090, Austria
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Laia Querol Cano
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Annemiek B van Spriel
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
2
|
Zhang Y, Wang R. A mendelian randomization study on the association between 731 types of immune cells and 91 types of blood cells with venous thromboembolism. Thromb J 2025; 23:28. [PMID: 40181342 PMCID: PMC11967152 DOI: 10.1186/s12959-025-00714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Venous thromboembolism (VTE) is a grave medical condition characterized by the blockage of distant blood vessels due to blood clots or detached vessel wall fragments, leading to ischemia or necrosis of the affected tissues. With the recent introduction of immunothrombosis, the significance of immune cells in the process of thrombus formation has gained prominent attention. Complex cross-talk occurs between immune cells and blood cells during infection or inflammation, with immune cells actively participating in blood clot formation by promoting platelet recruitment and thrombin activation. Nevertheless, comprehensive studies on the genetic association between immune cells phenotypes and VTE remain scarce. This article employed Mendelian randomization (MR) to investigate the association between the incidence of VTE and a range of 731 immune cell types, along with 91 blood cell perturbation phenotypes, utilizing single nucleotide polymorphisms as instrumental variables. METHODS Through the utilization of publicly available genetic data, a two-sample bi-directional MR analysis was conducted. Sensitivity analyses included Cochran's Q test, MR-Egger intercept test, MR-pleiotropy residual sum and outlier (MR-PRESSO) and leave-one-out analysis. For significant associations, replication analysis was conducted using GWAS data from deep vein thrombosis (DVT) and pulmonary embolism (PE). RESULTS We firstly investigated the causal relationship between 731 immune cells and VTE risk. All the GWAS data were obtained from European populations and from men and women. The IVW analysis revealed that CD20 on naive-mature B cell, CD20 on IgD- CD38dim B cell, and CD20 on unswitched memory B cell may increase the risk of VTE (P < 0.05). CD28- CD8dim T cell %T cell, CD64 on monocyte and CD64 on CD14 + CD16- monocyte may be protective factors against DVT (P < 0.05). Then disturbed blood cells types as exposure were analyzed to examine its association with occurrence of VTE. Initial and replication analysis both revealed that environmental KCl-impacted red blood cells and butyric acid-impacted platelet accelerated incidence of VTE (P < 0.05), while colchicine -impacted eosinophil, KCl-impacted reticulocyte and Lipopolysaccharide (LPS) -impacted neutrophil reduced VTE risk (P < 0.05). Sensitivity analyses confirmed the robustness and reliability of these positive findings. CONCLUSIONS Our study presents evidence of a causal link between six immune cell phenotypes and VTE. Additionally, we have identified two types of blood cells that are associated with both VTE and DVT, and three types of blood cells that are relevant to both VTE and PE. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Rui Wang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
3
|
Banerjee D, Paul S, Selvan C, Pai S, Nandakumar BS, Mukherjee S, Raghavendra PB. Uncovering the Role of Tertiary Lymphoid Organs in the Inflammatory Landscape: A Novel Immunophenotype of Diabetic Foot Ulcers. J Cell Mol Med 2025; 29:e70479. [PMID: 40159626 PMCID: PMC11955414 DOI: 10.1111/jcmm.70479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Diabetes foot ulcers (DFU) are the most common foot injuries leading to lower extremity amputation. Our study aimed to provide the first representative analysis highlighting the vital role of Tertiary Lymphoid Organs (TLO) inflammatory landscape in diabetic foot ulcers. The study explores mechanisms of TLO formation and the disease-specific roles of TLOs in regulating peripheral inflammatory and immune responses. Additionally, comprehensive analysis of clinical data from DFU cases, focused on TLO pathophysiology and systemic immune-inflammation landscape, is documented, aiming to identify the risk factors contributing to the development of DFUs. Our experimental results showed very significant differences were observed among the IL-17 and IFN-γ cytokine levels between the DFU vs. Control and DFU vs. NIDFU (Non-Infectious Diabetic Foot Ulcers) groups, while minimal differences were observed in IL-6 and TNF-α cytokine levels. Immunohistochemistry staining or Immunophenotyping of DFU patient-derived wound samples for TLO inflammatory stratification showed remarkable differences between DFU, NIDFU, and control groups both in CD3+ T Cells and CD20+ B cells. Overall, our study findings highlight the perspective role of TLO in DFU mechanisms and its prudent role in regulating peripheral inflammatory-immune responses. TLO study-related significant findings might be one of the important mechanisms, and its effective unveil might be a valuable treatment modality for DFU-complications.
Collapse
Affiliation(s)
- Deboshmita Banerjee
- National Institute of Biomedical GenomicsKalyaniWest BengalIndia
- Regional Centre for Biotechnology (RCB)FaridabadHaryanaIndia
| | - Shouvik Paul
- National Institute of Biomedical GenomicsKalyaniWest BengalIndia
- Regional Centre for Biotechnology (RCB)FaridabadHaryanaIndia
| | - Chitra Selvan
- Department of Endocrinology and General SurgeryM. S. Ramaiah Medical College and HospitalsBengaluruIndia
| | - Sreekar Pai
- Department of Endocrinology and General SurgeryM. S. Ramaiah Medical College and HospitalsBengaluruIndia
| | - B. S. Nandakumar
- Department of Community MedicineM. S. Ramaiah Medical College and HospitalsBengaluruIndia
| | - Souvik Mukherjee
- National Institute of Biomedical GenomicsKalyaniWest BengalIndia
- Regional Centre for Biotechnology (RCB)FaridabadHaryanaIndia
| | - Pongali B. Raghavendra
- National Institute of Biomedical GenomicsKalyaniWest BengalIndia
- Regional Centre for Biotechnology (RCB)FaridabadHaryanaIndia
| |
Collapse
|
4
|
Ghosh A, Meub M, Helmerich DA, Weingart J, Eiring P, Nerreter T, Kortüm KM, Doose S, Sauer M. Decoding the molecular interplay of CD20 and therapeutic antibodies with fast volumetric nanoscopy. Science 2025; 387:eadq4510. [PMID: 39787234 DOI: 10.1126/science.adq4510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/02/2024] [Accepted: 11/06/2024] [Indexed: 01/12/2025]
Abstract
Elucidating the interaction between membrane proteins and antibodies requires whole-cell imaging at high spatiotemporal resolution. Lattice light-sheet (LLS) microscopy offers fast volumetric imaging but suffers from limited spatial resolution. DNA-based point accumulation for imaging in nanoscale topography (DNA-PAINT) achieves molecular resolution but is restricted to two-dimensional imaging owing to long acquisition times. We have developed two-dye imager (TDI) probes that enable ~15-fold faster imaging. Combining TDI-DNA-PAINT and LLS microscopy on immunological B cells revealed the oligomeric states and interaction of endogenous CD20 with the therapeutic monoclonal antibodies (mAbs) rituximab, ofatumumab, and obinutuzumab. Our results demonstrate that CD20 is abundantly expressed on microvilli that bind mAbs, which leads to an antibody concentration-dependent B cell polarization and stabilization of microvilli protrusions. These findings could aid rational design of improved immunotherapies targeting tumor-associated antigens.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/immunology
- Antigens, CD20/chemistry
- Antigens, CD20/immunology
- B-Lymphocytes/immunology
- DNA/chemistry
- DNA/immunology
- Microscopy/methods
- Microvilli/immunology
- Rituximab/therapeutic use
- Rituximab/chemistry
- Molecular Imaging/methods
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/immunology
Collapse
Affiliation(s)
- Arindam Ghosh
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Mara Meub
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Dominic A Helmerich
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Julia Weingart
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Patrick Eiring
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Thomas Nerreter
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - K Martin Kortüm
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Luo X, Luo B, Fei L, Zhang Q, Liang X, Chen Y, Zhou X. MS4A superfamily molecules in tumors, Alzheimer's and autoimmune diseases. Front Immunol 2024; 15:1481494. [PMID: 39717774 PMCID: PMC11663944 DOI: 10.3389/fimmu.2024.1481494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024] Open
Abstract
MS4A (membrane-spanning 4-domain, subfamily A) molecules are categorized into tetraspanins, which possess four-transmembrane structures. To date, eighteen MS4A members have been identified in humans, whereas twenty-three different molecules have been identified in mice. MS4A proteins are selectively expressed on the surfaces of various immune cells, such as B cells (MS4A1), mast cells (MS4A2), macrophages (MS4A4A), Foxp3+CD4+ regulatory T cells (MS4A4B), and type 3 innate lymphoid cells (TMEM176A and TMEM176B). Early research confirmed that most MS4A molecules function as ion channels that regulate the transport of calcium ions. Recent studies have revealed that some MS4A proteins also function as chaperones that interact with various immune molecules, such as pattern recognition receptors and/or immunoglobulin receptors, to form immune complexes and transmit downstream signals, leading to cell activation, growth, and development. Evidence from preclinical animal models and human genetic studies suggests that the MS4A superfamily plays critical roles in the pathogenesis of various diseases, including cancer, infection, allergies, neurodegenerative diseases and autoimmune diseases. We review recent progress in this field and focus on elucidating the molecular mechanisms by which different MS4A molecules regulate the progression of tumors, Alzheimer's disease, and autoimmune diseases. Therefore, in-depth research into MS4A superfamily members may clarify their ability to act as candidate biomarkers and therapeutic targets for these diseases. Eighteen distinct members of the MS4A (membrane-spanning four-domain subfamily A) superfamily of four-transmembrane proteins have been identified in humans, whereas the MS4A genes are translated into twenty-three different molecules in mice. These proteins are selectively expressed on the surface of various immune cells, such as B cells (MS4A1), macrophages (MS4A4A), mast cells (MS4A2), Foxp3+CD4+ regulatory T cells (MS4A4B), type 3 innate lymphoid cells (TMEM176A and TMEM176B) and colonic epithelial cells (MS4A12). Functionally, most MS4A molecules function as ion channels that regulate the flow of calcium ions [Ca2+] across cell membranes. Recent studies have revealed that some MS4A proteins also act as molecular chaperones and interact with various types of immune receptors, including pattern recognition receptors (PRRs) and immunoglobulin receptors (IgRs), to form signaling complexes, thereby modulating intracellular signaling and cellular activity. Evidence from preclinical animal models and human genetic studies suggests that MS4A proteins play critical roles in various diseases (2). Therefore, we reviewed the recent progress in understanding the role of the MS4A superfamily in diseases, particularly in elucidating its function as a candidate biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Xuejiao Luo
- Department of Dermatology, The Affiliated Hospital of the Non-Commissioned Officer (NCO) School, The Army Medical University, Shijiazhuang, Hebei, China
| | - Bin Luo
- Institute of Immunology, Department of Basic Medicine, The Army Military Medical University, Chongqing, China
| | - Lei Fei
- Institute of Immunology, Department of Basic Medicine, The Army Military Medical University, Chongqing, China
| | - Qinggao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xinyu Liang
- Department of Otolaryngology, The Second Affiliated Hospital of the Army Military Medical University, Chongqing, China
| | - Yongwen Chen
- Institute of Immunology, Department of Basic Medicine, The Army Military Medical University, Chongqing, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xueqin Zhou
- Department of Otolaryngology, The Second Affiliated Hospital of the Army Military Medical University, Chongqing, China
| |
Collapse
|
6
|
von Essen MR, Stolpe LE, Bach Søndergaard H, Sellebjerg F. The origin of human CD20 + T cells: a stolen identity? Front Immunol 2024; 15:1487530. [PMID: 39650658 PMCID: PMC11621209 DOI: 10.3389/fimmu.2024.1487530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Human T cells expressing CD20 play an important role in the defense against virus and cancer and are central in the pathogenesis of both malignancies and various autoimmune disorders. Therapeutic modulation of CD20+ T cells and the CD20 expression level is therefore of significant interest. In rodents, CD20 on T cells is likely the product of an active transfer of CD20 from a donor B cell interacting with a recipient T cell in a process termed trogocytosis. Whether the same applies to human CD20+ T cells is highly debated. Investigating this dispute showed that human CD20- T cells could achieve CD20 along with a series of other B-cell markers from B cells through trogocytosis. However, none of these B-cell markers were co-expressed with CD20 on human CD20+ T cells in blood or inflamed CSF, implying that additional mechanisms may be involved in the development of human CD20+ T cells. In support of this, we identified true naïve CD20+ T cells, measured endogenous production of CD20, and observed that CD20 could be inherited to daughter cells, contradicting that all human CD20+ T cells are a product of trogocytosis.
