1
|
N-Glycans Are Stratum Corneum Biomarkers of Aging Skin. J Invest Dermatol 2023; 143:492-494.e10. [PMID: 36055400 DOI: 10.1016/j.jid.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022]
|
2
|
Inhibition of N-glycosylation by tunicamycin attenuates cell-cell adhesion via impaired desmosome formation in normal human epidermal keratinocytes. Biosci Rep 2018; 38:BSR20171641. [PMID: 30291216 PMCID: PMC6259015 DOI: 10.1042/bsr20171641] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 09/10/2018] [Accepted: 09/27/2018] [Indexed: 01/12/2023] Open
Abstract
N-Glycosylation affects protein functions such as location, stability, and susceptibility to proteases. Desmosomes in keratinocytes are essential to maintain epidermal tissue integrity to protect against environmental insults. However, it is not yet known whether N-glycosylation affects desmosomal functions in primary keratinocytes. Tunicamycin is an inhibitor of N-glycosylation that has been a useful tool in glycobiology. Therefore, we investigated the effect of inhibiting N-glycosylation by tunicamycin treatment on desmosomes in primary keratinocytes. In our experiments, cell–cell adhesive strength was reduced in tunicamycin-treated primary keratinocytes. TEM showed that desmosome formation was impaired by tunicamycin. Desmogleins (Dsgs) 1 and 3, which constitute the core structure of desmosomes, were well transported to the cell–cell borders, but the amount decreased and showed an aberrant distribution at the cell borders in tunicamycin-treated keratinocytes. The stability of both desmoglein proteins was also reduced, and they were degraded through both proteasomal and lysosomal pathways, although inhibiting degradation did not restore the cell–cell adhesion. Finally, tunicamycin induced desmosomal instability, enhancing their disassembly. In conclusion, these results indicate that N-glycosylation is critical to the desmosome complex to maintain cell–cell adhesive strength in primary keratinocytes.
Collapse
|
3
|
Möginger U, Grunewald S, Hennig R, Kuo CW, Schirmeister F, Voth H, Rapp E, Khoo KH, Seeberger PH, Simon JC, Kolarich D. Alterations of the Human Skin N- and O-Glycome in Basal Cell Carcinoma and Squamous Cell Carcinoma. Front Oncol 2018; 8:70. [PMID: 29619343 PMCID: PMC5871710 DOI: 10.3389/fonc.2018.00070] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Abstract
The glycome of one of the largest and most exposed human organs, the skin, as well as glycan changes associated with non-melanoma skin cancers have not been studied in detail to date. Skin cancers such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are among the most frequent types of cancers with rising incidence rates in the aging population. We investigated the healthy human skin N- and O-glycome and its changes associated with BCC and SCC. Matched patient samples were obtained from frozen biopsy and formalin-fixed paraffin-embedded tissue samples for glycomics analyses using two complementary glycomics approaches: porous graphitized carbon nano-liquid chromatography electro spray ionization tandem mass spectrometry and capillary gel electrophoresis with laser induced fluorescence detection. The human skin N-glycome is dominated by complex type N-glycans that exhibit almost similar levels of α2-3 and α2-6 sialylation. Fucose is attached exclusively to the N-glycan core. Core 1 and core 2 type O-glycans carried up to three sialic acid residues. An increase of oligomannose type N-glycans and core 2 type O-glycans was observed in BCC and SCC, while α2-3 sialylation levels were decreased in SCC but not in BCC. Furthermore, glycopeptide analyses provided insights into the glycoprotein candidates possibly associated with the observed N-glycan changes, with glycoproteins associated with binding events being the most frequently identified class.
