1
|
Scheible N, Henning PM, McCubbin AG. Calmodulin-Domain Protein Kinase PiCDPK1 Interacts with the 14-3-3-like Protein NtGF14 to Modulate Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:451. [PMID: 38337984 PMCID: PMC10857193 DOI: 10.3390/plants13030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Calcium-mediated signaling pathways are known to play important roles in the polar growth of pollen tubes. The calcium-dependent protein kinase, PiCDPK1, has been shown to be involved in regulating this process through interaction with a guanine dissociation inhibitor, PiRhoGDI1. To more fully understand the role of PiCDPK1 in pollen tube extension, we designed a pull-down study to identify additional substrates of this kinase. These experiments identified 123 putative interactors. Two of the identified proteins were predicted to directly interact with PiCDPK1, and this possibility was investigated in planta. The first, NtGF14, a 14-3-3-like protein, did not produce a noticeable phenotype when overexpressed in pollen alone but partially rescued the spherical tube phenotype caused by PiCDPK1 over-expression when co-over-expressed with the kinase. The second, NtREN1, a GTPase activating protein (GAP), severely inhibited pollen tube germination when over-expressed, and its co-over-expression with PiCDPK1 did not substantially affect this phenotype. These results suggest a novel in vivo interaction between NtGF14 and PiCDPK1 but do not support the direct interaction between PiCDPK1 and NtREN1. We demonstrate the utility of the methodology used to identify potential protein interactions while confirming the necessity of additional studies to confirm their validity. Finally, additional support was found for intersection between PiCDPK1 and RopGTPase pathways to control polar growth at the pollen tube tip.
Collapse
Affiliation(s)
| | | | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; (N.S.); (P.M.H.)
| |
Collapse
|
2
|
Deschênes-Simard X, Malleshaiah M, Ferbeyre G. Extracellular Signal-Regulated Kinases: One Pathway, Multiple Fates. Cancers (Basel) 2023; 16:95. [PMID: 38201521 PMCID: PMC10778234 DOI: 10.3390/cancers16010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
This comprehensive review delves into the multifaceted aspects of ERK signaling and the intricate mechanisms underlying distinct cellular fates. ERK1 and ERK2 (ERK) govern proliferation, transformation, epithelial-mesenchymal transition, differentiation, senescence, or cell death, contingent upon activation strength, duration, and context. The biochemical mechanisms underlying these outcomes are inadequately understood, shaped by signaling feedback and the spatial localization of ERK activation. Generally, ERK activation aligns with the Goldilocks principle in cell fate determination. Inadequate or excessive ERK activity hinders cell proliferation, while balanced activation promotes both cell proliferation and survival. Unraveling the intricacies of how the degree of ERK activation dictates cell fate requires deciphering mechanisms encompassing protein stability, transcription factors downstream of ERK, and the chromatin landscape.
Collapse
Affiliation(s)
- Xavier Deschênes-Simard
- Montreal University Hospital Center (CHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Mohan Malleshaiah
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Gerardo Ferbeyre
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Montreal Cancer Institute, CR-CHUM, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
3
|
Niinae T, Sugiyama N, Ishihama Y. Validity of the cell-extracted proteome as a substrate pool for exploring phosphorylation motifs of kinases. Genes Cells 2023; 28:727-735. [PMID: 37658684 PMCID: PMC11447832 DOI: 10.1111/gtc.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Three representative protein kinases with different substrate preferences, ERK1 (Pro-directed), CK2 (acidophilic), and PKA (basophilic), were used to investigate phosphorylation sequence motifs in substrate pools consisting of the proteomes from three different cell lines, MCF7 (human mammary carcinoma), HeLa (human cervical carcinoma), and Jurkat (human acute T-cell leukemia). Specifically, recombinant kinases were added to the cell-extracted proteomes to phosphorylate the substrates in vitro. After trypsin digestion, the phosphopeptides were enriched and subjected to nanoLC/MS/MS analysis to identify their phosphorylation sites on a large scale. By analyzing the obtained phosphorylation sites and their surrounding sequences, phosphorylation motifs were extracted for each kinase-substrate proteome pair. We found that each kinase exhibited the same set of phosphorylation motifs, independently of the substrate pool proteome. Furthermore, the identified motifs were also consistent with those found using a completely randomized peptide library. These results indicate that cell-extracted proteomes can provide kinase phosphorylation motifs with sufficient accuracy, even though their sequences are not completely random, supporting the robustness of phosphorylation motif identification based on phosphoproteome analysis of cell extracts as a substrate pool for a kinase of interest.
Collapse
Affiliation(s)
- Tomoya Niinae
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Naoyuki Sugiyama
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
- Laboratory of Clinical and Analytical ChemistryNational Institute of Biomedical Innovation, Health and NutritionIbarakiOsakaJapan
| |
Collapse
|
4
|
Yu W, Li Y, Chen H, Cui Y, Situ C, Yao L, Zhang X, Lu S, Liu L, Li L, Ren J, Guo Y, Huo Z, Chen Y, Li H, Jiang T, Gu Y, Wang C, Zhu T, Li Y, Hu Z, Guo X. STK33 phosphorylates fibrous sheath protein AKAP3/4 to regulate sperm flagella assembly in spermiogenesis. Mol Cell Proteomics 2023:100564. [PMID: 37146716 DOI: 10.1016/j.mcpro.2023.100564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
Spermatogenesis defects are important for male infertility; however, the etiology and pathogenesis are still unknown. Herein, we identified two loss of function mutations of STK33 in 7 individuals with non-obstructive azoospermia. Further functional studies of these frameshift and nonsense mutations revealed that Stk33-/KI male mice were sterile, and Stk33-/KI sperm were abnormal with defects in the mitochondrial sheath (MS), fibrous sheath (FS), outer dense fiber (ODF) and axoneme. Stk33KI/KI male mice were subfertile and had oligoasthenozoospermia. Differential phosphoproteomic analysis and in vitro kinase assay identified novel phosphorylation substrates of STK33, fibrous sheath components AKAP3 and AKAP4, whose expression levels decreased in testis after deletion of Stk33. STK33 regulated the phosphorylation of AKAP3/4, affected the assembly of fibrous sheath in the sperm, and played an essential role in spermiogenesis and male infertility.