Collapse
Affiliation(s)
- Marina Rode von Essen
- The Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | | | | | | |
Collapse
|
7
|
Pinho ACO, Barbosa P, Lazaro A, Tralhão JG, Pereira MJ, Paiva A, Laranjeira P, Carvalho E. Identification and characterization of circulating and adipose tissue infiltrated CD20 +T cells from subjects with obesity that undergo bariatric surgery. Immunol Lett 2024; 269:106911. [PMID: 39147242 DOI: 10.1016/j.imlet.2024.106911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
T cells play critical roles in adipose tissue (AT) inflammation. The role of CD20+T cell in AT dysfunction and their contributing to insulin resistance (IR) and type 2 diabetes progression, is not known. The aim was to characterize CD20+T cells in omental (OAT), subcutaneous (SAT) and peripheral blood (PB) from subjects with obesity (OB, n = 42), by flow cytometry. Eight subjects were evaluated before (T1) and 12 months post (T2) bariatric/metabolic surgery (BMS). PB from subjects without obesity (nOB, n = 12) was also collected. Higher percentage of CD20+T cells was observed in OAT, compared to PB or SAT, in OB-T1. CD20 expression by PB CD4+T cells was inversely correlated with adiposity markers, while follicular-like CD20+T cells were positively correlated with impaired glucose tolerance (increased HbA1c). Notably, among OB-T1, IR establishment was marked by a lower percentage and absolute number of PB CD20+T cells, compared nOB. Obesity was associated with higher percentage of activated CD20+T cells; however, OAT-infiltrated CD20+T cells from OB-T1 with diabetes displayed the lowest activation. CD20+T cells infiltrating OAT from OB-T1 displayed a phenotype towards IFN-γ-producing Th1 and Tc1 cells. After BMS, the percentage of PB CD4+CD20+T cells increased, with reduced Th1 and increased Th17 phenotype. Whereas in OAT the percentage of CD20+T cells with Th1/17 and Tc1/17 phenotypes increased. Interestingly, OAT from OB pre/post BMS maintained higher frequency of effector memory CD20+T cells. In conclusion, CD20+T cells may play a prominent role in obesity-related AT inflammation.
Collapse
Affiliation(s)
- Aryane Cruz Oliveira Pinho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504, Coimbra, Portugal; Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Pedro Barbosa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - André Lazaro
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra University of Coimbra, 3000-075, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - José G Tralhão
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra University of Coimbra, 3000-075, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Maria João Pereira
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Artur Paiva
- CIBB - Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504, Coimbra, Portugal; Flow Cytometry Unit, Clinical Pathology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076, Coimbra, Portugal; Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, 3046-854, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), 3000-061, Coimbra, Portugal
| | - Paula Laranjeira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504, Coimbra, Portugal; Flow Cytometry Unit, Clinical Pathology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), 3000-061, Coimbra, Portugal.
| | - Eugenia Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal; APDP-Portuguese Diabetes Association, Lisbon, Portugal.
| |
Collapse
|
8
|
Liu L, Parolia A, Liu Y, Hou C, He T, Qiao Y, Eyunni S, Luo J, Li C, Wang Y, Zhou F, Huang W, Ren X, Wang Z, Chinnaiyan AM, Ding K. Discovery of LLC0424 as a Potent and Selective in Vivo NSD2 PROTAC Degrader. J Med Chem 2024; 67:6938-6951. [PMID: 38687638 PMCID: PMC11094793 DOI: 10.1021/acs.jmedchem.3c01765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Nuclear receptor-binding SET domain-containing 2 (NSD2), a methyltransferase that primarily installs the dimethyl mark on lysine 36 of histone 3 (H3K36me2), has been recognized as a promising therapeutic target against cancer. However, existing NSD2 inhibitors suffer from low activity or inferior selectivity, and none of them can simultaneously remove the methyltransferase activity and chromatin binding function of NSD2. Herein we report the discovery of a novel NSD2 degrader LLC0424 by leveraging the proteolysis-targeting chimera technology. LLC0424 potently degraded NSD2 protein with a DC50 value of 20 nM and a Dmax value of 96% in acute lymphoblastic leukemia (ALL) RPMI-8402 cells. Mechanistic studies revealed LLC0424 to selectively induce NSD2 degradation in a cereblon- and proteasome-dependent fashion. LLC0424 also caused continuous downregulation of H3K36me2 and growth inhibition of ALL cell lines with NSD2 mutation. Importantly, intravenous or intraperitoneal injection of LLC0424 showed potent NSD2 degradation in vivo.
Collapse
Affiliation(s)
- Lianchao Liu
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Abhijit Parolia
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Urology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yihan Liu
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Cancer
Biology
Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Caiyun Hou
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
| | - Tongchen He
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuanyuan Qiao
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sanjana Eyunni
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Molecular
and Cellular Pathology Program, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jie Luo
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chungen Li
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Yongxing Wang
- Livzon
Research Institute, Livzon Pharmaceutical
Group Inc., no. 38 Chuangye North Road, Jinwan District, Zhuhai 519000, China
| | - Fengtao Zhou
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
| | - Weixue Huang
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Xiaomei Ren
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Zhen Wang
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Arul M. Chinnaiyan
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Urology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Howard
Hughes Medical Institute, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Ke Ding
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
- Hangzhou Institute
of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
9
|
Hoeger S, Drake LA, Drake JR. Proximity-Based Labeling Identifies MHC Class II and CD37 as B Cell Receptor-Proximal Proteins with Immunological Functions. Immunohorizons 2024; 8:326-338. [PMID: 38625120 PMCID: PMC11066716 DOI: 10.4049/immunohorizons.2400014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
The BCR allows for Ag-driven B cell activation and subsequent Ag endocytosis, processing, and presentation to recruit T cell help. Core drivers of BCR signaling and endocytosis are motifs within the receptor's cytoplasmic tail (primarily CD79). However, BCR function can be tuned by other proximal cellular elements, such as CD20 and membrane lipid microdomains. To identify additional proteins that could modulate BCR function, we used a proximity-based biotinylation technique paired with mass spectrometry to identify molecular neighbors of the murine IgM BCR. Those neighbors include MHC class II molecules, integrins, various transporters, and membrane microdomain proteins. Class II molecules, some of which are invariant chain-associated nascent class II, are a readily detected BCR neighbor. This finding is consistent with reports of BCR-class II association within intracellular compartments. The BCR is also in close proximity to multiple proteins involved in the formation of membrane microdomains, including CD37, raftlin, and Ig superfamily member 8. Known defects in T cell-dependent humoral immunity in CD37 knockout mice suggest a role for CD37 in BCR function. In line with this notion, CRISPR-based knockout of CD37 expression in a B cell line heightens BCR signaling, slows BCR endocytosis, and tempers formation of peptide-class II complexes. These results indicate that BCR molecular neighbors can impact membrane-mediated BCR functions. Overall, a proximity-based labeling technique allowed for identification of multiple previously unknown BCR molecular neighbors, including the tetraspanin protein CD37, which can modulate BCR function.
Collapse
Affiliation(s)
- Sean Hoeger
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY
| | - Lisa A. Drake
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY
| | - James R. Drake
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY
| |
Collapse
|
10
|
Zheng Z, Li H, Yang R, Guo H. Role of the membrane-spanning 4A gene family in lung adenocarcinoma. Front Genet 2023; 14:1162787. [PMID: 37533433 PMCID: PMC10390740 DOI: 10.3389/fgene.2023.1162787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Lung adenocarcinoma, which is the second most prevalent cancer in the world, has a poor prognosis and a low 5-year survival rate. The MS4A protein family is crucial to disease development and progression, particularly for cancers, allergies, metabolic disorders, autoimmune diseases, infections, and neurodegenerative disorders. However, its involvement in lung adenocarcinoma remains unclear. In this study, we found that 11 MS4A family genes were upregulated or downregulated in lung adenocarcinoma. Furthermore, we described the genetic variation landscape of the MS4A family in lung adenocarcinoma. Notably, through functional enrichment analysis, we discovered that the MS4A family is involved in the immune response regulatory signaling pathway and the immune response regulatory cell surface receptor signaling pathway. According to the Kaplan-Meier curve, patients with lung adenocarcinoma having poor expression of MS4A2, MS4A7, MS4A14, and MS4A15 had a low overall survival rate. These four prognostic genes are substantially associated with immune-infiltrating cells, and a prognosis model incorporating them may more accurately predict the overall survival rate of patients with lung adenocarcinoma than current models. The findings of this study may offer creative suggestions and recommendations for the identification and management of lung adenocarcinoma.
Collapse
|
11
|
Small GW, Akhtari FS, Green AJ, Havener TM, Sikes M, Quintanhila J, Gonzalez RD, Reif DM, Motsinger-Reif AA, McLeod HL, Wiltshire T. Pharmacogenomic Analyses Implicate B Cell Developmental Status and MKL1 as Determinants of Sensitivity toward Anti-CD20 Monoclonal Antibody Therapy. Cells 2023; 12:1574. [PMID: 37371044 DOI: 10.3390/cells12121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Monoclonal antibody (mAb) therapy directed against CD20 is an important tool in the treatment of B cell disorders. However, variable patient response and acquired resistance remain important clinical challenges. To identify genetic factors that may influence sensitivity to treatment, the cytotoxic activity of three CD20 mAbs: rituximab; ofatumumab; and obinutuzumab, were screened in high-throughput assays using 680 ethnically diverse lymphoblastoid cell lines (LCLs) followed by a pharmacogenomic assessment. GWAS analysis identified several novel gene candidates. The most significant SNP, rs58600101, in the gene MKL1 displayed ethnic stratification, with the variant being significantly more prevalent in the African cohort and resulting in reduced transcript levels as measured by qPCR. Functional validation of MKL1 by shRNA-mediated knockdown of MKL1 resulted in a more resistant phenotype. Gene expression analysis identified the developmentally associated TGFB1I1 as the most significant gene associated with sensitivity. qPCR among a panel of sensitive and resistant LCLs revealed immunoglobulin class-switching as well as differences in the expression of B cell activation markers. Flow cytometry showed heterogeneity within some cell lines relative to surface Ig isotype with a shift to more IgG+ cells among the resistant lines. Pretreatment with prednisolone could partly reverse the resistant phenotype. Results suggest that the efficacy of anti-CD20 mAb therapy may be influenced by B cell developmental status as well as polymorphism in the MKL1 gene. A clinical benefit may be achieved by pretreatment with corticosteroids such as prednisolone followed by mAb therapy.