Collapse
Affiliation(s)
- Uwe Möginger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Sonja Grunewald
- Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| | - René Hennig
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,glyXera GmbH, Magdeburg, Germany
| | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Falko Schirmeister
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Harald Voth
- Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| | - Erdmann Rapp
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,glyXera GmbH, Magdeburg, Germany
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jan C Simon
- Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, Leipzig, Germany
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Institute for Glycomics, Griffith University, Southport, QLD, Australia
| |
Collapse
|
4
|
Danzberger J, Donovan M, Rankl C, Zhu R, Vicic S, Baltenneck C, Enea R, Hinterdorfer P, Luengo GS. Glycan distribution and density in native skin's stratum corneum. Skin Res Technol 2018; 24:450-458. [PMID: 29417655 PMCID: PMC6446803 DOI: 10.1111/srt.12453] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2018] [Indexed: 01/01/2023]
Abstract
Background The glycosylation of proteins on the surface of corneocytes is believed to play an important role in cellular adhesion in the stratum corneum (SC) of human skin. Mapping with accuracy the localization of glycans on the surface of corneocytes through traditional methods of immunohistochemistry and electron microscopy remains a challenging task as both approaches lack enough resolution or need to be performed in high vacuum conditions. Materials and methods We used an advanced mode of atomic force microscope (AFM), with simultaneous topography and recognition imaging to investigate the distribution of glycans on native (no chemical preparation) stripped samples of human SC. The AFM cantilever tips were functionalized with anti‐heparan sulfate antibody and the lectin wheat germ agglutinin (WGA) which binds specifically to N‐acetyl glucosamine and sialic acid. Results From the recognition imaging, we observed the presence of the sulfated glycosaminoglycan, heparan sulfate, and the glycans recognized by WGA on the surface of SC corneocytes in their native state. These glycans were found associated with bead‐like domains which represent corneodesmosomes in the SC layers. Glycan density was calculated to be ~1200 molecules/μm2 in lower layers of SC compared to an important decrease, (~106 molecules/μm2) closer to the surface due probably to corneodesmosome degradation. Conclusion Glycan spatial distribution and degradation is first observed on the surface of SC in native conditions and at high resolution. The method used can be extended to precisely localize the presence of other macromolecules on the surface of skin or other tissues where the maintenance of its native state is required.
Collapse
Affiliation(s)
- J Danzberger
- Center for Advanced Bioanalysis GmbH, Linz, Austria
| | - M Donovan
- L'Oréal Research and Innovation, Aulnay sous Bois, France
| | - C Rankl
- RECENDT-Research Center for Non-Destructive Testing GmbH, Linz, Austria
| | - R Zhu
- Institute for Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - S Vicic
- L'Oréal Research and Innovation, Aulnay sous Bois, France
| | - C Baltenneck
- L'Oréal Research and Innovation, Aulnay sous Bois, France
| | - R Enea
- L'Oréal Research and Innovation, Aulnay sous Bois, France
| | - P Hinterdorfer
- Center for Advanced Bioanalysis GmbH, Linz, Austria.,Institute for Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - G S Luengo
- L'Oréal Research and Innovation, Aulnay sous Bois, France
| |
Collapse
|
5
|
Furukawa JI, Tsuda M, Okada K, Kimura T, Piao J, Tanaka S, Shinohara Y. Comprehensive Glycomics of a Multistep Human Brain Tumor Model Reveals Specific Glycosylation Patterns Related to Malignancy. PLoS One 2015; 10:e0128300. [PMID: 26132161 PMCID: PMC4488535 DOI: 10.1371/journal.pone.0128300] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/27/2015] [Indexed: 12/03/2022] Open
Abstract
Cancer cells frequently express glycans at different levels and/or with fundamentally different structures from those expressed by normal cells, and therefore elucidation and manipulation of these glycosylations may provide a beneficial approach to cancer therapy. However, the relationship between altered glycosylation and causal genetic alteration(s) is only partially understood. Here, we employed a unique approach that applies comprehensive glycomic analysis to a previously described multistep tumorigenesis model. Normal human astrocytes were transformed via the serial introduction of hTERT, SV40ER, H-RasV12, and myrAKT, thereby mimicking human brain tumor grades I-IV. More than 160 glycans derived from three major classes of cell surface glycoconjugates (N- and O-glycans on glycoproteins, and glycosphingolipids) were quantitatively explored, and specific glycosylation patterns related to malignancy were systematically identified. The sequential introduction of hTERT, SV40ER, H-RasV12, and myrAKT led to (i) temporal expression of pauci-mannose/mono-antennary type N-glycans and GD3 (hTERT); (ii) switching from ganglio- to globo-series glycosphingolipids and the appearance of Neu5Gc (hTERT and SV40ER); (iii) temporal expression of bisecting GlcNAc residues, α2,6-sialylation, and stage-specific embryonic antigen-4, accompanied by suppression of core 2 O-glycan biosynthesis (hTERT, SV40ER and Ras); and (iv) increased expression of (neo)lacto-series glycosphingolipids and fucosylated N-glycans (hTERT, SV40ER, Ras and AKT). These sequential and transient glycomic alterations may be useful for tumor grade diagnosis and tumor prognosis, and also for the prediction of treatment response.