Collapse
Affiliation(s)
- Weiling Yu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yang Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China; School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Hong Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Liping Yao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Shuai Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China; School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Li Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Laihua Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Ren
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zian Huo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Haojie Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China; School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China; School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China; School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Tianyu Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China; School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211100, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
5
|
Haas TM, Mundinger S, Qiu D, Jork N, Ritter K, Dürr‐Mayer T, Ripp A, Saiardi A, Schaaf G, Jessen HJ. Stable Isotope Phosphate Labelling of Diverse Metabolites is Enabled by a Family of 18O-Phosphoramidites. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202112457. [PMID: 38505299 PMCID: PMC10947094 DOI: 10.1002/ange.202112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 11/09/2022]
Abstract
Stable isotope labelling is state-of-the-art in quantitative mass spectrometry, yet often accessing the required standards is cumbersome and very expensive. Here, a unifying synthetic concept for 18O-labelled phosphates is presented, based on a family of modified 18O2-phosphoramidite reagents. This toolbox offers access to major classes of biologically highly relevant phosphorylated metabolites as their isotopologues including nucleotides, inositol phosphates, -pyrophosphates, and inorganic polyphosphates. 18O-enrichment ratios >95 % and good yields are obtained consistently in gram-scale reactions, while enabling late-stage labelling. We demonstrate the utility of the 18O-labelled inositol phosphates and pyrophosphates by assignment of these metabolites from different biological matrices. We demonstrate that phosphate neutral loss is negligible in an analytical setup employing capillary electrophoresis electrospray ionisation triple quadrupole mass spectrometry.
Collapse
Affiliation(s)
- Thomas M. Haas
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Stephan Mundinger
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Danye Qiu
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Nikolaus Jork
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
- CIBSS—The Center for Biological Signaling Studies &, Spemann Graduate School of Biology and Medicine (SGBM)Albert-Ludwigs-Universität FreiburgGermany
| | - Kevin Ritter
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Tobias Dürr‐Mayer
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Alexander Ripp
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Adolfo Saiardi
- Medical Research Council, Laboratory for molecular Cell BiologyUniversity College LondonUK
| | - Gabriel Schaaf
- INRES—Institut für Nutzpflanzenwissenschaften und RessourcenschutzUniversität BonnKarlrobert-Kreiten-Strasse 1353115BonnGermany
| | - Henning J. Jessen
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
- CIBSS—The Center for Biological Signaling Studies &, Spemann Graduate School of Biology and Medicine (SGBM)Albert-Ludwigs-Universität FreiburgGermany
| |
Collapse
|
6
|
Haas TM, Mundinger S, Qiu D, Jork N, Ritter K, Dürr‐Mayer T, Ripp A, Saiardi A, Schaaf G, Jessen HJ. Stable Isotope Phosphate Labelling of Diverse Metabolites is Enabled by a Family of 18 O-Phosphoramidites. Angew Chem Int Ed Engl 2022; 61:e202112457. [PMID: 34734451 PMCID: PMC9298905 DOI: 10.1002/anie.202112457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 11/12/2022]
Abstract
Stable isotope labelling is state-of-the-art in quantitative mass spectrometry, yet often accessing the required standards is cumbersome and very expensive. Here, a unifying synthetic concept for 18 O-labelled phosphates is presented, based on a family of modified 18 O2 -phosphoramidite reagents. This toolbox offers access to major classes of biologically highly relevant phosphorylated metabolites as their isotopologues including nucleotides, inositol phosphates, -pyrophosphates, and inorganic polyphosphates. 18 O-enrichment ratios >95 % and good yields are obtained consistently in gram-scale reactions, while enabling late-stage labelling. We demonstrate the utility of the 18 O-labelled inositol phosphates and pyrophosphates by assignment of these metabolites from different biological matrices. We demonstrate that phosphate neutral loss is negligible in an analytical setup employing capillary electrophoresis electrospray ionisation triple quadrupole mass spectrometry.
Collapse
Affiliation(s)
- Thomas M. Haas
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Stephan Mundinger
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Danye Qiu
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Nikolaus Jork
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
- CIBSS—The Center for Biological Signaling Studies &, Spemann Graduate School of Biology and Medicine (SGBM)Albert-Ludwigs-Universität FreiburgGermany
| | - Kevin Ritter
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Tobias Dürr‐Mayer
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Alexander Ripp
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
| | - Adolfo Saiardi
- Medical Research Council, Laboratory for molecular Cell BiologyUniversity College LondonUK
| | - Gabriel Schaaf
- INRES—Institut für Nutzpflanzenwissenschaften und RessourcenschutzUniversität BonnKarlrobert-Kreiten-Strasse 1353115BonnGermany
| | - Henning J. Jessen
- Institute of Organic ChemistryAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2179102Freiburg im BreisgauGermany
- CIBSS—The Center for Biological Signaling Studies &, Spemann Graduate School of Biology and Medicine (SGBM)Albert-Ludwigs-Universität FreiburgGermany
| |
Collapse
|
7
|
Global identification of phospho-dependent SCF substrates reveals a FBXO22 phosphodegron and an ERK-FBXO22-BAG3 axis in tumorigenesis. Cell Death Differ 2022; 29:1-13. [PMID: 34215846 PMCID: PMC8738747 DOI: 10.1038/s41418-021-00827-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
SKP1-CUL1-F-box (SCF) ubiquitin ligases play fundamental roles in cellular functions. Typically, substrate phosphorylation is required for SCF recognition and subsequent degradation. However, phospho-dependent substrates remain largely unidentified. Here, using quantitative phoshoproteome approach, we performed a system-wide investigation of phospho-dependent SCF substrates. This strategy identified diverse phospho-dependent candidates. Biochemical verification revealed a mechanism by which SCFFBXO22 recognizes the motif XXPpSPXPXX as a conserved phosphodegron to target substrates for destruction. We further demonstrated BAG3, a HSP70 co-chaperone, is a bona fide substrate of SCFFBXO22. FBXO22 mediates BAG3 ubiquitination and degradation that requires ERK-dependent BAG3 phosphorylation at S377. FBXO22 depletion or expression of a stable BAG3 S377A mutant promotes tumor growth via defects in apoptosis and cell cycle progression in vitro and in vivo. In conclusion, our study identified broad phosphorylation-dependent SCF substrates and demonstrated a phosphodegron recognized by FBXO22 and a novel ERK-FBXO22-BAG3 axis involved in tumorigenesis.
Collapse
|
8
|
Subba P, Prasad TSK. Plant Phosphoproteomics: Known Knowns, Known Unknowns, and Unknown Unknowns of an Emerging Systems Science Frontier. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:750-769. [PMID: 34882020 DOI: 10.1089/omi.2021.0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant systems science research depends on the dynamic functional maps of the biological substrates of plant phenotypes and host/environment interactions in diverse ecologies. In this context, high-resolution mass spectrometry platforms offer comprehensive insights into the molecular pathways regulated by protein phosphorylation. Reversible protein phosphorylation is a ubiquitous reaction in signal transduction mechanisms in biological systems. In contrast to human and animal biology research, a plethora of experimental options for functional mapping and regulation of plant biology are, however, not currently available. Plant phosphoproteomics is an emerging field of research that aims at addressing this gap in systems science and plant omics, and thus has a large scope to empower fundamental discoveries. To date, large-scale data-intensive identification of phosphorylation events in plants remained technically challenging. In this expert review, we present a critical analysis and overview of phosphoproteomic studies performed in the model plant Arabidopsis thaliana. We discuss the technical strategies used for the enrichment of phosphopeptides and methods used for their quantitative assessment. Various types of mass spectrometry data acquisition and fragmentation methods are also discussed. The insights gathered here can allow plant biology and systems science researchers to design high-throughput function-oriented experimental workflows that elucidate the regulatory signaling mechanisms impacting plant physiology and plant diseases.