Collapse
Affiliation(s)
- George W Small
- Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Farida S Akhtari
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Adrian J Green
- Department of Biological Sciences, Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Tammy M Havener
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael Sikes
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Ricardo D Gonzalez
- Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Howard L McLeod
- Center for Precision Medicine and Functional Genomics, Utah Tech University, 225 South University Ave, St. George, UT 84770, USA
| | - Tim Wiltshire
- Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Xiong J, Chi H, Yang G, Zhao S, Zhang J, Tran LJ, Xia Z, Yang F, Tian G. Revolutionizing anti-tumor therapy: unleashing the potential of B cell-derived exosomes. Front Immunol 2023; 14:1188760. [PMID: 37342327 PMCID: PMC10277631 DOI: 10.3389/fimmu.2023.1188760] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
B cells occupy a vital role in the functioning of the immune system, working in tandem with T cells to either suppress or promote tumor growth within the tumor microenvironment(TME). In addition to direct cell-to-cell communication, B cells and other cells release exosomes, small membrane vesicles ranging in size from 30-150 nm, that facilitate intercellular signaling. Exosome research is an important development in cancer research, as they have been shown to carry various molecules such as major histocompatibility complex(MHC) molecules and integrins, which regulate the TME. Given the close association between TME and cancer development, targeting substances within the TME has emerged as a promising strategy for cancer therapy. This review aims to present a comprehensive overview of the contributions made by B cells and exosomes to the tumor microenvironment (TME). Additionally, we delve into the potential role of B cell-derived exosomes in the progression of cancer.
Collapse
Affiliation(s)
- Jingwen Xiong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jing Zhang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| | - Lisa Jia Tran
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fang Yang
- Department of Ophthalmology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
14
|
Venturelli V, Isenberg DA. Targeted Therapy for SLE-What Works, What Doesn't, What's Next. J Clin Med 2023; 12:3198. [PMID: 37176637 PMCID: PMC10179673 DOI: 10.3390/jcm12093198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
For many years, the failure of randomized controlled trials (RCTs) has prevented patients with systemic lupus erythematosus (SLE) from benefiting from biological drugs that have proved to be effective in other rheumatological diseases. Only two biologics are approved for SLE, however they can only be administered to a restricted proportion of patients. Recently, several phase II RCTs have evaluated the efficacy and safety of new biologics in extra-renal SLE and lupus nephritis. Six drug trials have reported encouraging results, with an improvement in multiple clinical and serological outcome measures. The possibility of combining B-cell depletion and anti-BLyS treatment has also been successfully explored.
Collapse
Affiliation(s)
- Veronica Venturelli
- Rheumatology Unit, Department of Medical Sciences, Università degli Studi di Ferrara, Azienda Ospedaliero-Universitaria S. Anna, 44124 Cona, Italy
| | - David Alan Isenberg
- Centre for Rheumatology, Department of Medicine, University College London, London WC1E 6JF, UK
| |
Collapse
|
15
|
Tannoury M, Garnier D, Susin SA, Bauvois B. Current Status of Novel Agents for the Treatment of B Cell Malignancies: What's Coming Next? Cancers (Basel) 2022; 14:6026. [PMID: 36551511 PMCID: PMC9775488 DOI: 10.3390/cancers14246026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Resistance to death is one of the hallmarks of human B cell malignancies and often contributes to the lack of a lasting response to today's commonly used treatments. Drug discovery approaches designed to activate the death machinery have generated a large number of inhibitors of anti-apoptotic proteins from the B-cell lymphoma/leukemia 2 family and the B-cell receptor (BCR) signaling pathway. Orally administered small-molecule inhibitors of Bcl-2 protein and BCR partners (e.g., Bruton's tyrosine kinase and phosphatidylinositol-3 kinase) have already been included (as monotherapies or combination therapies) in the standard of care for selected B cell malignancies. Agonistic monoclonal antibodies and their derivatives (antibody-drug conjugates, antibody-radioisotope conjugates, bispecific T cell engagers, and chimeric antigen receptor-modified T cells) targeting tumor-associated antigens (TAAs, such as CD19, CD20, CD22, and CD38) are indicated for treatment (as monotherapies or combination therapies) of patients with B cell tumors. However, given that some patients are either refractory to current therapies or relapse after treatment, novel therapeutic strategies are needed. Here, we review current strategies for managing B cell malignancies, with a focus on the ongoing clinical development of more effective, selective drugs targeting these molecules, as well as other TAAs and signaling proteins. The observed impact of metabolic reprogramming on B cell pathophysiology highlights the promise of targeting metabolic checkpoints in the treatment of these disorders.
Collapse
Affiliation(s)
| | | | | | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France
| |
Collapse
|
16
|
Immanuel T, Li J, Green TN, Bogdanova A, Kalev-Zylinska ML. Deregulated calcium signaling in blood cancer: Underlying mechanisms and therapeutic potential. Front Oncol 2022; 12:1010506. [PMID: 36330491 PMCID: PMC9623116 DOI: 10.3389/fonc.2022.1010506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Intracellular calcium signaling regulates diverse physiological and pathological processes. In solid tumors, changes to calcium channels and effectors via mutations or changes in expression affect all cancer hallmarks. Such changes often disrupt transport of calcium ions (Ca2+) in the endoplasmic reticulum (ER) or mitochondria, impacting apoptosis. Evidence rapidly accumulates that this is similar in blood cancer. Principles of intracellular Ca2+ signaling are outlined in the introduction. We describe different Ca2+-toolkit components and summarize the unique relationship between extracellular Ca2+ in the endosteal niche and hematopoietic stem cells. The foundational data on Ca2+ homeostasis in red blood cells is discussed, with the demonstration of changes in red blood cell disorders. This leads to the role of Ca2+ in neoplastic erythropoiesis. Then we expand onto the neoplastic impact of deregulated plasma membrane Ca2+ channels, ER Ca2+ channels, Ca2+ pumps and exchangers, as well as Ca2+ sensor and effector proteins across all types of hematologic neoplasms. This includes an overview of genetic variants in the Ca2+-toolkit encoding genes in lymphoid and myeloid cancers as recorded in publically available cancer databases. The data we compiled demonstrate that multiple Ca2+ homeostatic mechanisms and Ca2+ responsive pathways are altered in hematologic cancers. Some of these alterations may have genetic basis but this requires further investigation. Most changes in the Ca2+-toolkit do not appear to define/associate with specific disease entities but may influence disease grade, prognosis, treatment response, and certain complications. Further elucidation of the underlying mechanisms may lead to novel treatments, with the aim to tailor drugs to different patterns of deregulation. To our knowledge this is the first review of its type in the published literature. We hope that the evidence we compiled increases awareness of the calcium signaling deregulation in hematologic neoplasms and triggers more clinical studies to help advance this field.
Collapse
Affiliation(s)
- Tracey Immanuel
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan City, China
| | - Taryn N. Green
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
17
|
Chen TX, Fan YT, Peng BW. Distinct mechanisms underlying therapeutic potentials of CD20 in neurological and neuromuscular disease. Pharmacol Ther 2022; 238:108180. [DOI: 10.1016/j.pharmthera.2022.108180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
18
|
Isolation and characterization of human anti-CD20 single-chain variable fragment (scFv) from a Naive human scFv library. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:177. [PMID: 35999405 PMCID: PMC9398497 DOI: 10.1007/s12032-022-01757-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/30/2022] [Indexed: 12/03/2022]
Abstract
CD20 is a receptor expressed on B cells with anonymous functions. The receptor is the target of some food and drug administration (FDA) approved monoclonal antibodies (mAb), such as Rituximab and Obinutuzumab. Blocking CD20 using the aforementioned mAbs has improved Non-Hodgkin Lymphoma (NHL) therapy. All commercial mAbs on the market were raised in non-human animal models. Antibody humanization is inevitable to mitigate immune response. In order to keep the affinity of antibody intact, humanizations are only applied to frameworks which do not eliminate immune response to foreign CDRs sequences. To address this issue, human monoclonal antibody deemed imperative. Herein, we report the isolation and characterization of a fully human single-chain variable fragment (scFv) against the large loop of CD20 from naïve human antibody library. After three rounds of phage display, a library of enriched anti-CD20 scFv was obtained. The polyclonal phage ELISA demonstrated that after each round of phage display, the population of anti-CD20 scFv became dominant. The scFv, G7, with the most robust interaction with CD20 was selected for further characterization. The specificity of G7 scFv was evaluated by ELISA, western blot, and flow cytometry. Detecting CD20 in western blot showed that G7 binds to a linear epitope on CD20 large loop. Next, G7 scFv was also bound to Raji cell (CD20+) while no interaction was recorded with K562 cell line (CD20—). This data attested that the epitope recognized by G7 scFv is accessible on the cell membrane. The affinity of G7 scFv was estimated to be 63.41 ± 3.9 nM. Next, the sensitivity was evaluated to be 2 ng/ml. Finally, G7 scFv tertiary structure was modeled using Graylab software. The 3D structure illustrated two domains of variable heavy (VH) and variable light (VL) connected through a linker. Afterward, G7 scFv and CD20 were applied to in-silico docking using ClusPro to illustrate the interaction of G7 with the large loop of CD20. As the selected scFv from the human antibody library is devoid of interspecies immunogenic amino acids sequences, no humanization or any other modifications are required prior to clinical applications.
Collapse
|
19
|
Davies A, Kater AP, Sharman JP, Stilgenbauer S, Vitolo U, Klein C, Parreira J, Salles G. Obinutuzumab in the treatment of B-cell malignancies: a comprehensive review. Future Oncol 2022; 18:2943-2966. [PMID: 35856239 PMCID: PMC11284610 DOI: 10.2217/fon-2022-0112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022] Open
Abstract
The type II anti-CD20 antibody obinutuzumab has structural and mechanistic features that distinguish it from the first anti-CD20 antibody, rituximab, which have translated into improved efficacy in phase III trials in indolent non-Hodgkin lymphoma and chronic lymphocytic leukemia (CLL). These gains have been shown through improvements in, and/or increased durability of, tumor response, and increases in progression-free survival in patients with CLL or follicular lymphoma (FL). Ongoing research is focusing on the use of biomarkers and the development of chemotherapy-free regimens involving obinutuzumab. phase II trials of such treatment regimens have shown promise for CLL, FL and mantle cell lymphoma, while phase III trials have highlighted obinutuzumab as the antibody partner of choice for novel agents in first-line CLL treatment.