Collapse
Affiliation(s)
- Jun-ichi Furukawa
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kazue Okada
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
| | - Taichi Kimura
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Jinhua Piao
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- * E-mail: (YS); (ST)
| | - Yasuro Shinohara
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
- * E-mail: (YS); (ST)
| |
Collapse
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
7
|
Furukawa JI, Fujitani N, Shinohara Y. Recent advances in cellular glycomic analyses. Biomolecules 2013; 3:198-225. [PMID: 24970165 PMCID: PMC4030886 DOI: 10.3390/biom3010198] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/28/2013] [Accepted: 02/14/2013] [Indexed: 12/21/2022] Open
Abstract
A large variety of glycans is intricately located on the cell surface, and the overall profile (the glycome, given the entire repertoire of glycoconjugate-associated sugars in cells and tissues) is believed to be crucial for the diverse roles of glycans, which are mediated by specific interactions that control cell-cell adhesion, immune response, microbial pathogenesis and other cellular events. The glycomic profile also reflects cellular alterations, such as development, differentiation and cancerous change. A glycoconjugate-based approach would therefore be expected to streamline discovery of novel cellular biomarkers. Development of such an approach has proven challenging, due to the technical difficulties associated with the analysis of various types of cellular glycomes; however, recent progress in the development of analytical methodologies and strategies has begun to clarify the cellular glycomics of various classes of glycoconjugates. This review focuses on recent advances in the technical aspects of cellular glycomic analyses of major classes of glycoconjugates, including N- and O-linked glycans, derived from glycoproteins, proteoglycans and glycosphingolipids. Articles that unveil the glycomics of various biologically important cells, including embryonic and somatic stem cells, induced pluripotent stem (iPS) cells and cancer cells, are discussed.
Collapse
Affiliation(s)
- Jun-Ichi Furukawa
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Naoki Fujitani
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasuro Shinohara
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
8
|
Nagahori N, Yamashita T, Amano M, Nishimura SI. Effect of ganglioside GM3 synthase gene knockout on the glycoprotein N-glycan profile of mouse embryonic fibroblast. Chembiochem 2012; 14:73-82. [PMID: 23225753 DOI: 10.1002/cbic.201200641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Indexed: 12/18/2022]
Abstract
The structural and clinical significance of cellular glycoproteins and glycosphingolipids (GSLs) are often separately discussed. Considering the biosynthetic pathway of glycoconjugates, glycans of cell-surface glycoproteins and GSLs might partially share functions in maintaining cellular homeostatis. The purpose of this study is to establish a general and comprehensive glycomics protocol for cellular GSLs and N-glycans of glycoproteins. To test the feasibility of a glycoblotting-based protocol, whole glycans released both from GSLs and glycoproteins were profiled concurrently by using GM3 synthase-deficient mouse embryonic fibroblast GM3(-/-). GM3(-/-) cells did not synthesize GM3 or any downstream product of GM3 synthase. Instead, expression levels of o-series gangliosides involving GM1-b and GD1-α increased dramatically, whereas a-/b-series gangliosides were predominantly detected in wild-type (WT) cells. We also discovered that glycoprotein N-glycan profiles of GM3(-/-) cells are significantly altered as compared to WT cells, although GM3 synthase is responsible only for GSLs synthesis and is not associated with glycoprotein N-glycan biosynthesis. The present approach allows for high-throughput profiling of cellular glycomes enriched by different classes of glycoconjugates, and our results demonstrated that gene knockout of the enzymes responsible for GSL biosynthesis significantly influences the N-glycans of glycoproteins.