Collapse
Affiliation(s)
- Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
9
|
Hu Z, Sankar DS, Vu B, Leytens A, Vionnet C, Wu W, Stumpe M, Martínez-Martínez E, Stork B, Dengjel J. ULK1 phosphorylation of striatin activates protein phosphatase 2A and autophagy. Cell Rep 2021; 36:109762. [PMID: 34592149 DOI: 10.1016/j.celrep.2021.109762] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/16/2021] [Accepted: 09/06/2021] [Indexed: 01/18/2023] Open
Abstract
The evolutionarily conserved ULK1 kinase complex acts as gatekeeper of canonical autophagy and regulates induction of autophagosome biogenesis. To better understand control of ULK1 and analyze whether ULK1 has broader functions that are also linked to the later steps of autophagy, we perform comprehensive phosphoproteomic analyses. Combining in vivo with in vitro data, we identify numerous direct ULK1 target sites within autophagy-relevant proteins that are critical for autophagosome maturation and turnover. In addition, we highlight an intimate crosstalk between ULK1 and several phosphatase complexes. ULK1 is not only a PP2A target but also directly phosphorylates the regulatory PP2A subunit striatin, activating PP2A and serving as positive feedback to promote autophagy-dependent protein turnover. Thus, ULK1 and phosphatase activities are tightly coordinated to robustly regulate protein degradation by autophagy.
Collapse
Affiliation(s)
- Zehan Hu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | | | - Bich Vu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Alexandre Leytens
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Christine Vionnet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Wenxian Wu
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | | | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
10
|
ERK1/2: An Integrator of Signals That Alters Cardiac Homeostasis and Growth. BIOLOGY 2021; 10:biology10040346. [PMID: 33923899 PMCID: PMC8072600 DOI: 10.3390/biology10040346] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022]
Abstract
Integration of cellular responses to extracellular cues is essential for cell survival and adaptation to stress. Extracellular signal-regulated kinase (ERK) 1 and 2 serve an evolutionarily conserved role for intracellular signal transduction that proved critical for cardiomyocyte homeostasis and cardiac stress responses. Considering the importance of ERK1/2 in the heart, understanding how these kinases operate in both normal and disease states is critical. Here, we review the complexity of upstream and downstream signals that govern ERK1/2-dependent regulation of cardiac structure and function. Particular emphasis is given to cardiomyocyte hypertrophy as an outcome of ERK1/2 activation regulation in the heart.
Collapse
|
11
|
The ERK mitogen-activated protein kinase signaling network: the final frontier in RAS signal transduction. Biochem Soc Trans 2021; 49:253-267. [PMID: 33544118 DOI: 10.1042/bst20200507] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
The RAF-MEK-ERK mitogen-activated protein kinase (MAPK) cascade is aberrantly activated in a diverse set of human cancers and the RASopathy group of genetic developmental disorders. This protein kinase cascade is one of the most intensely studied cellular signaling networks and has been frequently targeted by the pharmaceutical industry, with more than 30 inhibitors either approved or under clinical evaluation. The ERK-MAPK cascade was originally depicted as a serial and linear, unidirectional pathway that relays extracellular signals, such as mitogenic stimuli, through the cytoplasm to the nucleus. However, we now appreciate that this three-tiered protein kinase cascade is a central core of a complex network with dynamic signaling inputs and outputs and autoregulatory loops. Despite our considerable advances in understanding the ERK-MAPK network, the ability of cancer cells to adapt to the inhibition of key nodes reveals a level of complexity that remains to be fully understood. In this review, we summarize important developments in our understanding of the ERK-MAPK network and identify unresolved issues for ongoing and future study.
Collapse
|
12
|
Hu Z, Raucci S, Jaquenoud M, Hatakeyama R, Stumpe M, Rohr R, Reggiori F, De Virgilio C, Dengjel J. Multilayered Control of Protein Turnover by TORC1 and Atg1. Cell Rep 2020; 28:3486-3496.e6. [PMID: 31553916 DOI: 10.1016/j.celrep.2019.08.069] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
The target of rapamycin complex 1 (TORC1) is a master regulator of cell homeostasis, which promotes anabolic reactions and synchronously inhibits catabolic processes such as autophagy-mediated protein degradation. Its prime autophagy target is Atg13, a subunit of the Atg1 kinase complex that acts as the gatekeeper of canonical autophagy. To study whether the activities of TORC1 and Atg1 are coupled through additional, more intricate control mechanisms than simply this linear pathway, we analyzed the epistatic relationship between TORC1 and Atg1 by using quantitative phosphoproteomics. Our in vivo data, combined with targeted in vitro TORC1 and Atg1 kinase assays, not only uncover numerous TORC1 and Atg1 effectors, but also suggest distinct bi-directional regulatory feedback loops and characterize Atg29 as a commonly regulated downstream target of both TORC1 and Atg1. Thus, an exquisitely multilayered regulatory network appears to coordinate TORC1 and Atg1 activities to robustly tune autophagy in response to nutritional cues.
Collapse
Affiliation(s)
- Zehan Hu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Serena Raucci
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Malika Jaquenoud
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Riko Hatakeyama
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Rudolf Rohr
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | | | - Jörn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
13
|
Hermida D, Mortuza GB, Pedersen AK, Pozdnyakova I, Nguyen TTTN, Maroto M, Williamson M, Ebersole T, Cazzamali G, Rand K, Olsen JV, Malumbres M, Montoya G. Molecular Basis of the Mechanisms Controlling MASTL. Mol Cell Proteomics 2020; 19:326-343. [PMID: 31852836 PMCID: PMC7000116 DOI: 10.1074/mcp.ra119.001879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
The human MASTL (Microtubule-associated serine/threonine kinase-like) gene encodes an essential protein in the cell cycle. MASTL is a key factor preventing early dephosphorylation of M-phase targets of Cdk1/CycB. Little is known about the mechanism of MASTL activation and regulation. MASTL contains a non-conserved insertion of 550 residues within its activation loop, splitting the kinase domain, and making it unique. Here, we show that this non-conserved middle region (NCMR) of the protein is crucial for target specificity and activity. We performed a phosphoproteomic assay with different MASTL constructs identifying key phosphorylation sites for its activation and determining whether they arise from autophosphorylation or exogenous kinases, thus generating an activation model. Hydrogen/deuterium exchange data complements this analysis revealing that the C-lobe in full-length MASTL forms a stable structure, whereas the N-lobe is dynamic and the NCMR and C-tail contain few localized regions with higher-order structure. Our results indicate that truncated versions of MASTL conserving a cryptic C-Lobe in the NCMR, display catalytic activity and different targets, thus establishing a possible link with truncated mutations observed in cancer-related databases.