Collapse
MESH Headings
- Adult
- Antibodies, Monoclonal, Humanized/adverse effects
- Antineoplastic Combined Chemotherapy Protocols
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Follicular/drug therapy
- Lymphoma, Non-Hodgkin/drug therapy
- Rituximab/therapeutic use
Collapse
Affiliation(s)
- Andrew Davies
- Cancer Research UK Centre,University of Southampton,Southampton,UK
| | - Arnon P Kater
- Amsterdam University Medical Centers,University of Amsterdam,Amsterdam,Netherlands
| | - Jeff P Sharman
- Willamette Valley Cancer Institute & Research Center & US Oncology,Eugene,OR 97401,USA
| | - Stephan Stilgenbauer
- Comprehensive Cancer Center Ulm,Early Clinical Trials Unit (ECTU),Ulm,& Division of CLL,Department of Internal Medicine III,Ulm University,Ulm,Germany
| | - Umberto Vitolo
- Medical Oncology,Candiolo Cancer Institute,FPO-IRCCS,Candiolo,Italy
| | | | | | - Gilles Salles
- Memorial Sloan Kettering Cancer Center,Department of Medicine,NY 10021,USA
| |
Collapse
|
20
|
Asano T, Suzuki H, Kaneko MK, Kato Y. Epitope Mapping of Rituximab Using HisMAP Method. Monoclon Antib Immunodiagn Immunother 2022; 41:8-14. [PMID: 35225667 DOI: 10.1089/mab.2021.0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
CD20 is expressed in the B lymphocyte, and an effective target for the detection and treatment of B cell lymphomas. Therefore, CD20 has been studied as a therapeutic target of B cell lymphomas and autoimmune disorders. Specific anti-CD20 monoclonal antibodies (mAbs), such as rituximab, ofatumumab, veltuzumab, and ocaratuzumab, have been developed. Revealing the recognition mechanism of antigen by mAbs could contribute to understanding the function of mAbs and could be useful for the development of vaccine. Rituximab is a mouse-human chimeric anti-CD20 mAb, which was developed and approved for the treatment of the B cell malignancies. Hence, the binding epitope of rituximab for CD20 has been studied. Some reports show that 170-ANPS-173, especially Ala170 and Pro172 of CD20 are important for rituximab binding. However, only phage display results showed that 182-YCYSI-186 of CD20 is also important for rituximab binding to CD20. In this study, we tried to determine the binding epitope of rituximab for CD20 using histidine-tag insertion for epitope mapping (HisMAP) method. The results showed that two regions of CD20 (169-PANPSE-174 and 183-CYSIQ-187) are important for rituximab-binding for CD20.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
21
|
MS4A15 drives ferroptosis resistance through calcium-restricted lipid remodeling. Cell Death Differ 2022; 29:670-686. [PMID: 34663908 PMCID: PMC8901757 DOI: 10.1038/s41418-021-00883-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 01/07/2023] Open
Abstract
Ferroptosis is an iron-dependent form of cell death driven by biochemical processes that promote oxidation within the lipid compartment. Calcium (Ca2+) is a signaling molecule in diverse cellular processes such as migration, neurotransmission, and cell death. Here, we uncover a crucial link between ferroptosis and Ca2+ through the identification of the novel tetraspanin MS4A15. MS4A15 localizes to the endoplasmic reticulum, where it blocks ferroptosis by depleting luminal Ca2+ stores and reprogramming membrane phospholipids to ferroptosis-resistant species. Specifically, prolonged Ca2+ depletion inhibits lipid elongation and desaturation, driving lipid droplet dispersion and formation of shorter, more saturated ether lipids that protect phospholipids from ferroptotic reactive species. We further demonstrate that increasing luminal Ca2+ levels can preferentially sensitize refractory cancer cell lines. In summary, MS4A15 regulation of anti-ferroptotic lipid reservoirs provides a key resistance mechanism that is distinct from antioxidant and lipid detoxification pathways. Manipulating Ca2+ homeostasis offers a compelling strategy to balance cellular lipids and cell survival in ferroptosis-associated diseases.
Collapse
|
22
|
Jonas LA, Jain T, Li YM. Functional insight into LOAD-associated microglial response genes. Open Biol 2022; 12:210280. [PMID: 35078351 PMCID: PMC8790339 DOI: 10.1098/rsob.210280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/01/2021] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs), neuronal and synaptic loss and inflammation of the central nervous system (CNS). The majority of AD research has been dedicated to the understanding of two major AD hallmarks (i.e. Aβ and NFTs); however, recent genome-wide association studies (GWAS) data indicate neuroinflammation as having a critical role in late-onset AD (LOAD) development, thus unveiling a novel avenue for AD therapeutics. Recent evidence has provided much support to the innate immune system's involvement with AD progression; however, much remains to be uncovered regarding the role of glial cells, specifically microglia, in AD. Moreover, numerous variants in immune and/or microglia-related genes have been identified in whole-genome sequencing and GWAS analyses, including such genes as TREM2, CD33, APOE, API1, MS4A, ABCA7, BIN1, CLU, CR1, INPP5D, PICALM and PLCG2. In this review, we aim to provide an insight into the function of the major LOAD-associated microglia response genes.
Collapse
Affiliation(s)
- Lauren A. Jonas
- Weill Cornell, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tanya Jain
- Weill Cornell, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yue-Ming Li
- Weill Cornell, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
23
|
Asano T, Takei J, Furusawa Y, Saito M, Suzuki H, Kaneko MK, Kato Y. Epitope Mapping of an Anti-CD20 Monoclonal Antibody (C 20Mab-60) Using the HisMAP Method. Monoclon Antib Immunodiagn Immunother 2021; 40:243-249. [PMID: 34958277 DOI: 10.1089/mab.2021.0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CD20 is one of the B-lymphocyte antigens and an effective target for the detection and treatment of B cell lymphomas; specific and sensitive monoclonal antibodies (mAbs) are required thus for their diagnosis. Recently, we developed a novel anti-CD20 mAb (clone C20Mab-60), which is not only useful for flow cytometry but also for Western blot and immunohistochemical analyses. However, the epitope of C20Mab-60 has not been determined. To clarify the binding region of mAbs against their target molecules, it is essential to understand the pharmacological function of each mAb. In this study, we aimed to identify the epitope of C20Mab-60 for CD20 using the novel histidine tag (His-tag) insertion for epitope mapping (HisMAP) method. We first established an anti-His-tag mAb, HisMab-1 (mouse IgG2b, kappa), by immunizing mice with recombinant proteins containing an N-terminal His-tag. Although HisMab-1 detected the 4x, 5x, and 6xHis tag-inserted CD20 proteins using flow cytometry, 5xHis tag was selected. While HisMab-1 recognized all the 5xHis tag-inserted CD20 from the 142nd to the 183rd amino acid (aa), C20Mab-60 did not react with the 5xHis tag-inserted CD20 from the 171st to the 174th aa. These results indicate that the main epitope of C20Mab-60 for CD20 is a peptide from 171st to 174th aa of CD20. HisMAP method could be advantageous in the determination of the critical epitope of functional mAbs against many target molecules.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikazu Furusawa
- Department of Antibody Drug Development and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development and Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
24
|
Takei J, Suzuki H, Asano T, Li G, Saito M, Kaneko MK, Kato Y. Epitope Mapping of an Anti-CD20 Monoclonal Antibody (C 20Mab-60) Using Enzyme-Linked Immunosorbent Assay. Monoclon Antib Immunodiagn Immunother 2021; 40:250-254. [PMID: 34958272 DOI: 10.1089/mab.2021.0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CD20 is a glycosylated transmembrane protein and is expressed on normal B cells and B cell malignancies. Therapeutic antibodies against CD20 are developed and used in clinic. The understanding of antibody-antigen binding by revealing the epitope is essential for future application to antibody technology. Previously, we developed an anti-human CD20 monoclonal antibody, C20Mab-60 (IgG2a, kappa), using the Cell-Based Immunization and Screening (CBIS). C20Mab-60 can be used for flow cytometry, Western blot, and immunohistochemical analyses. In this study, we examined the critical epitope of C20Mab-60 using enzyme-linked immunosorbent assay (ELISA) with synthesized peptides. We performed ELISA with deletion mutants, and C20Mab-60 reacted to the 160-179 amino acids sequence of CD20. Next, we analyzed the reaction to 20 point mutants, and C20Mab-60 did not recognize the alanine-substituted peptides of N171A, P172A, S173A, and E174A. The results indicate that the binding epitope of C20Mab-60, developed by CBIS, includes Asn171, Pro172, Ser173, and Glu174 of CD20.
Collapse
Affiliation(s)
- Junko Takei
- Department of Antibody Drug Development and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development and Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
25
|
Müller M, Gräbnitz F, Barandun N, Shen Y, Wendt F, Steiner SN, Severin Y, Vetterli SU, Mondal M, Prudent JR, Hofmann R, van Oostrum M, Sarott RC, Nesvizhskii AI, Carreira EM, Bode JW, Snijder B, Robinson JA, Loessner MJ, Oxenius A, Wollscheid B. Light-mediated discovery of surfaceome nanoscale organization and intercellular receptor interaction networks. Nat Commun 2021; 12:7036. [PMID: 34857745 PMCID: PMC8639842 DOI: 10.1038/s41467-021-27280-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/09/2021] [Indexed: 12/18/2022] Open
Abstract
The molecular nanoscale organization of the surfaceome is a fundamental regulator of cellular signaling in health and disease. Technologies for mapping the spatial relationships of cell surface receptors and their extracellular signaling synapses would unlock theranostic opportunities to target protein communities and the possibility to engineer extracellular signaling. Here, we develop an optoproteomic technology termed LUX-MS that enables the targeted elucidation of acute protein interactions on and in between living cells using light-controlled singlet oxygen generators (SOG). By using SOG-coupled antibodies, small molecule drugs, biologics and intact viral particles, we demonstrate the ability of LUX-MS to decode ligand receptor interactions across organisms and to discover surfaceome receptor nanoscale organization with direct implications for drug action. Furthermore, by coupling SOG to antigens we achieved light-controlled molecular mapping of intercellular signaling within functional immune synapses between antigen-presenting cells and CD8+ T cells providing insights into T cell activation with spatiotemporal specificity. LUX-MS based decoding of surfaceome signaling architectures thereby provides a molecular framework for the rational development of theranostic strategies. The spatial organization of cell surface receptors is critical for cell signaling and drug action. Here, the authors develop an optoproteomic method for mapping surface protein interactions, revealing cellular responses to antibodies, drugs and viral particles as well as immunosynapse signaling events.