Collapse
Affiliation(s)
- Noriko Nagahori
- Graduate School of Advanced Life Science, and Frontier Research Center for the Post-Genome Science and Technology, Hokkaido University, N21, W11, Sapporo 001-0021, Japan
| | | | | | | |
Collapse
|
9
|
Rich RL, Myszka DG. Survey of the 2009 commercial optical biosensor literature. J Mol Recognit 2012; 24:892-914. [PMID: 22038797 DOI: 10.1002/jmr.1138] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We took a different approach to reviewing the commercial biosensor literature this year by inviting 22 biosensor users to serve as a review committee. They set the criteria for what to expect in a publication and ultimately decided to use a pass/fail system for selecting which papers to include in this year's reference list. Of the 1514 publications in 2009 that reported using commercially available optical biosensor technology, only 20% passed their cutoff. The most common criticism the reviewers had with the literature was that "the biosensor experiments could have been done better." They selected 10 papers to highlight good experimental technique, data presentation, and unique applications of the technology. This communal review process was educational for everyone involved and one we will not soon forget.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
10
|
Abstract
As drastic structural changes in cell-surface glycans of glycoproteins and glycosphingolipids, as well as serum glycoproteins, are often observed during cell differentiation and cancer progression, it is considered that glycans can be potential candidates for novel diagnostic and therapeutic biomarkers. Although there have been substantial advances in our understanding of the effects of glycosylation on some biological systems, we still do not fully understand the significance and mechanism of glycoform alteration that is widely observed in many human diseases. This is due to the highly complicated structures of the glycans and the extremely tedious and time-consuming processes required for their separation from complex mixtures and their subsequent analysis. As a result, with a few notable exceptions, the therapeutic potential of complex glycans has not been well exploited. This article is focused on the state of the art and current advances in glycomics, and efforts for the development of automated glycan analysis, which should greatly accelerate functional glycobiology and its medical/pharmaceutical applications. The "glycoblotting method" is the only method currently available that allows rapid and large-scale clinical glycomics of human whole-serum glycoproteins, because it requires very little material and, when combined with an automated system "SweetBlot," takes only ∼14h to complete whole glycan profiling by mass spectrometry. The upcoming goal is to combine glycoblotting methods and various MS-based platforms for the development of a fully automated glycan analytical system and accelerating research to discover highly sensitive and clinically important biomarker molecules.
Collapse
Affiliation(s)
- Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
11
|
Rucevic M, Hixson D, Josic D. Mammalian plasma membrane proteins as potential biomarkers and drug targets. Electrophoresis 2011; 32:1549-64. [PMID: 21706493 DOI: 10.1002/elps.201100212] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defining the plasma membrane proteome is crucial to understand the role of plasma membrane in fundamental biological processes. Change in membrane proteins is one of the first events that take place under pathological conditions, making plasma membrane proteins a likely source of potential disease biomarkers with prognostic or diagnostic potential. Membrane proteins are also potential targets for monoclonal antibodies and other drugs that block receptors or inhibit enzymes essential to the disease progress. Despite several advanced methods recently developed for the analysis of hydrophobic proteins and proteins with posttranslational modifications, integral membrane proteins are still under-represented in plasma membrane proteome. Recent advances in proteomic investigation of plasma membrane proteins, defining their roles as diagnostic and prognostic disease biomarkers and as target molecules in disease treatment, are presented.
Collapse
Affiliation(s)
- Marijana Rucevic
- COBRE Center for Cancer Research Development, Rhode Island Hospital, Providence, RI, USA
| | | | | |
Collapse
|
12
|
Glycobiomarkers by glycoproteomics and glycan profiling (glycomics): emergence of functionality. Biochem Soc Trans 2011; 39:399-405. [PMID: 21265812 DOI: 10.1042/bst0390399] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycans stand out from all classes of biomolecules because of their unsurpassed structural complexity. This is generated by variability in anomeric status of the glycosidic bond and its linkage points, ring size, potential for branching and introduction of diverse site-specific substitutions. What poses an enormous challenge for analytical processing is, at the same time, the basis for the fingerprint-like glycomic profiles of glycoconjugates and cells. What's more, the glycosylation machinery is sensitive to disease manifestations, earning glycan assembly a reputation as a promising candidate to identify new biomarkers. Backing this claim for a perspective in clinical practice are recent discoveries that even seemingly subtle changes in the glycan structure of glycoproteins, such as a N-glycan core substitution by a single sugar moiety, have far-reaching functional consequences. They are brought about by altering the interplay between the glycan and (i) its carrier protein and (ii) specific receptors (lectins). Glycan attachment thus endows the protein with a molecular switch and new recognition sites. Co-ordinated regulation of glycan display and presentation of the cognate lectin, e.g. in cancer growth regulation exerted by a tumour suppressor, further exemplifies the broad functional dimension inherent to the non-random shifts in glycosylation. Thus studies on glycobiomarkers converge with research on how distinct carbohydrate determinants are turned into bioactive signals.
Collapse
|