Collapse
Affiliation(s)
- Dario Hermida
- The Novo Nordisk Foundation Center for Protein Research, Protein Structure & Function Programme, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Gulnahar B Mortuza
- The Novo Nordisk Foundation Center for Protein Research, Protein Structure & Function Programme, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anna-Kathrine Pedersen
- The Novo Nordisk Foundation Center for Protein Research, Proteomics Programme, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Irina Pozdnyakova
- The Novo Nordisk Foundation Center for Protein Research, Protein Structure & Function Programme, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tam T T N Nguyen
- Protein Analysis Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Maria Maroto
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Michael Williamson
- The Novo Nordisk Foundation Center for Protein Research, Protein Structure & Function Programme, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tasja Ebersole
- The Novo Nordisk Foundation Center for Protein Research, Protein Structure & Function Programme, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Giuseppe Cazzamali
- The Novo Nordisk Foundation Center for Protein Research, Protein Structure & Function Programme, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Kasper Rand
- Protein Analysis Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Jesper V Olsen
- The Novo Nordisk Foundation Center for Protein Research, Proteomics Programme, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Marcos Malumbres
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Guillermo Montoya
- The Novo Nordisk Foundation Center for Protein Research, Protein Structure & Function Programme, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
14
|
Mapping proteome-wide targets of protein kinases in plant stress responses. Proc Natl Acad Sci U S A 2020; 117:3270-3280. [PMID: 31992638 DOI: 10.1073/pnas.1919901117] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein kinases are major regulatory components in almost all cellular processes in eukaryotic cells. By adding phosphate groups, protein kinases regulate the activity, localization, protein-protein interactions, and other features of their target proteins. It is known that protein kinases are central components in plant responses to environmental stresses such as drought, high salinity, cold, and pathogen attack. However, only a few targets of these protein kinases have been identified. Moreover, how these protein kinases regulate downstream biological processes and mediate stress responses is still largely unknown. In this study, we introduce a strategy based on isotope-labeled in vitro phosphorylation reactions using in vivo phosphorylated peptides as substrate pools and apply this strategy to identify putative substrates of nine protein kinases that function in plant abiotic and biotic stress responses. As a result, we identified more than 5,000 putative target sites of osmotic stress-activated SnRK2.4 and SnRK2.6, abscisic acid-activated protein kinases SnRK2.6 and casein kinase 1-like 2 (CKL2), elicitor-activated protein kinase CDPK11 and MPK6, cold-activated protein kinase MPK6, H2O2-activated protein kinase OXI1 and MPK6, and salt-induced protein kinase SOS1 and MPK6, as well as the low-potassium-activated protein kinase CIPK23. These results provide comprehensive information on the role of these protein kinases in the control of cellular activities and could be a valuable resource for further studies on the mechanisms underlying plant responses to environmental stresses.
Collapse
|
15
|
Liu Y, Song H, Yu S, Huang KH, Ma X, Zhou Y, Yu S, Zhang J, Chen L. Protein Kinase D3 promotes the cell proliferation by activating the ERK1/c-MYC axis in breast cancer. J Cell Mol Med 2020; 24:2135-2144. [PMID: 31944568 PMCID: PMC7011155 DOI: 10.1111/jcmm.14772] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/09/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the second leading death cause of cancer death for all women. Previous study suggested that Protein Kinase D3 (PRKD3) was involved in breast cancer progression. In addition, the protein level of PRKD3 in triple‐negative breast adenocarcinoma was higher than that in normal breast tissue. However, the oncogenic mechanisms of PRKD3 in breast cancer is not fully investigated. Multi‐omic data showed that ERK1/c‐MYC axis was identified as a major pivot in PRKD3‐mediated downstream pathways. Our study provided the evidence to support that the PRKD3/ERK1/c‐MYC pathway play an important role in breast cancer progression. We found that knocking out PRKD3 by performing CRISPR/Cas9 genome engineering technology suppressed phosphorylation of both ERK1 and c‐MYC but did not down‐regulate ERK1/2 expression or phosphorylation of ERK2. The inhibition of ERK1 and c‐MYC phosphorylation further led to the lower protein level of c‐MYC and then reduced the expression of the c‐MYC target genes in breast cancer cells. We also found that loss of PRKD3 reduced the rate of the cell proliferation in vitro and tumour growth in vivo, whereas ectopic (over)expression of PRKD3, ERK1 or c‐MYC in the PRKD3‐knockout breast cells reverse the suppression of the cell proliferation and tumour growth. Collectively, our data strongly suggested that PRKD3 likely promote the cell proliferation in the breast cancer cells by activating ERK1‐c‐MYC axis.
Collapse
Affiliation(s)
- Yan Liu
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China.,The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, China
| | - Hang Song
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, China.,Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shiyi Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China.,The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, China
| | - Kuo-Hsiang Huang
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xinxing Ma
- The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Yehui Zhou
- The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Shuang Yu
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,Xuzhou Medical University, Xuzhou, China
| | - Jingzhong Zhang
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,Xuzhou Medical University, Xuzhou, China.,Tianjin Guokeyigong Science and Technology Development Company Limited, Tianjin, China
| | - Liming Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China.,The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, China
| |
Collapse
|
16
|
Global view of the RAF-MEK-ERK module and its immediate downstream effectors. Sci Rep 2019; 9:10865. [PMID: 31350469 PMCID: PMC6659682 DOI: 10.1038/s41598-019-47245-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
Small molecule inhibitors of BRAF and MEK have proven effective at inhibiting tumor growth in melanoma patients, however this efficacy is limited due to the almost universal development of drug resistance. To provide advanced insight into the signaling responses that occur following kinase inhibition we have performed quantitative (phospho)-proteomics of human melanoma cells treated with either dabrafenib, a BRAF inhibitor; trametinib, a MEK inhibitor or SCH772984, an ERK inhibitor. Over nine experiments we identified 7827 class I phosphorylation sites on 4960 proteins. This included 54 phosphorylation sites that were significantly down-modulated after exposure to all three inhibitors, 34 of which have not been previously reported. Functional analysis of these novel ERK targets identified roles for them in GTPase activity and regulation, apoptosis and cell-cell adhesion. Comparison of the results presented here with previously reported phosphorylation sites downstream of ERK showed a limited degree of overlap suggesting that ERK signaling responses may be highly cell line and cue specific. In addition we identified 26 phosphorylation sites that were only responsive to dabrafenib. We provide further orthogonal experimental evidence for 3 of these sites in human embryonic kidney cells over-expressing BRAF as well as further computational insights using KinomeXplorer. The validated phosphorylation sites were found to be involved in actin regulation, which has been proposed as a novel mechanism for inhibiting resistance development. These results would suggest that the linearity of the BRAF-MEK-ERK module is at least context dependent.