Collapse
Affiliation(s)
- Maik Müller
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Fabienne Gräbnitz
- Department of Biology, ETH Zurich, Institute of Microbiology, Zurich, Switzerland
| | - Niculò Barandun
- Department of Biology, ETH Zurich, Institute of Microbiology, Zurich, Switzerland
| | - Yang Shen
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Fabian Wendt
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Sebastian N Steiner
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yannik Severin
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Milon Mondal
- Chemistry Department, University of Zurich, Zurich, Switzerland
| | | | - Raphael Hofmann
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Marc van Oostrum
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Roman C Sarott
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Erick M Carreira
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Berend Snijder
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - John A Robinson
- Chemistry Department, University of Zurich, Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Annette Oxenius
- Department of Biology, ETH Zurich, Institute of Microbiology, Zurich, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland. .,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
26
|
Mattiola I, Mantovani A, Locati M. The tetraspan MS4A family in homeostasis, immunity, and disease. Trends Immunol 2021; 42:764-781. [PMID: 34384709 DOI: 10.1016/j.it.2021.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023]
Abstract
The membrane-spanning 4A (MS4A) family includes 18 members with a tetraspan structure in humans. They are differentially and selectively expressed in immunocompetent cells, such as B cells (CD20/MS4A1) and macrophages (MS4A4A), and associate with, and modulate the signaling activity of, different classes of immunoreceptor, including pattern recognition receptors (PRRs) and Ig receptors. Evidence from preclinical models and genetic evidence from humans suggest that members of the MS4A family have key roles in different pathological settings, including cancer, infectious diseases, and neurodegeneration. Therefore, MS4A family members might serve as candidate biomarkers and therapeutic targets for various conditions.
Collapse
Affiliation(s)
- Irene Mattiola
- Humanitas Clinical and Research Center IRCCS, Rozzano, Italy; Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charitè - Universitätsmedizin Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany.
| | - Alberto Mantovani
- Humanitas Clinical and Research Center IRCCS, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy; The William Harvey Research Institute, Queen Mary University of London, London, UK.
| | - Massimo Locati
- Humanitas Clinical and Research Center IRCCS, Rozzano, Italy; Department of Medical Biotechnologies and Translation Medicine, University of Milan, Italy.
| |
Collapse
|
27
|
Silva-Gomes R, Mapelli SN, Boutet MA, Mattiola I, Sironi M, Grizzi F, Colombo F, Supino D, Carnevale S, Pasqualini F, Stravalaci M, Porte R, Gianatti A, Pitzalis C, Locati M, Oliveira MJ, Bottazzi B, Mantovani A. Differential expression and regulation of MS4A family members in myeloid cells in physiological and pathological conditions. J Leukoc Biol 2021; 111:817-836. [PMID: 34346525 PMCID: PMC9290968 DOI: 10.1002/jlb.2a0421-200r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The MS4A gene family encodes 18 tetraspanin-like proteins, most of which with unknown function. MS4A1 (CD20), MS4A2 (FcεRIβ), MS4A3 (HTm4), and MS4A4A play important roles in immunity, whereas expression and function of other members of the family are unknown. The present investigation was designed to obtain an expression fingerprint of MS4A family members, using bioinformatics analysis of public databases, RT-PCR, and protein analysis when possible. MS4A3, MS4A4A, MS4A4E, MS4A6A, MS4A7, and MS4A14 were expressed by myeloid cells. MS4A6A and MS4A14 were expressed in circulating monocytes and decreased during monocyte-to-Mϕ differentiation in parallel with an increase in MS4A4A expression. Analysis of gene expression regulation revealed a strong induction of MS4A4A, MS4A6A, MS4A7, and MS4A4E by glucocorticoid hormones. Consistently with in vitro findings, MS4A4A and MS4A7 were expressed in tissue Mϕs from COVID-19 and rheumatoid arthritis patients. Interestingly, MS4A3, selectively expressed in myeloid precursors, was found to be a marker of immature circulating neutrophils, a cellular population associated to COVID-19 severe disease. The results reported here show that members of the MS4A family are differentially expressed and regulated during myelomonocytic differentiation, and call for assessment of their functional role and value as therapeutic targets.
Collapse
Affiliation(s)
- Rita Silva-Gomes
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde and Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | | | - Marie-Astrid Boutet
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Regenerative Medicine and Skeleton, RMeS, Inserm UMR 1229, Oniris, CHU Nantes, Université de Nantes, Nantes, France
| | - Irene Mattiola
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Berlin, Germany
| | - Marina Sironi
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Fabio Grizzi
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Domenico Supino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Silvia Carnevale
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Fabio Pasqualini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Rémi Porte
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Andrea Gianatti
- Unit of Pathology, Azienda Ospedaliera Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Constantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Massimo Locati
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Maria José Oliveira
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde and Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
28
|
Abstract
Immunotherapy marked a milestone in cancer treatment and has shown unprecedented efficacy in a variety of hematological malignancies. Downregulation or loss of target antigens is commonly seen after immunotherapy, which often causes diagnostic dilemma and represents a key mechanism that tumor escapes from immunotherapy. The awareness of phenotypic changes after targeted immunotherapy is important to avoid misdiagnosis. Further understanding of the mechanisms of antigen loss is paramount for the development of therapeutic approaches that can prevent or overcome antigen escape in future immunotherapy.
Collapse
Affiliation(s)
- Ting Zhou
- Flow Cytometry Unit, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hao-Wei Wang
- Flow Cytometry Unit, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
29
|
Haile S, Corbett RD, LeBlanc VG, Wei L, Pleasance S, Bilobram S, Nip KM, Brown K, Trinh E, Smith J, Trinh DL, Bala M, Chuah E, Coope RJN, Moore RA, Mungall AJ, Mungall KL, Zhao Y, Hirst M, Aparicio S, Birol I, Jones SJM, Marra MA. A Scalable Strand-Specific Protocol Enabling Full-Length Total RNA Sequencing From Single Cells. Front Genet 2021; 12:665888. [PMID: 34149808 PMCID: PMC8209500 DOI: 10.3389/fgene.2021.665888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
RNA sequencing (RNAseq) has been widely used to generate bulk gene expression measurements collected from pools of cells. Only relatively recently have single-cell RNAseq (scRNAseq) methods provided opportunities for gene expression analyses at the single-cell level, allowing researchers to study heterogeneous mixtures of cells at unprecedented resolution. Tumors tend to be composed of heterogeneous cellular mixtures and are frequently the subjects of such analyses. Extensive method developments have led to several protocols for scRNAseq but, owing to the small amounts of RNA in single cells, technical constraints have required compromises. For example, the majority of scRNAseq methods are limited to sequencing only the 3' or 5' termini of transcripts. Other protocols that facilitate full-length transcript profiling tend to capture only polyadenylated mRNAs and are generally limited to processing only 96 cells at a time. Here, we address these limitations and present a novel protocol that allows for the high-throughput sequencing of full-length, total RNA at single-cell resolution. We demonstrate that our method produced strand-specific sequencing data for both polyadenylated and non-polyadenylated transcripts, enabled the profiling of transcript regions beyond only transcript termini, and yielded data rich enough to allow identification of cell types from heterogeneous biological samples.
Collapse
Affiliation(s)
- Simon Haile
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Richard D Corbett
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Veronique G LeBlanc
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Lisa Wei
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Stephen Pleasance
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Steve Bilobram
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Ka Ming Nip
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Kirstin Brown
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Eva Trinh
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Jillian Smith
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Diane L Trinh
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Miruna Bala
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Robin J N Coope
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Yongjun Zhao
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Martin Hirst
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Samuel Aparicio
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Pavlasova G, Mraz M. The regulation and function of CD20: an "enigma" of B-cell biology and targeted therapy. Haematologica 2021; 105:1494-1506. [PMID: 32482755 PMCID: PMC7271567 DOI: 10.3324/haematol.2019.243543] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the precise physiological role and regulation of CD20 remains unclear. Furthermore, CD20 expression is highly variable between different B-cell malignancies, patients with the same malignancy, and even between intraclonal subpopulations in an individual patient. Several epigenetic (EZH2, HDAC1/2, HDAC1/4, HDAC6, complex Sin3A-HDAC1) and transcription factors (USF, OCT1/2, PU.1, PiP, ELK1, ETS1, SP1, NFκB, FOXO1, CREM, SMAD2/3) regulating CD20 expression (encoded by MS4A1) have been characterized. CD20 is induced in the context of microenvironmental interactions by CXCR4/SDF1 (CXCL12) chemokine signaling and the molecular function of CD20 has been linked to the signaling propensity of B-cell receptor (BCR). CD20 has also been shown to interact with multiple other surface proteins on B cells (such as CD40, MHCII, CD53, CD81, CD82, and CBP). Current efforts to combine anti-CD20 monoclonal antibodies with BCR signaling inhibitors targeting BTK or PI3K (ibrutinib, acalabrutinib, idelalisib, duvelisib) or BH3-mimetics (venetoclax) lead to the necessity to better understand both the mechanisms of regulation and the biological functions of CD20. This is underscored by the observation that CD20 is decreased in response to the "BCR inhibitor" ibrutinib which largely prevents its successful combination with rituximab. Several small molecules (such as histone deacetylase inhibitors, DNA methyl-transferase inhibitors, aurora kinase A/B inhibitors, farnesyltransferase inhibitors, FOXO1 inhibitors, and bryostatin-1) are being tested to upregulate cell-surface CD20 levels and increase the efficacy of anti-CD20 monoclonal antibodies. Herein, we review the current understanding of CD20 function, and the mechanisms of its regulation in normal and malignant B cells, highlighting the therapeutic implications.
Collapse
Affiliation(s)
- Gabriela Pavlasova
- Central European Institute of Technology, Masaryk University, Brno.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno .,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
31
|
Abuelgasim KA, Shammari RA, Alshieban S, Alahmari B, Alzahrani M, Alhejazi A, Alaskar A, Damlaj M. Impact of cluster of differentiation 20 expression and rituximab therapy in classical Hodgkin lymphoma: Real world experience. Leuk Res Rep 2021; 15:100240. [PMID: 33936943 PMCID: PMC8076710 DOI: 10.1016/j.lrr.2021.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/25/2021] [Accepted: 04/05/2021] [Indexed: 11/17/2022] Open
Abstract
The prognostic impact of CD20 expression and rituximab therapy in classical Hodgkin lymphoma (cHL) is unclear. Among 310 patients, CD20 was expressed in 66 (22%) cases. The 3-year PFS was 75.1% for CD20+and 70% for CD20− (p = 0.36). The 3-year PFS was 84.7% for the rituximab group and 67.8% for the no rituximab group (p = 0.23). Only constitutional symptoms and positive interim PET/CT were significantly associated with worse outcome, HR 3.2 (1.14–9.01; p = 0.028) and 4.3 (2.27–8.1; p < 0.0001), respectively. Neither CD20 expression nor rituximab use significantly impacted outcome.
