1
|
Lwin E, Lüttschwager NOB, Suhm MA. The universal vibrational dynamics of water bound to tertiary amines: more than just Fermi resonance. Phys Chem Chem Phys 2025. [PMID: 40019393 DOI: 10.1039/d5cp00332f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Amines with three alkyl substituents are shown to be strongly microsolvated by water molecules, unless the steric hindrance of the alkyl groups overcompensates the increase in basicity of the N atom by alkylation. The hydrogen bond interaction of the first water molecule is so strong that the softened OH vibration shares its intensity with up to three largely dark states involving quanta of intramolecular bending or stretching and intermolecular stretching vibration. A combination of FTIR, Raman, isotope and chemical substitution spectroscopy in supersonic jet expansions establishes the existence, character and extent of the underlying anharmonic coupling. The observed resonance pattern is remarkably systematic and allows to extract physically plausible, effective normal mode coupling constants which are relevant for the initial energy flow out of the excited OH oscillator. A remaining ambiguity in the coupling pattern for the weakest transition invites detailed anharmonic quantum dynamics studies, but it still allows for robust deperturbed positions of the uncoupled oscillators for 8 amine monohydrates, which are valuable as experimental benchmarks for databases and for the training phase of theory blind challenges on microhydration. The more isolated hydrogen-bonded OH stretching vibration of a second water molecule is also assigned to widen the scope of a future theory challenge addressing the wavenumber of hydrogen-bonded OH groups. Such blind challenges thus remain accessible not only to fully anharmonic, but also to scaled harmonic and machine learning approaches which may try to average over the anharmonic details.
Collapse
Affiliation(s)
- Eaindra Lwin
- Institute of Physical Chemistry, University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany.
| | - Nils O B Lüttschwager
- Institute of Physical Chemistry, University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany.
| | - Martin A Suhm
- Institute of Physical Chemistry, University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany.
| |
Collapse
|
2
|
Gao T, Lei J, Zou S, Wang C, Xu X, Gou Q. Conformational equilibria and interaction preference in the complex of isoprene-maleic anhydride. Phys Chem Chem Phys 2023; 25:27798-27804. [PMID: 37814807 DOI: 10.1039/d3cp03712f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The rotational spectrum of the isoprene-maleic anhydride complex has been investigated by pulsed jet Fourier transform microwave spectroscopy and interpreted with complementary quantum chemical calculations. Theoretical predictions have yielded four plausible isomers, all residing within an energy window of 12 kJ mol-1. However, two distinct isomers characterized by a π-π stacked configuration have been experimentally observed in pulsed jets, which have differed in the orientation of isoprene over maleic anhydride. The relative population ratio of the two detected isomers has been estimated to be NI/NII ≈ 3/1 from rigorous measurements of the relative intensity on a set of μc-type transitions. Remarkably, this study underscores the pivotal role played by the interaction between the CC bonding orbital (π) of isoprene and the CC antibonding orbital (π*) of maleic anhydride in stabilizing the target complex.