Collapse
|
17
|
Arrington J, Xue L, Wang WH, Geahlen RL, Tao WA. Identification of the Direct Substrates of the ABL Kinase via Kinase Assay Linked Phosphoproteomics with Multiple Drug Treatments. J Proteome Res 2019; 18:1679-1690. [PMID: 30869898 DOI: 10.1021/acs.jproteome.8b00942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ableson tyrosine kinase (ABL) plays essential roles in cell differentiation, division, adhesion, and stress response. However, fusion of the breakpoint cluster region (BCR) to ABL produces constitutive kinase activity that causes chronic myelogenous leukemia (CML). Small molecule tyrosine kinase inhibitors (TKIs) such as imatinib revolutionized the treatment of CML and other cancers, but acquired resistance to these inhibitors is rising. Thus, careful dissection of ABL signaling pathways is needed to find novel drug targets. Here we present a refined proteomic approach for elucidation of direct kinase substrates called kinase assay linked phosphoproteomics (KALIP). Our strategy integrates in vitro kinase assays at both the peptide and protein levels with quantitative tyrosine phosphoproteomics in response to treatment by multiple TKIs. Utilizing multiple TKIs permits elimination of off-target effects of these drugs, and overlapping the in vivo and in vitro data sets allows us to define a list of the most probable kinase substrates. Applying our approach produced a list of 60 ABL substrates, including novel and known proteins. We demonstrate that spleen tyrosine kinase (SYK) is a novel direct substrate of ABL, and we predict our proteomic strategy may facilitate identification of substrates in other cancers that have disrupted kinase signaling.
Collapse
|
18
|
Perez M, Blankenhorn J, Murray KJ, Parker LL. High-throughput Identification of FLT3 Wild-type and Mutant Kinase Substrate Preferences and Application to Design of Sensitive In Vitro Kinase Assay Substrates. Mol Cell Proteomics 2019; 18:477-489. [PMID: 30541869 PMCID: PMC6398213 DOI: 10.1074/mcp.ra118.001111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/23/2018] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive disease that is characterized by abnormal increase of immature myeloblasts in blood and bone marrow. The FLT3 receptor tyrosine kinase plays an integral role in hematopoiesis, and one third of AML diagnoses exhibit gain-of-function mutations in FLT3, with the juxtamembrane domain internal tandem duplication (ITD) and the kinase domain D835Y variants observed most frequently. Few FLT3 substrates or phosphorylation sites are known, which limits insight into FLT3's substrate preferences and makes assay design particularly challenging. We applied in vitro phosphorylation of a cell lysate digest (adaptation of the Kinase Assay Linked with Phosphoproteomics (KALIP) technique and similar methods) for high-throughput identification of substrates for three FLT3 variants (wild-type, ITD mutant, and D835Y mutant). Incorporation of identified substrate sequences as input into the KINATEST-ID substrate preference analysis and assay development pipeline facilitated the design of several peptide substrates that are phosphorylated efficiently by all three FLT3 kinase variants. These substrates could be used in assays to identify new FLT3 inhibitors that overcome resistant mutations to improve FLT3-positive AML treatment.
Collapse
Affiliation(s)
- Minervo Perez
- From the ‡University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, 420 Washington Avenue SE, Minneapolis, Minnesota 55455
- §Purdue University, Department of Medicinal Chemistry and Molecular Pharmacology, 201 S. University Street, West Lafayette, Indiana 47907
| | - John Blankenhorn
- From the ‡University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, 420 Washington Avenue SE, Minneapolis, Minnesota 55455
| | - Kevin J Murray
- ¶University of Minnesota, Department of Veterinary Population Medicine, 319 15 Avenue South East, Minneapolis, Minnesota 55455
| | - Laurie L Parker
- From the ‡University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, 420 Washington Avenue SE, Minneapolis, Minnesota 55455;
| |
Collapse
|
19
|
Arrington JV, Hsu CC, Elder SG, Andy Tao W. Recent advances in phosphoproteomics and application to neurological diseases. Analyst 2018; 142:4373-4387. [PMID: 29094114 DOI: 10.1039/c7an00985b] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphorylation has an incredible impact on the biological behavior of proteins, altering everything from intrinsic activity to cellular localization and complex formation. It is no surprise then that this post-translational modification has been the subject of intense study and that, with the advent of faster, more accurate instrumentation, the number of large-scale mass spectrometry-based phosphoproteomic studies has swelled over the past decade. Recent developments in sample preparation, phosphorylation enrichment, quantification, and data analysis strategies permit both targeted and ultra-deep phosphoproteome profiling, but challenges remain in pinpointing biologically relevant phosphorylation events. We describe here technological advances that have facilitated phosphoproteomic analysis of cells, tissues, and biofluids and note applications to neuropathologies in which the phosphorylation machinery may be dysregulated, much as it is in cancer.
Collapse
|
20
|
Sun Y, Peng W, He W, Luo M, Chang G, Shen J, Zhao X, Hu Y. Transgelin-2 is a novel target of KRAS-ERK signaling involved in the development of pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:166. [PMID: 30041673 PMCID: PMC6056937 DOI: 10.1186/s13046-018-0818-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/29/2018] [Indexed: 02/08/2023]
Abstract
Background The KRAS mutation is the driving force of pancreatic ductal adenocarcinoma (PDAC). Downstream effectors of KRAS signal pathways are crucial to the development of PDAC. The purpose of this study was to investigate the relationship between KRAS mutation and transgelin-2. Transgelin-2 is highly expressed in PDAC tissues compared with adjacent normal tissues. The underlying mechanism for upregulating transgelin-2 is largely unknown. Methods Expression of transgelin-2 was analyzed by microarray data and qRT-PCR. The effect of KRAS signaling on transgelin-2 expression was examined in PDAC cells in the presence or absence of the ERK inhibitor. The interaction of transgelin-2 with ERK was confirmed by immunoprecipitation. ERK-mediated Phosphorylation of transglein-2 was detected by in vivo and in vitro kinase assays. The gain-of-function and loss-of-function approaches were used to examine the role of phosphorylation of transgelin-2 on cell proliferation. Phosphorylation of transgelin-2 was detected by immunohistochemistry in PDAC tissues. Results Here we found transgelin-2 expression was induced by KRAS mutation. In the case of KRAS mutation, ERK2 interacted with 29–31 amino acids of transgelin-2 and subsequently phosphorylated the S145 residue of transgelin-2. S145 phosphorylation of transgelin-2 played important roles in cell proliferation and tumorigenesis of PDAC. In addition, S145 phosphorylation of transgelin-2 was associated with a poor prognosis in patients with PDAC. Conclusions This study indicated that KRAS-ERK-mediated transeglin-2 phosphorylation played an important role in the development of PDAC. Inhibition of transgelin-2 phosphorylation may be a potential therapeutic strategy for targeting PDAC with KRAS mutation.