Collapse
Affiliation(s)
- Khadega A Abuelgasim
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Oncology Department, King Abdulaziz Medical City, Riyadh National Guard Health Affairs, Riyadh 11426, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Raed Al Shammari
- Internal Medicine Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Saeed Alshieban
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Pathology Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Bader Alahmari
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Oncology Department, King Abdulaziz Medical City, Riyadh National Guard Health Affairs, Riyadh 11426, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mohsen Alzahrani
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Oncology Department, King Abdulaziz Medical City, Riyadh National Guard Health Affairs, Riyadh 11426, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ayman Alhejazi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Oncology Department, King Abdulaziz Medical City, Riyadh National Guard Health Affairs, Riyadh 11426, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ahmed Alaskar
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Oncology Department, King Abdulaziz Medical City, Riyadh National Guard Health Affairs, Riyadh 11426, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Moussab Damlaj
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Oncology Department, King Abdulaziz Medical City, Riyadh National Guard Health Affairs, Riyadh 11426, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Edwards ESJ, Bosco JJ, Ojaimi S, O'Hehir RE, van Zelm MC. Beyond monogenetic rare variants: tackling the low rate of genetic diagnoses in predominantly antibody deficiency. Cell Mol Immunol 2021; 18:588-603. [PMID: 32801365 PMCID: PMC8027216 DOI: 10.1038/s41423-020-00520-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Predominantly antibody deficiency (PAD) is the most prevalent form of primary immunodeficiency, and is characterized by broad clinical, immunological and genetic heterogeneity. Utilizing the current gold standard of whole exome sequencing for diagnosis, pathogenic gene variants are only identified in less than 20% of patients. While elucidation of the causal genes underlying PAD has provided many insights into the cellular and molecular mechanisms underpinning disease pathogenesis, many other genes may remain as yet undefined to enable definitive diagnosis, prognostic monitoring and targeted therapy of patients. Considering that many patients display a relatively late onset of disease presentation in their 2nd or 3rd decade of life, it is questionable whether a single genetic lesion underlies disease in all patients. Potentially, combined effects of other gene variants and/or non-genetic factors, including specific infections can drive disease presentation. In this review, we define (1) the clinical and immunological variability of PAD, (2) consider how genetic defects identified in PAD have given insight into B-cell immunobiology, (3) address recent technological advances in genomics and the challenges associated with identifying causal variants, and (4) discuss how functional validation of variants of unknown significance could potentially be translated into increased diagnostic rates, improved prognostic monitoring and personalized medicine for PAD patients. A multidisciplinary approach will be the key to curtailing the early mortality and high morbidity rates in this immune disorder.
Collapse
Affiliation(s)
- Emily S J Edwards
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Samar Ojaimi
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Monash Health, Clayton, VIC, Australia
- Department of Allergy and Immunology, Monash Health, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
33
|
Liang Y, Acor H, McCown MA, Nwosu AJ, Boekweg H, Axtell NB, Truong T, Cong Y, Payne SH, Kelly RT. Fully Automated Sample Processing and Analysis Workflow for Low-Input Proteome Profiling. Anal Chem 2021; 93:1658-1666. [PMID: 33352054 PMCID: PMC8140400 DOI: 10.1021/acs.analchem.0c04240] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent advances in sample preparation and analysis have enabled direct profiling of protein expression in single mammalian cells and other trace samples. Several techniques to prepare and analyze low-input samples employ custom fluidics for nanoliter sample processing and manual sample injection onto a specialized separation column. While being effective, these highly specialized systems require significant expertise to fabricate and operate, which has greatly limited implementation in most proteomic laboratories. Here, we report a fully automated platform termed autoPOTS (automated preparation in one pot for trace samples) that uses only commercially available instrumentation for sample processing and analysis. An unmodified, low-cost commercial robotic pipetting platform was utilized for one-pot sample preparation. We used low-volume 384-well plates and periodically added water or buffer to the microwells to compensate for limited evaporation during sample incubation. Prepared samples were analyzed directly from the well plate with a commercial autosampler that was modified with a 10-port valve for compatibility with 30 μm i.d. nanoLC columns. We used autoPOTS to analyze 1-500 HeLa cells and observed only a moderate reduction in peptide coverage for 150 cells and a 24% reduction in coverage for single cells compared to our previously developed nanoPOTS platform. To evaluate clinical feasibility, we identified an average of 1095 protein groups from ∼130 sorted B or T lymphocytes. We anticipate that the straightforward implementation of autoPOTS will make it an attractive option for low-input and single-cell proteomics in many laboratories.
Collapse
Affiliation(s)
- Yiran Liang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Hayden Acor
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Michaela A McCown
- Department of Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Andikan J Nwosu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Hannah Boekweg
- Department of Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Nathaniel B Axtell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Yongzheng Cong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
34
|
Establishment of a novel anti-TROP2 monoclonal antibody TrMab-29 for immunohistochemical analysis. Biochem Biophys Rep 2021; 25:100902. [PMID: 33490649 PMCID: PMC7806523 DOI: 10.1016/j.bbrep.2020.100902] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/08/2020] [Accepted: 12/27/2020] [Indexed: 12/28/2022] Open
Abstract
TROP2 is a type I transmembrane glycoprotein originally identified in human trophoblast cells that is overexpressed in several types of cancer. To better understand the role of TROP2 in cancer, we herein aimed to develop a sensitive and specific anti-TROP2 monoclonal antibody (mAb) for use in flow cytometry, Western blot, and immunohistochemistry using a Cell-Based Immunization and Screening (CBIS) method. Two mice were immunized with N-terminal PA-tagged and C-terminal RAP/MAP-tagged TROP2-overexpressed Chinese hamster ovary (CHO)-K1 cells (CHO/PA-TROP2-RAP-MAP), and hybridomas showing strong signals from PA-tagged TROP2-overexpressed CHO-K1 cells (CHO/TROP2-PA) and weak-to-no signals from CHO-K1 cells were selected using flow cytometry. We demonstrated using flow cytometry that the established anti-TROP2 mAb, TrMab-29 (mouse IgG1 kappa), detected TROP2 in MCF7 breast cancer cell line as well as CHO/TROP2-PA cells. Western blot analysis showed a 40 kDa band in lysates prepared from both CHO/TROP2-PA and MCF7 cells. Furthermore, TROP2 was strongly detected by immunohistochemical analysis using TrMab-29, indicating that TrMab-29 may be a valuable tool for the detection of TROP2 in cancer.
Collapse
Key Words
- ADC, antibody-drug conjugates
- ADCC, antibody-dependent cellular cytotoxicity
- BSA, bovine serum albumin
- Breast cancer
- CAR-T, chimeric antigen receptor T-cell
- CBIS method
- CBIS, Cell-Based Immunization and Screening
- CDC, complement-dependent cytotoxicity
- CHO, Chinese hamster ovary
- DAB, 3,3′-diaminobenzidine tetrahydrochloride
- Monoclonal antibody
- P3U1, P3X63Ag8U.1
- PBS, phosphate-buffered saline
- PIT, photoimmunotherapy
- PVDF, polyvinylidene difluoride
- RIT, radioimmunotherapy
- TROP2
- TROP2, trophoblast cell-surface antigen
- mAb, monoclonal antibody
Collapse
|
35
|
Shah K, Cragg M, Leandro M, Reddy V. Anti-CD20 monoclonal antibodies in Systemic Lupus Erythematosus. Biologicals 2021; 69:1-14. [PMID: 33288390 DOI: 10.1016/j.biologicals.2020.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/04/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune inflammatory condition with a wide spectrum of disease manifestations and severities, resulting in significant morbidity and mortality. The aetiopathogenesis of SLE is complex. Young women and certain ethnicities are commonly affected, suggesting a significant hormonal and genetic influence. Diverse immunological abnormalities have been described. A characteristic abnormality is the presence of autoantibodies, implicating a central role for B cells in disease pathogenesis and/or perpetuation. Whilst conventional therapies have improved outcomes, a great unmet need remains. Recently, biological therapies are being explored. B-cell depletion therapy with rituximab has been in use off-label for nearly two decades. Inconsistent results between uncontrolled and controlled studies have raised doubts about its efficacy. In this review, we will focus on B cell abnormalities and the rationale behind B-cell depletion therapy with anti-CD20 monoclonal antibody (mAb), rituximab, will be explored including an evaluation of clinical and trial experience. Finally, we will discuss the mechanistic basis for considering alternative anti-CD20 mAbs.
Collapse
Affiliation(s)
- Kavina Shah
- Centre for Rheumatology, University College London Division of Medicine, Rayne Building 4th Floor, 5 University Street, London, WC1E 6JF, United Kingdom.
| | - Mark Cragg
- Centre for Cancer Immunology MP127, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, United Kingdom.
| | - Maria Leandro
- Centre for Rheumatology, University College London Division of Medicine, Rayne Building 4th Floor, 5 University Street, London, WC1E 6JF, United Kingdom.
| | - Venkat Reddy
- Centre for Rheumatology, University College London Division of Medicine, Rayne Building 4th Floor, 5 University Street, London, WC1E 6JF, United Kingdom.
| |
Collapse
|
36
|
Sayama Y, Kaneko MK, Kato Y. Development and characterization of TrMab‑6, a novel anti‑TROP2 monoclonal antibody for antigen detection in breast cancer. Mol Med Rep 2020; 23:92. [PMID: 33300065 PMCID: PMC7723163 DOI: 10.3892/mmr.2020.11731] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/15/2020] [Indexed: 01/05/2023] Open
Abstract
Trophoblast cell-surface antigen 2 (TROP2) is a type I transmembrane glycoprotein that is overexpressed in a number of cancer types, including triple-negative breast cancer. The current study aimed to develop a highly sensitive and specific monoclonal antibody (mAb) targeting TROP2, which could be used to evaluate TROP2 expression using flow cytometry, western blot analysis and immunohistochemistry by employing the Cell-Based Immunization and Screening (CBIS) method. The established anti-TROP2 mAb, TrMab-6 (mouse IgG2b, κ), detected TROP2 on PA-tagged TROP2-overexpressing Chinese hamster ovary-K1 (CHO/TROP2-PA) and breast cancer cell lines, including MCF7 and BT-474 using flow cytometry. Western blot analysis indicated a 40 kDa band in lysates prepared from CHO/TROP2-PA, MCF7 and BT-474 cells. Furthermore, TROP2 in 57/61 (93.4%) of the breast cancer specimens was strongly detected using immunohistochemical analysis with TrMab-6. In conclusion, the current study demonstrated that TrMab-6 may be a valuable tool for the detection of TROP2 in a wide variety of breast cancer types.
Collapse
Affiliation(s)
- Yusuke Sayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| |
Collapse
|
37
|
Klein C, Jamois C, Nielsen T. Anti-CD20 treatment for B-cell malignancies: current status and future directions. Expert Opin Biol Ther 2020; 21:161-181. [PMID: 32933335 DOI: 10.1080/14712598.2020.1822318] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The introduction of anti-CD20 monoclonal antibody therapy with rituximab in the 1990s greatly improved outcomes for patients with B-cell malignancies. Disease resistance or relapse after successful initial therapy and declining efficacy of subsequent rounds of treatment were the basis for the development of alternative anti-CD20-based antibody therapies. AREAS COVERED The novel anti-CD20 antibodies of atumumab, ublituximab, and obinutuzumab were developed to be differentiated via structural and mechanistic features over rituximab. We provide an overview of preclinical and clinical data, and demonstrate ways in which the pharmacodynamic properties of these novel agents translate into clinical benefit for patients. EXPERT OPINION Of the novel anti-CD20 antibodies, only obinutuzumab has shown consistently improved efficacy over rituximab in randomized pivotal trials in indolent non-Hodgkin lymphoma and chronic lymphocytic leukemia. The Phase 3 GALLIUM trial demonstrated significant improvements in progression-free survival with obinutuzumab-based immunochemotherapy over rituximab-based immunochemotherapy. Novel combinations of obinutuzumab, including with chemotherapy-free options are being explored, such as with the newly approved combinations of obinutuzumab with venetoclax, ibrutinib, or acalabrutinib. The biggest unmet need remains in the treatment of diffuse large B-cell lymphoma; emerging options in this field include the use of CAR-T cells and T-cell bispecific antibodies.