Collapse
Affiliation(s)
- Tianyue Gao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Juncheng Lei
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Siyu Zou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Chenxu Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Xuefang Xu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| |
Collapse
|
3
|
Fischer TL, Bödecker M, Schweer SM, Dupont J, Lepère V, Zehnacker-Rentien A, Suhm MA, Schröder B, Henkes T, Andrada DM, Balabin RM, Singh HK, Bhattacharyya HP, Sarma M, Käser S, Töpfer K, Vazquez-Salazar LI, Boittier ED, Meuwly M, Mandelli G, Lanzi C, Conte R, Ceotto M, Dietrich F, Cisternas V, Gnanasekaran R, Hippler M, Jarraya M, Hochlaf M, Viswanathan N, Nevolianis T, Rath G, Kopp WA, Leonhard K, Mata RA. The first HyDRA challenge for computational vibrational spectroscopy. Phys Chem Chem Phys 2023; 25:22089-22102. [PMID: 37610422 DOI: 10.1039/d3cp01216f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Vibrational spectroscopy in supersonic jet expansions is a powerful tool to assess molecular aggregates in close to ideal conditions for the benchmarking of quantum chemical approaches. The low temperatures achieved as well as the absence of environment effects allow for a direct comparison between computed and experimental spectra. This provides potential benchmarking data which can be revisited to hone different computational techniques, and it allows for the critical analysis of procedures under the setting of a blind challenge. In the latter case, the final result is unknown to modellers, providing an unbiased testing opportunity for quantum chemical models. In this work, we present the spectroscopic and computational results for the first HyDRA blind challenge. The latter deals with the prediction of water donor stretching vibrations in monohydrates of organic molecules. This edition features a test set of 10 systems. Experimental water donor OH vibrational wavenumbers for the vacuum-isolated monohydrates of formaldehyde, tetrahydrofuran, pyridine, tetrahydrothiophene, trifluoroethanol, methyl lactate, dimethylimidazolidinone, cyclooctanone, trifluoroacetophenone and 1-phenylcyclohexane-cis-1,2-diol are provided. The results of the challenge show promising predictive properties in both purely quantum mechanical approaches as well as regression and other machine learning strategies.
Collapse
Affiliation(s)
- Taija L Fischer
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstraße 6, Göttingen, Germany.
| | - Margarethe Bödecker
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstraße 6, Göttingen, Germany.
| | - Sophie M Schweer
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstraße 6, Göttingen, Germany.
| | - Jennifer Dupont
- Institut des Sciences Moléculaires dOrsay, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Valéria Lepère
- Institut des Sciences Moléculaires dOrsay, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Anne Zehnacker-Rentien
- Institut des Sciences Moléculaires dOrsay, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Martin A Suhm
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstraße 6, Göttingen, Germany.
| | - Benjamin Schröder
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstraße 6, Göttingen, Germany.
| | - Tobias Henkes
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Diego M Andrada
- Institute for Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Roman M Balabin
- Bond Street Holdings, Long Point Road, KN-1002 Henville Building 9, Charlestown, KN10 Nevis, St. Kitts and Nevis
| | - Haobam Kisan Singh
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam-781039, India
| | | | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Silvan Käser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Kai Töpfer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Luis I Vazquez-Salazar
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Eric D Boittier
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Giacomo Mandelli
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Cecilia Lanzi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Fabian Dietrich
- Department of Physics Science, Universidad de La Frontera, Francisco Salazar 01145, Temuco, Chile
| | - Vicente Cisternas
- Department of Physics Science, Universidad de La Frontera, Francisco Salazar 01145, Temuco, Chile
| | - Ramachandran Gnanasekaran
- Vellore Institute of Technology, School of Advanced Sciences (SAS), ChemistryDivision, Chennai 600 027, India
| | - Michael Hippler
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| | - Mahmoud Jarraya
- U. Gustave Eiffel, COSYS/IMSE, 5 BD Descartes 77454, Champs-sur-Marne, France
| | - Majdi Hochlaf
- U. Gustave Eiffel, COSYS/IMSE, 5 BD Descartes 77454, Champs-sur-Marne, France
| | - Narasimhan Viswanathan
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, D-52072 Aachen, Germany
| | - Thomas Nevolianis
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, D-52072 Aachen, Germany
| | - Gabriel Rath
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, D-52072 Aachen, Germany
| | - Wassja A Kopp
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, D-52072 Aachen, Germany
| | - Kai Leonhard
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, D-52072 Aachen, Germany
| | - Ricardo A Mata
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstraße 6, Göttingen, Germany.