Collapse
Affiliation(s)
- Yan Sun
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenfang Peng
- Department of Endocrinology, Shanghai Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Weiwei He
- Department of Thoracic Surgery, Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Man Luo
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guilin Chang
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiping Shen
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Yu Hu
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Hsu CC, Zhu Y, Arrington JV, Paez JS, Wang P, Zhu P, Chen IH, Zhu JK, Tao WA. Universal Plant Phosphoproteomics Workflow and Its Application to Tomato Signaling in Response to Cold Stress. Mol Cell Proteomics 2018; 17:2068-2080. [PMID: 30006488 DOI: 10.1074/mcp.tir118.000702] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/21/2018] [Indexed: 01/08/2023] Open
Abstract
Phosphorylation-mediated signaling transduction plays a crucial role in the regulation of plant defense mechanisms against environmental stresses. To address the high complexity and dynamic range of plant proteomes and phosphoproteomes, we present a universal sample preparation procedure that facilitates plant phosphoproteomic profiling. This advanced workflow significantly improves phosphopeptide identifications, enabling deep insight into plant phosphoproteomes. We then applied the workflow to study the phosphorylation events involved in tomato cold tolerance mechanisms. Phosphoproteomic changes of two tomato species (N135 Green Gage and Atacames) with distinct cold tolerance phenotypes were profiled under cold stress. In total, we identified more than 30,000 unique phosphopeptides from tomato leaves, representing about 5500 phosphoproteins, thereby creating the largest tomato phosphoproteomic resource to date. The data, along with the validation through in vitro kinase reactions, allowed us to identify kinases involved in cold tolerant signaling and discover distinctive kinase-substrate events in two tomato species in response to a cold environment. The activation of SnRK2s and their direct substrates may assist N135 Green Gage tomatoes in surviving long-term cold stress. Taken together, the streamlined approach and the resulting deep phosphoproteomic analyses revealed a global view of tomato cold-induced signaling mechanisms.
Collapse
Affiliation(s)
- Chuan-Chih Hsu
- From the ‡Department of Biochemistry, Purdue University, West Lafayette, IN 47907
| | - Yingfang Zhu
- §Department of Horticulture and Landscape, Purdue University, West Lafayette, IN 47907.,¶Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,‖Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | | | - Juan Sebastian Paez
- From the ‡Department of Biochemistry, Purdue University, West Lafayette, IN 47907
| | - Pengcheng Wang
- ‖Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China.,¶Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peipei Zhu
- **Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - I-Hsuan Chen
- From the ‡Department of Biochemistry, Purdue University, West Lafayette, IN 47907
| | - Jian-Kang Zhu
- From the ‡Department of Biochemistry, Purdue University, West Lafayette, IN 47907.,‖Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China.,¶Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - W Andy Tao
- From the ‡Department of Biochemistry, Purdue University, West Lafayette, IN 47907; .,**Department of Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
22
|
Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response. Mol Cell 2017; 69:100-112.e6. [PMID: 29290610 DOI: 10.1016/j.molcel.2017.12.002] [Citation(s) in RCA: 330] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/19/2017] [Accepted: 12/01/2017] [Indexed: 01/08/2023]
Abstract
As sessile organisms, plants must adapt to variations in the environment. Environmental stress triggers various responses, including growth inhibition, mediated by the plant hormone abscisic acid (ABA). The mechanisms that integrate stress responses with growth are poorly understood. Here, we discovered that the Target of Rapamycin (TOR) kinase phosphorylates PYL ABA receptors at a conserved serine residue to prevent activation of the stress response in unstressed plants. This phosphorylation disrupts PYL association with ABA and with PP2C phosphatase effectors, leading to inactivation of SnRK2 kinases. Under stress, ABA-activated SnRK2s phosphorylate Raptor, a component of the TOR complex, triggering TOR complex dissociation and inhibition. Thus, TOR signaling represses ABA signaling and stress responses in unstressed conditions, whereas ABA signaling represses TOR signaling and growth during times of stress. Plants utilize this conserved phospho-regulatory feedback mechanism to optimize the balance of growth and stress responses.
Collapse
|
23
|
Basken J, Stuart SA, Kavran AJ, Lee T, Ebmeier CC, Old WM, Ahn NG. Specificity of Phosphorylation Responses to Mitogen Activated Protein (MAP) Kinase Pathway Inhibitors in Melanoma Cells. Mol Cell Proteomics 2017; 17:550-564. [PMID: 29255136 DOI: 10.1074/mcp.ra117.000335] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/08/2017] [Indexed: 01/01/2023] Open
Abstract
The BRAF-MKK1/2-ERK1/2 pathway is constitutively activated in response to oncogenic mutations of BRAF in many cancer types, including melanoma. Although small molecules that inhibit oncogenic BRAF and MAP kinase kinase (MKK)1/2 have been successful in clinical settings, resistance invariably develops. High affinity inhibitors of ERK1/2 have been shown in preclinical studies to bypass the resistance of melanoma and colon cancer cells to BRAF and MKK1/2 inhibitors, and are thus promising additions to current treatment protocols. But still unknown is how molecular responses to ERK1/2 inhibitors compare with inhibitors currently in clinical use. Here, we employ quantitative phosphoproteomics to evaluate changes in phosphorylation in response to the ERK inhibitors, SCH772984 and GDC0994, and compare these to the clinically used MKK1/2 inhibitor, trametinib. Combined with previous studies measuring phosphoproteomic responses to the MKK1/2 inhibitor, selumetinib, and the BRAF inhibitor, vemurafenib, the outcomes reveal key insights into pathway organization, phosphorylation specificity and off-target effects of these inhibitors. The results demonstrate linearity in signaling from BRAF to MKK1/2 and from MKK1/2 to ERK1/2. They identify likely targets of direct phosphorylation by ERK1/2, as well as inhibitor off-targets, including an off-target regulation of the p38α mitogen activated protein kinase (MAPK) pathway by the MKK1/2 inhibitor, trametinib, at concentrations used in the literature but higher than in vivo drug concentrations. In addition, several known phosphorylation targets of ERK1/2 are insensitive to MKK or ERK inhibitors, revealing variability in canonical pathway responses between different cell systems. By comparing multiple inhibitors targeted to multiple tiers of protein kinases in the MAPK pathway, we gain insight into regulation and new targets of the oncogenic BRAF driver pathway in cancer cells, and a useful approach for evaluating the specificity of drugs and drug candidates.
Collapse
Affiliation(s)
- Joel Basken
- From the ‡Department of Chemistry and Biochemistry
| | | | - Andrew J Kavran
- From the ‡Department of Chemistry and Biochemistry.,§BioFrontiers Institute
| | - Thomas Lee
- From the ‡Department of Chemistry and Biochemistry
| | - Christopher C Ebmeier
- ¶Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO 80303
| | - William M Old
- ¶Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO 80303
| | - Natalie G Ahn
- From the ‡Department of Chemistry and Biochemistry, .,§BioFrontiers Institute
| |
Collapse
|
24
|
Ünal EB, Uhlitz F, Blüthgen N. A compendium of ERK targets. FEBS Lett 2017; 591:2607-2615. [PMID: 28675784 DOI: 10.1002/1873-3468.12740] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/20/2022]
Abstract
The RAF-MEK-ERK cascade is one of the most studied signaling pathways as it controls many vital cellular programs. There has been an immense amount of effort to determine ERK target proteins involved in regulating these programs. Classical biochemical and genetic approaches have elicited hundreds of direct ERK substrates, and with the advent of phospho-proteomic technologies, numerous studies have expanded the number of ERK target proteins. Here, we compile a comprehensive ERK target phospho-site archive, in which we gathered information from various research studies, and we provide this archive as an online database to form a searchable compendium of ERK targets.