Collapse
Affiliation(s)
- Christian Klein
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich , Schlieren, Switzerland
| | - Candice Jamois
- Clinical Pharmacology, Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel , Basel, Switzerland
| | - Tina Nielsen
- Product Development Oncology, F. Hoffmann-La Roche Ltd , Basel, Switzerland
| |
Collapse
|
38
|
Sisto M, Ribatti D, Lisi S. Understanding the Complexity of Sjögren's Syndrome: Remarkable Progress in Elucidating NF-κB Mechanisms. J Clin Med 2020; 9:jcm9092821. [PMID: 32878252 PMCID: PMC7563658 DOI: 10.3390/jcm9092821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Sjögren’s syndrome (SS) is a systemic autoimmune inflammatory disease with a poorly defined aetiology, which targets exocrine glands (particularly salivary and lachrymal glands), affecting the secretory function. Patients suffering from SS exhibit persistent xerostomia and keratoconjunctivitis sicca. It is now widely acknowledged that a chronic grade of inflammation plays a central role in the initiation, progression, and development of SS. Consistent with its key role in organizing inflammatory responses, numerous recent studies have shown involvement of the transcription factor nuclear factor κ (kappa)-light-chain-enhancer of activated B cells (NF-κB) in the development of this disease. Therefore, chronic inflammation is considered as a critical factor in the disease aetiology, offering hope for the development of new drugs for treatment. The purpose of this review is to describe the current knowledge about the NF-κB-mediated molecular events implicated in the pathogenesis of SS.
Collapse
|
39
|
Salzer B, Schueller CM, Zajc CU, Peters T, Schoeber MA, Kovacic B, Buri MC, Lobner E, Dushek O, Huppa JB, Obinger C, Putz EM, Holter W, Traxlmayr MW, Lehner M. Engineering AvidCARs for combinatorial antigen recognition and reversible control of CAR function. Nat Commun 2020; 11:4166. [PMID: 32820173 PMCID: PMC7441178 DOI: 10.1038/s41467-020-17970-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
T cells engineered to express chimeric antigen receptors (CAR-T cells) have shown impressive clinical efficacy in the treatment of B cell malignancies. However, the development of CAR-T cell therapies for solid tumors is hampered by the lack of truly tumor-specific antigens and poor control over T cell activity. Here we present an avidity-controlled CAR (AvidCAR) platform with inducible and logic control functions. The key is the combination of (i) an improved CAR design which enables controlled CAR dimerization and (ii) a significant reduction of antigen-binding affinities to introduce dependence on bivalent interaction, i.e. avidity. The potential and versatility of the AvidCAR platform is exemplified by designing ON-switch CARs, which can be regulated with a clinically applied drug, and AND-gate CARs specifically recognizing combinations of two antigens. Thus, we expect that AvidCARs will be a highly valuable platform for the development of controllable CAR therapies with improved tumor specificity.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cells, Cultured
- Cytokines/immunology
- Cytokines/metabolism
- Cytotoxicity, Immunologic/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocyte Activation/immunology
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Benjamin Salzer
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria
| | | | - Charlotte U Zajc
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria
| | - Timo Peters
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Michael A Schoeber
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
| | - Boris Kovacic
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
| | - Michelle C Buri
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
| | - Elisabeth Lobner
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Johannes B Huppa
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Eva M Putz
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
| | - Wolfgang Holter
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Department of Pediatrics, St. Anna Kinderspital, Medical University of Vienna, 1090, Vienna, Austria
| | - Michael W Traxlmayr
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria.
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria.
| | - Manfred Lehner
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria.
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria.
- Department of Pediatrics, St. Anna Kinderspital, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
40
|
Furusawa Y, Kaneko MK, Kato Y. Establishment of an Anti-CD20 Monoclonal Antibody (C20Mab-60) for Immunohistochemical Analyses. Monoclon Antib Immunodiagn Immunother 2020; 39:112-116. [DOI: 10.1089/mab.2020.0015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Yoshikazu Furusawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
41
|
Thomsen EA, Rovsing AB, Anderson MV, Due H, Huang J, Luo Y, Dybkaer K, Mikkelsen JG. Identification of BLNK and BTK as mediators of rituximab-induced programmed cell death by CRISPR screens in GCB-subtype diffuse large B-cell lymphoma. Mol Oncol 2020; 14:1978-1997. [PMID: 32585766 PMCID: PMC7463323 DOI: 10.1002/1878-0261.12753] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/15/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Diffuse large B‐cell lymphoma (DLBCL) is characterized by extensive genetic heterogeneity, and this results in unpredictable responses to the current treatment, R‐CHOP, which consists of a cancer drug combination supplemented with the humanized CD20‐targeting monoclonal antibody rituximab. Despite improvements in the patient response rate through rituximab addition to the treatment plan, up to 40% of DLBCL patients end in a relapsed or refractory state due to inherent or acquired resistance to the regimen. Here, we employ a lentiviral genome‐wide clustered regularly interspaced short palindromic repeats library screening approach to identify genes involved in facilitating the rituximab response in cancerous B cells. Along with the CD20‐encoding MS4A1 gene, we identify genes related to B‐cell receptor (BCR) signaling as mediators of the intracellular signaling response to rituximab. More specifically, the B‐cell linker protein (BLNK) and Bruton's tyrosine kinase (BTK) genes stand out as pivotal genes in facilitating direct rituximab‐induced apoptosis through mechanisms that occur alongside complement‐dependent cytotoxicity (CDC). Our findings demonstrate that rituximab triggers BCR signaling in a BLNK‐ and BTK‐dependent manner and support the existing notion that intertwined CD20 and BCR signaling pathways in germinal center B‐cell‐like‐subtype DLBCL lead to programmed cell death.
Collapse
Affiliation(s)
| | | | | | - Hanne Due
- Department of Hematology, Aalborg University Hospital, Denmark
| | - Jinrong Huang
- Department of Biomedicine, Aarhus University, Denmark.,Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, China.,Department of Biology, University of Copenhagen, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Denmark.,Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, China
| | - Karen Dybkaer
- Department of Hematology, Aalborg University Hospital, Denmark
| | | |
Collapse
|
42
|
Furusawa Y, Kaneko MK, Kato Y. Establishment of C 20Mab-11, a novel anti-CD20 monoclonal antibody, for the detection of B cells. Oncol Lett 2020; 20:1961-1967. [PMID: 32724441 PMCID: PMC7377059 DOI: 10.3892/ol.2020.11753] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/02/2020] [Indexed: 12/19/2022] Open
Abstract
CD20 is one of several B-lymphocyte antigens that has been shown to be an effective target for the detection and treatment of B-cell lymphomas. Sensitive and specific monoclonal antibodies (mAbs) are required for every application used for the diagnosis of B-cell lymphoma. Although many anti-CD20 mAbs have been established, the types of applications, those anti-CD20 can be used in, are limited. In this study, we aimed to establish novel anti-CD20 mAbs to be used for broad applications, such as flow cytometry, western blot, and immunohistochemical analyses, using the Cell-Based Immunization and Screening (CBIS) method. One of the established mAbs, C20Mab-11 (IgM, kappa), detected overexpression of CD20 in CHO-K1 or LN229 cell lines, indicating that C20Mab-11 is specific for CD20. In western blot analyses, C20Mab-11 detected not only overexpression of CD20 in CHO-K1 or LN229 cell lines, but also CD20 of BALL-1 and Raji cells with both sensitivity and specificity. Furthermore, C20Mab-11 strongly stained B cells of the lymph follicle and B cell lymphomas in immunohistochemical analyses. These results indicate that C20Mab-11 develped by CBIS method, is useful for the detection of CD20 in lymphoma tissues by flow cytometry, western blot, and immunohistochemical analyses and potentially could be beneficial for the treatment of B cell lymphomas.
Collapse
Affiliation(s)
- Yoshikazu Furusawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Mika Kato Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
43
|
Grunenberg A, Kaiser LM, Woelfle S, Schmelzle B, Viardot A, Möller P, Barth TF, Muche R, Dreyhaupt J, Buske C. Phase II trial evaluating the efficacy and safety of the anti-CD20 monoclonal antibody obinutuzumab in patients with marginal zone lymphoma. Future Oncol 2020; 16:817-825. [PMID: 32223334 DOI: 10.2217/fon-2020-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Marginal zone lymphoma (MZL) belongs to the group of indolent B-cell non-Hodgkin's lymphomas, which is characterized by an indolent course. In this mostly elderly patient population, the development of chemotherapy-free approaches is of particular interest. In this situation, single-agent treatment with the next-generation anti-CD20 antibody obinutuzumab is an attractive approach, which promises high efficacy without major toxicity. We describe here an open-label, multicentric Phase II trial evaluating the efficacy and safety of obinutuzumab in de novo MZL patients, who are treatment naive for systemic therapy and not eligible for or failed local treatment. ClinicalTrials.gov identifier NCT03322865.
Collapse
Affiliation(s)
| | - Lisa M Kaiser
- Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, University Hospital Ulm, Ulm, Germany
| | - Stephanie Woelfle
- Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, University Hospital Ulm, Ulm, Germany
| | - Birgit Schmelzle
- Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, University Hospital Ulm, Ulm, Germany
| | - Andreas Viardot
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Peter Möller
- Institute of Pathology, Ulm University, Ulm, Germany
| | | | - Rainer Muche
- Institute of Epidemiology & Medical Biometry, Ulm University, Ulm, Germany
| | - Jens Dreyhaupt
- Institute of Epidemiology & Medical Biometry, Ulm University, Ulm, Germany
| | - Christian Buske
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
44
|
Kozlova V, Ledererova A, Ladungova A, Peschelova H, Janovska P, Slusarczyk A, Domagala J, Kopcil P, Vakulova V, Oppelt J, Bryja V, Doubek M, Mayer J, Pospisilova S, Smida M. CD20 is dispensable for B-cell receptor signaling but is required for proper actin polymerization, adhesion and migration of malignant B cells. PLoS One 2020; 15:e0229170. [PMID: 32210425 PMCID: PMC7094844 DOI: 10.1371/journal.pone.0229170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/31/2020] [Indexed: 11/19/2022] Open
Abstract
Surface protein CD20 serves as the critical target of immunotherapy in various B-cell malignancies for decades, however its biological function and regulation remain largely elusive. Better understanding of CD20 function may help to design improved rational therapies to prevent development of resistance. Using CRISPR/Cas9 technique, we have abrogated CD20 expression in five different malignant B-cell lines. We show that CD20 deletion has no effect upon B-cell receptor signaling or calcium flux. Also B-cell survival and proliferation is unaffected in the absence of CD20. On the contrary, we found a strong defect in actin cytoskeleton polymerization and, consequently, defective cell adhesion and migration in response to homeostatic chemokines SDF1α, CCL19 and CCL21. Mechanistically, we could identify a reduction in chemokine-triggered PYK2 activation, a calcium-activated signaling protein involved in activation of MAP kinases and cytoskeleton regulation. These cellular defects in consequence result in a severely disturbed homing of B cells in vivo.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Antigens, CD20/genetics
- Antigens, CD20/metabolism
- Antigens, CD20/physiology
- B-Lymphocytes/pathology
- B-Lymphocytes/physiology
- Cell Adhesion/physiology
- Cell Line, Tumor
- Cell Movement/physiology
- Gene Knockdown Techniques
- Humans
- Leukemia, B-Cell/metabolism
- Leukemia, B-Cell/pathology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Polymerization
- Protein Multimerization/physiology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Veronika Kozlova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Medical Faculty of Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Aneta Ledererova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Medical Faculty of Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Adriana Ladungova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Helena Peschelova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Pavlina Janovska
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Joanna Domagala
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Pavel Kopcil
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Viera Vakulova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jan Oppelt
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Medical Faculty of Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jiri Mayer
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Medical Faculty of Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Medical Faculty of Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Michal Smida
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine - Hematology and Oncology, Medical Faculty of Masaryk University and University Hospital Brno, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
45
|
Rougé L, Chiang N, Steffek M, Kugel C, Croll TI, Tam C, Estevez A, Arthur CP, Koth CM, Ciferri C, Kraft E, Payandeh J, Nakamura G, Koerber JT, Rohou A. Structure of CD20 in complex with the therapeutic monoclonal antibody rituximab. Science 2020; 367:1224-1230. [PMID: 32079680 DOI: 10.1126/science.aaz9356] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022]
Abstract
Cluster of differentiation 20 (CD20) is a B cell membrane protein that is targeted by monoclonal antibodies for the treatment of malignancies and autoimmune disorders but whose structure and function are unknown. Rituximab (RTX) has been in clinical use for two decades, but how it activates complement to kill B cells remains poorly understood. We obtained a structure of CD20 in complex with RTX, revealing CD20 as a compact double-barrel dimer bound by two RTX antigen-binding fragments (Fabs), each of which engages a composite epitope and an extensive homotypic Fab:Fab interface. Our data suggest that RTX cross-links CD20 into circular assemblies and lead to a structural model for complement recruitment. Our results further highlight the potential relevance of homotypic Fab:Fab interactions in targeting oligomeric cell-surface markers.
Collapse
Affiliation(s)
- Lionel Rougé
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Nancy Chiang
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA 94080, USA
| | - Micah Steffek
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Christine Kugel
- Department of Biomolecular Resources, Genentech Inc., South San Francisco, CA 94080, USA
| | - Tristan I Croll
- Cambridge Institute for Medical Research, University of Cambridge, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Christine Tam
- Department of Biomolecular Resources, Genentech Inc., South San Francisco, CA 94080, USA
| | - Alberto Estevez
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Christopher P Arthur
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Christopher M Koth
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Claudio Ciferri
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Edward Kraft
- Department of Biomolecular Resources, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jian Payandeh
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA. .,Department of Antibody Engineering, Genentech Inc., South San Francisco, CA 94080, USA
| | - Gerald Nakamura
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA 94080, USA.
| | - James T Koerber
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA 94080, USA.
| | - Alexis Rohou
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
46
|
Heo W, Jin N, Park MS, Kim HY, Yoon SM, Lee J, Kim JY. STIM1 knock-down decreases the affinity of obinutuzumab for CD20 by altering CD20 localization to Triton-soluble membrane. Clin Exp Immunol 2020; 200:260-271. [PMID: 32056202 DOI: 10.1111/cei.13427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2020] [Indexed: 01/16/2023] Open
Abstract
Obinutuzumab is thought to exert its effects through its high antibody-dependent cellular cytotoxicity (ADCC) via glyco-engineering of the Fc region. In addition, obinutuzumab causes direct binding-induced cell death (DCD) only by specifically binding to its target CD20, a Ca2+ channel. However, the specific features of CD20 related to obinutuzumab binding-induction of cell death are not clearly understood. In this study, we evaluated the relationship between the Ca2+ channel features of CD20 as a store-operated Ca2+ channel (SOC) and obinutuzumab binding-induced cell death. Ca2+ channel function and biochemical analysis revealed that CD20 is an Orai1- and stromal interaction molecule (STIM1)-dependent Ca2+ pore. However, binding of obinutuzumab on CD20 did not have any effect on Ca2+ influx activity of CD20; the direct cell death rate mediated by obinutuzumab binding was almost equivalent with or without the extracellular Ca2+ condition. Given the apparent interaction between STIM1 and CD20, we observed Triton-X solubilized obinutuzumab-bound CD20 accompanied by STIM1. Subsequently, obinutuzumab binding and cell death were decreased by STIM1 knock-down in Ramos B cells. Thus, STIM1 directly contributes to cell death by increasing the affinity of cells for obinutuzumab by transferring CD20 to the Triton-soluble membrane region.
Collapse
Affiliation(s)
- W Heo
- Department of Pharmacology and Brain, Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - N Jin
- Department of Pharmacology and Brain, Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - M S Park
- Department of Pharmacology and Brain, Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - H-Y Kim
- Department of Pharmacology and Brain, Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - S M Yoon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - J Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - J Y Kim
- Department of Pharmacology and Brain, Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Sharman JP. Targeting CD20: teaching an old dog new tricks. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:273-278. [PMID: 31808844 PMCID: PMC6913507 DOI: 10.1182/hematology.2019000031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rituximab was the first monoclonal antibody used for the treatment of a malignancy. In the 22 years since initial approval, it has become a vital component of therapy for a multitude of B-cell malignancies. Within the last several years, however, there has been a robust development of novel agents targeting CD20, including second generation anti-CD20 antibodies, biosimilar antibodies, and subcutaneous formulations that have been approved. The era of passive immunotherapy is now yielding to therapeutic approaches that actively engage the immune system. Emerging approaches leverage immunomodulatory drugs or novel checkpoint inhibitors to enhance CD20 therapy. Recent data sets on bispecific CD3/CD20 antibodies demonstrate exciting early findings, and CD20-directed chimeric antigen receptor T-cell therapies are now entering clinical trials. Anti-CD20 therapies are a vital component of the treatment of B-cell malignancies, and there is a dynamic therapeutic environment with multiple new data sets reviewed here.
Collapse
Affiliation(s)
- Jeff P Sharman
- Willamette Valley Cancer Institute/US Oncology, Eugene, OR
| |
Collapse
|
48
|
Agez M, Mandon ED, Iwema T, Gianotti R, Limani F, Herter S, Mössner E, Kusznir EA, Huber S, Lauer M, Ringler P, Ferrara C, Klein C, Jawhari A. Biochemical and biophysical characterization of purified native CD20 alone and in complex with rituximab and obinutuzumab. Sci Rep 2019; 9:13675. [PMID: 31548565 PMCID: PMC6757138 DOI: 10.1038/s41598-019-50031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/24/2019] [Indexed: 11/17/2022] Open
Abstract
CD20 is a B-lymphocyte specific integral membrane protein, an activated-glycosylated phosphoprotein expressed on the surface of B-cells and a clinically validated target of monoclonal antibodies such as rituximab, ocrelizumab, ofatumumab and obinutuzumab in the treatment of all B cell lymphomas and leukemias as well as autoimmune diseases. Here, we report the extraction and purification of native CD20 from SUDHL4 and RAMOS cell lines. To improve the protein yield, we applied a calixarene-based detergent approach to solubilize, stabilize and purify native CD20 from HEK293 cells. Size Exclusion Chromatography (SEC) and Analytical Ultracentrifugation show that purified CD20 was non-aggregated and that CD20 oligomerization is concentration dependent. Negative stain electron microscopy and atomic force microscopy revealed homogenous populations of CD20. However, no defined structure could be observed. Interestingly, micellar solubilized and purified CD20 particles adopt uniformly confined nanodroplets which do not fuse and aggregate. Finally, purified CD20 could bind to rituximab and obinutuzumab as demonstrated by SEC, and Surface Plasmon Resonance (SPR). Specificity of binding was confirmed using CD20 antibody mutants to human B-cell lymphoma cells. The strategy described in this work will help investigate CD20 binding with newly developed antibodies and eventually help to optimize them. This approach may also be applicable to other challenging membrane proteins.
Collapse
Affiliation(s)
- Morgane Agez
- CALIXAR, 60 avenue Rockefeller 69008, Lyon, France
| | | | - Thomas Iwema
- CALIXAR, 60 avenue Rockefeller 69008, Lyon, France
| | - Reto Gianotti
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Florian Limani
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Sylvia Herter
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Ekkehard Mössner
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Eric A Kusznir
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Sylwia Huber
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Matthias Lauer
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Philippe Ringler
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Claudia Ferrara
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Christian Klein
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | | |
Collapse
|
49
|
'Piperazining' the catalytic gatekeepers: unraveling the pan-inhibition of SRC kinases; LYN, FYN and BLK by masitinib. Future Med Chem 2019; 11:2365-2380. [PMID: 31516031 DOI: 10.4155/fmc-2018-0354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Blocking oncogenic signaling of B-cell receptor (BCR) has been explored as a viable strategy in the treatment of diffuse large B-cell lymphoma. Masitinib is shown to multitarget LYN, FYN and BLK kinases that propagate BCR signals to downstream effectors. However, the molecular mechanisms of its selectivity and pan-inhibition remain elusive. Materials & methods: This study therefore employed molecular dynamics simulations coupled with advanced post-molecular dynamics simulation techniques to unravel the structural mechanisms that inform the reported multitargeting ability of masitinib. Results: Molecular dynamics simulations revealed initial selective targeting of catalytic residues (Asp334/Glu335 - LYN; Asp130/Asp148/Glu54 - FYN; Asp89 - BLK) by masitinib, with high-affinity interactions via its piperazine ring at the entrance of the ATP-binding pockets, before systematic access into the hydrophobic deep pocket grooves. Conclusion: Identification of these 'gatekeeper' residues could open up a novel paradigm of structure-based design of highly selective pan-inhibitors of BCR signaling in the treatment of diffuse large B-cell lymphoma.
Collapse
|
50
|
The macrophage tetraspan MS4A4A enhances dectin-1-dependent NK cell-mediated resistance to metastasis. Nat Immunol 2019; 20:1012-1022. [PMID: 31263276 DOI: 10.1038/s41590-019-0417-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/02/2019] [Indexed: 12/14/2022]
Abstract
The plasma membrane tetraspan molecule MS4A4A is selectively expressed by macrophage-lineage cells, but its function is unknown. Here we report that MS4A4A was restricted to murine and human mononuclear phagocytes and was induced during monocyte-to-macrophage differentiation in the presence of interleukin 4 or dexamethasone. Human MS4A4A was co-expressed with M2/M2-like molecules in subsets of normal tissue-resident macrophages, infiltrating macrophages from inflamed synovium and tumor-associated macrophages. MS4A4A interacted and colocalized with the β-glucan receptor dectin-1 in lipid rafts. In response to dectin-1 ligands, Ms4a4a-deficient macrophages showed defective signaling and defective production of effector molecules. In experimental models of tumor progression and metastasis, Ms4a4a deficiency in macrophages had no impact on primary tumor growth, but was essential for dectin-1-mediated activation of macrophages and natural killer (NK) cell-mediated metastasis control. Thus, MS4A4A is a tetraspan molecule selectively expressed in macrophages during differentiation and polarization, essential for dectin-1-dependent activation of NK cell-mediated resistance to metastasis.
Collapse
|