Collapse
Affiliation(s)
- Evrim B Ünal
- Integrative Research Institute Life Sciences & Institute for Theoretical Biology, Humboldt Universität zu Berlin, Germany.,Institute of Pathology, Charité - Universitätsmedizin Berlin, Germany
| | - Florian Uhlitz
- Integrative Research Institute Life Sciences & Institute for Theoretical Biology, Humboldt Universität zu Berlin, Germany.,Institute of Pathology, Charité - Universitätsmedizin Berlin, Germany
| | - Nils Blüthgen
- Integrative Research Institute Life Sciences & Institute for Theoretical Biology, Humboldt Universität zu Berlin, Germany.,Institute of Pathology, Charité - Universitätsmedizin Berlin, Germany.,Berlin Institute of Health, Germany
| |
Collapse
|
25
|
Stürner E, Behl C. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease. Front Mol Neurosci 2017; 10:177. [PMID: 28680391 PMCID: PMC5478690 DOI: 10.3389/fnmol.2017.00177] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/18/2017] [Indexed: 01/01/2023] Open
Abstract
In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC) system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy). One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3). Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer’s disease (tau-protein), Huntington’s disease (mutated huntingtin/polyQ proteins), and amyotrophic lateral sclerosis (mutated SOD1). In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate.
Collapse
Affiliation(s)
- Elisabeth Stürner
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| |
Collapse
|
26
|
Hsu CC, Xue L, Arrington JV, Wang P, Paez Paez JS, Zhou Y, Zhu JK, Tao WA. Estimating the Efficiency of Phosphopeptide Identification by Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1127-1135. [PMID: 28283928 PMCID: PMC5438756 DOI: 10.1007/s13361-017-1603-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Mass spectrometry has played a significant role in the identification of unknown phosphoproteins and sites of phosphorylation in biological samples. Analyses of protein phosphorylation, particularly large scale phosphoproteomic experiments, have recently been enhanced by efficient enrichment, fast and accurate instrumentation, and better software, but challenges remain because of the low stoichiometry of phosphorylation and poor phosphopeptide ionization efficiency and fragmentation due to neutral loss. Phosphoproteomics has become an important dimension in systems biology studies, and it is essential to have efficient analytical tools to cover a broad range of signaling events. To evaluate current mass spectrometric performance, we present here a novel method to estimate the efficiency of phosphopeptide identification by tandem mass spectrometry. Phosphopeptides were directly isolated from whole plant cell extracts, dephosphorylated, and then incubated with one of three purified kinases-casein kinase II, mitogen-activated protein kinase 6, and SNF-related protein kinase 2.6-along with 16O4- and 18O4-ATP separately for in vitro kinase reactions. Phosphopeptides were enriched and analyzed by LC-MS. The phosphopeptide identification rate was estimated by comparing phosphopeptides identified by tandem mass spectrometry with phosphopeptide pairs generated by stable isotope labeled kinase reactions. Overall, we found that current high speed and high accuracy mass spectrometers can only identify 20%-40% of total phosphopeptides primarily due to relatively poor fragmentation, additional modifications, and low abundance, highlighting the urgent need for continuous efforts to improve phosphopeptide identification efficiency. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Liang Xue
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Celgene Corporation, Cambridge, MA, USA
| | - Justine V Arrington
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Pengcheng Wang
- Department of Horticulture and Landscape, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Yuan Zhou
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape, Purdue University, West Lafayette, IN, 47907, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
27
|
Dutta AK, Captain I, Jessen HJ. New Synthetic Methods for Phosphate Labeling. Top Curr Chem (Cham) 2017; 375:51. [DOI: 10.1007/s41061-017-0135-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
|
28
|
Abstract
Kinases catalyze protein phosphorylation to regulate cell signaling events. However, identifying kinase substrates is challenging due to the often low abundance and dynamic nature of protein phosphorylation. Development of novel techniques to identify kinase substrates is necessary. Here, we report kinase-catalyzed biotinylation with inactivated lysates for discovery of substrates (K-BILDS) as a tool to identify direct substrates of a kinase. As a proof of concept, K-BILDS was applied to cAMP-dependent protein kinase A (PKA) with HeLa cell lysates. Subsequent enrichment and MS/MS analysis identified 279 candidate PKA substrates, including 56 previously known PKA substrates. Of the candidate substrates, nuclear autoantigenic sperm protein (NASP), BCL2-associated athanogene 3 (BAG3), and 14-3-3 protein Tau (YWHAQ) were validated as novel PKA substrates. K-BILDS provides a valuable tool to identify direct substrates of any protein kinase.
Collapse
Affiliation(s)
- D Maheeka Embogama
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
29
|
Arrington JV, Hsu CC, Tao WA. Kinase Assay-Linked Phosphoproteomics: Discovery of Direct Kinase Substrates. Methods Enzymol 2016; 586:453-471. [PMID: 28137576 DOI: 10.1016/bs.mie.2016.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dissection of direct kinase-substrate relationships provides invaluable information about phosphorylation pathways and can highlight both pathogenic mechanisms and possible drug targets for diseases in which abnormal kinase activity is linked to onset and progression. Here, we describe a mass spectrometry-based strategy to define the direct substrates of a kinase of interest. The kinase assay-linked phosphoproteomics approach examines putative kinase substrates both in vitro and in vivo to produce a list of highly confident substrates.
Collapse
Affiliation(s)
- J V Arrington
- Purdue University, West Lafayette, IN, United States; Purdue University Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - C-C Hsu
- Purdue University, West Lafayette, IN, United States
| | - W A Tao
- Purdue University, West Lafayette, IN, United States; Purdue University Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
30
|
Müller AC, Giambruno R, Weißer J, Májek P, Hofer A, Bigenzahn JW, Superti-Furga G, Jessen HJ, Bennett KL. Identifying Kinase Substrates via a Heavy ATP Kinase Assay and Quantitative Mass Spectrometry. Sci Rep 2016; 6:28107. [PMID: 27346722 PMCID: PMC4921819 DOI: 10.1038/srep28107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 05/31/2016] [Indexed: 01/17/2023] Open
Abstract
Mass spectrometry-based in vitro kinase screens play an essential role in the discovery of kinase substrates, however, many suffer from biological and technical noise or necessitate genetically-altered enzyme-cofactor systems. We describe a method that combines stable γ-[(18)O2]-ATP with classical in vitro kinase assays within a contemporary quantitative proteomic workflow. Our approach improved detection of known substrates of the non-receptor tyrosine kinase ABL1; and identified potential, new in vitro substrates.
Collapse
Affiliation(s)
- André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Roberto Giambruno
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Juliane Weißer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Peter Májek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexandre Hofer
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | - Johannes W Bigenzahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Henning J Jessen
- University of Zurich, Department of Chemistry, Zurich, Switzerland
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
31
|
von Stechow L, Francavilla C, Olsen JV. Recent findings and technological advances in phosphoproteomics for cells and tissues. Expert Rev Proteomics 2016; 12:469-87. [PMID: 26400465 PMCID: PMC4819829 DOI: 10.1586/14789450.2015.1078730] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Site-specific phosphorylation is a fast and reversible covalent post-translational modification that is tightly regulated in cells. The cellular machinery of enzymes that write, erase and read these modifications (kinases, phosphatases and phospho-binding proteins) is frequently deregulated in different diseases, including cancer. Large-scale studies of phosphoproteins – termed phosphoproteomics – strongly rely on the use of high-performance mass spectrometric instrumentation. This powerful technology has been applied to study a great number of phosphorylation-based phenotypes. Nevertheless, many technical and biological challenges have to be overcome to identify biologically relevant phosphorylation sites in cells and tissues. This review describes different technological strategies to identify and quantify phosphorylation sites with high accuracy, without significant loss of analysis speed and reproducibility in tissues and cells. Moreover, computational tools for analysis, integration and biological interpretation of phosphorylation events are discussed.
Collapse
Affiliation(s)
- Louise von Stechow
- a Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Chiara Francavilla
- a Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
32
|
de Oliveira PSL, Ferraz FAN, Pena DA, Pramio DT, Morais FA, Schechtman D. Revisiting protein kinase-substrate interactions: Toward therapeutic development. Sci Signal 2016; 9:re3. [PMID: 27016527 DOI: 10.1126/scisignal.aad4016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the efforts of pharmaceutical companies to develop specific kinase modulators, few drugs targeting kinases have been completely successful in the clinic. This is primarily due to the conserved nature of kinases, especially in the catalytic domains. Consequently, many currently available inhibitors lack sufficient selectivity for effective clinical application. Kinases phosphorylate their substrates to modulate their activity. One of the important steps in the catalytic reaction of protein phosphorylation is the correct positioning of the target residue within the catalytic site. This positioning is mediated by several regions in the substrate binding site, which is typically a shallow crevice that has critical subpockets that anchor and orient the substrate. The structural characterization of this protein-protein interaction can aid in the elucidation of the roles of distinct kinases in different cellular processes, the identification of substrates, and the development of specific inhibitors. Because the region of the substrate that is recognized by the kinase can be part of a linear consensus motif or a nonlinear motif, advances in technology beyond simple linear sequence scanning for consensus motifs were needed. Cost-effective bioinformatics tools are already frequently used to predict kinase-substrate interactions for linear consensus motifs, and new tools based on the structural data of these interactions improve the accuracy of these predictions and enable the identification of phosphorylation sites within nonlinear motifs. In this Review, we revisit kinase-substrate interactions and discuss the various approaches that can be used to identify them and analyze their binding structures for targeted drug development.
Collapse
Affiliation(s)
- Paulo Sérgio L de Oliveira
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Felipe Augusto N Ferraz
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Darlene A Pena
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Dimitrius T Pramio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Felipe A Morais
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil.
| |
Collapse
|
33
|
Tantos A, Kalmar L, Tompa P. The role of structural disorder in cell cycle regulation, related clinical proteomics, disease development and drug targeting. Expert Rev Proteomics 2016; 12:221-33. [PMID: 25976105 DOI: 10.1586/14789450.2015.1042866] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Understanding the molecular mechanisms of the regulation of cell cycle is a central issue in molecular cell biology, due to its fundamental role in the existence of cells. The regulatory circuits that make decisions on when a cell should divide are very complex and particularly subtly balanced in eukaryotes, in which the harmony of many different cells in an organism is essential for life. Several hundred proteins are involved in these processes, and a great deal of studies attests that most of them have functionally relevant intrinsic structural disorder. Structural disorder imparts many functional advantages on these proteins, and we discuss it in detail that it is involved in all key steps from signaling through the cell membrane to regulating transcription of proteins that execute timely responses to an ever-changing environment.
Collapse
Affiliation(s)
- Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
34
|
Affiliation(s)
- Nicholas M. Riley
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
35
|
Hofer A, Cremosnik GS, Müller AC, Giambruno R, Trefzer C, Superti-Furga G, Bennett KL, Jessen HJ. A Modular Synthesis of Modified Phosphoanhydrides. Chemistry 2015; 21:10116-22. [PMID: 26033174 DOI: 10.1002/chem.201500838] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 11/11/2022]
Abstract
Phosphoanhydrides (P-anhydrides) are ubiquitously occurring modifications in nature. Nucleotides and their conjugates, for example, are among the most important building blocks and signaling molecules in cell biology. To study and manipulate their biological functions, a diverse range of analogues have been developed. Phosphate-modified analogues have been successfully applied to study proteins that depend on these abundant cellular building blocks, but very often both the preparation and purification of these molecules are challenging. This study discloses a general access to P-anhydrides, including different nucleotide probes, that greatly facilitates their preparation and isolation. The convenient and scalable synthesis of, for example, (18) O labeled nucleoside triphosphates holds promise for future applications in phosphoproteomics.
Collapse
Affiliation(s)
- Alexandre Hofer
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)
| | - Gregor S Cremosnik
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA (UK)
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna (Austria)
| | - Roberto Giambruno
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna (Austria)
| | - Claudia Trefzer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna (Austria)
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna (Austria)
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna (Austria)
| | - Henning J Jessen
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland).
| |
Collapse
|
36
|
Helou YA, Salomon AR. Protein networks and activation of lymphocytes. Curr Opin Immunol 2015; 33:78-85. [PMID: 25687331 DOI: 10.1016/j.coi.2015.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 12/30/2022]
Abstract
The signal transduction pathways initiated by lymphocyte activation play a critical role in regulating host immunity. High-resolution mass spectrometry has accelerated the investigation of these complex and dynamic pathways by enabling the qualitative and quantitative investigation of thousands of proteins and phosphoproteins simultaneously. In addition, the unbiased and wide-scale identification of protein-protein interaction networks and protein kinase substrates in lymphocyte signaling pathways can be achieved by mass spectrometry-based approaches. Critically, the integration of these discovery-driven strategies with single-cell analysis using mass cytometry can facilitate the understanding of complex signaling phenotypes in distinct immunophenotypes.
Collapse
Affiliation(s)
- Ynes A Helou
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Arthur R Salomon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
37
|
Abstract
Small molecule inhibitors of protein kinases are key tools for signal transduction research and represent a major class of targeted drugs. Recent developments in quantitative proteomics enable an unbiased view on kinase inhibitor selectivity and modes of action in the biological context. While chemical proteomics techniques utilizing quantitative mass spectrometry interrogate both target specificity and affinity in cellular extracts, proteome-wide phosphorylation analyses upon kinase inhibitor treatment identify signal transduction pathway and network regulation in an unbiased manner. Thus, critical information is provided to promote new insights into mechanisms of kinase signaling and their relevance for kinase inhibitor drug discovery.
Collapse
Affiliation(s)
- Henrik Daub
- Evotec (München) GmbH, Am Klopferspitz
19a, 82152 Martinsried, Germany
| |
Collapse
|