| |
Collapse
|
4
|
Akman F, Demirpolat A, Kazachenko AS, Kazachenko AS, Issaoui N, Al-Dossary O. Molecular Structure, Electronic Properties, Reactivity (ELF, LOL, and Fukui), and NCI-RDG Studies of the Binary Mixture of Water and Essential Oil of Phlomis bruguieri. Molecules 2023; 28:2684. [PMID: 36985656 PMCID: PMC10056484 DOI: 10.3390/molecules28062684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Essential oils are volatile oil-like liquids with a characteristic strong smell and taste. They are formed in plants and are then extracted. Essential oils have extremely strong physiological and pharmacological properties, which are used in the medicine, cosmetics, and food industries. In this study, the molecules caryophyllene oxide, β-pinene, 1,8-cineol, α-cubebene, and β-caryophyllene, which are the molecules with the highest contents in the essential oil of the plant mentioned in the title, were selected and theoretical calculations describing their interactions with water were performed. Because oil-water mixtures are very important in biology and industry and are ubiquitous in nature, quantum chemical calculations for binary mixtures of water with caryophyllene oxide, β-pinene, 1,8-cineol, α-cubebene, and β-caryophyllene were performed using the density functional theory (DFT)/B3LYP method with a basis of 6-31 G (d, p). Molecular structures, HOMO-LUMO energies, electronic properties, reactivity (ELF, LOL, and Fukui), and NCI-RDG and molecular electrostatic potential (MEP) on surfaces of the main components of Phlomis bruguieri Desf. essential oil were calculated and described.
Collapse
Affiliation(s)
- Feride Akman
- Vocational School of Food, Agriculture and Livestock, University of Bingöl, Bingöl 12000, Turkey
| | - Azize Demirpolat
- Vocational School of Food, Agriculture and Livestock, University of Bingöl, Bingöl 12000, Turkey
| | - Aleksandr S. Kazachenko
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Siberian Branch, FRC “Krasnoyarsk Scientific Center”, Institute of Chemistry and Chemical Technology, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia
- Department of Biological Chemistry with Courses in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University, St. Partizan Zheleznyak, Bld. 1, 660022 Krasnoyarsk, Russia
| | - Anna S. Kazachenko
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, Pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics, LR18ES18, Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| | - Omar Al-Dossary
- Departement of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Baweja S, Panchagnula S, Sanz ME, Evangelisti L, Pérez C, West C, Pate BH. Competition between In-Plane vs Above-Plane Configurations of Water with Aromatic Molecules: Non-Covalent Interactions in 1,4-Naphthoquinone-(H 2O) 1-3 Complexes. J Phys Chem Lett 2022; 13:9510-9516. [PMID: 36200782 PMCID: PMC9575146 DOI: 10.1021/acs.jpclett.2c02618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Non-covalent interactions between aromatic molecules and water are fundamental in many chemical and biological processes, and their accurate description is essential to understand molecular relative configurations. Here we present the rotational spectroscopy study of the water complexes of the polycyclic aromatic hydrocarbon 1,4-naphthoquinone (1,4-NQ). In 1,4-NQ-(H2O)1,2, water molecules bind through O-H···O and C-H···O hydrogen bonds and are located on the plane of 1,4-NQ. For 1,4-NQ-(H2O)3, in-plane and above-plane water configurations are observed exhibiting O-H···O, C-H···O, and lone pair···π-hole interactions. The observation of different water arrangements for 1,4-NQ-(H2O)3 allows benchmarking theoretical methods and shows that they have great difficulty in predicting energy orderings due to the strong competition of C-H···O binding with π and π-hole interactions. This study provides important insight into water interactions with aromatic systems and the challenges in their modeling.
Collapse
Affiliation(s)
- Shefali Baweja
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Sanjana Panchagnula
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - M. Eugenia Sanz
- Department
of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Luca Evangelisti
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Cristóbal Pérez
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Channing West
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Brooks H. Pate
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|
6
|
Chen J, Wang H, Zheng Y, Zhang X, Xu X, Gou Q. Sp 2- and sp 3-C⋯O tetrel bonds in the 3-oxetanone homodimer. Phys Chem Chem Phys 2022; 24:8992-8998. [PMID: 35380142 DOI: 10.1039/d2cp00703g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The structures and non-covalent interactions at play in the 3-oxetanone homodimer have been investigated using a pulsed jet Fourier transform microwave spectrometer supplemented with quantum chemical calculations. Two isomers were identified in the pulsed jet. With the analyses of non-covalent intermolecular interactions including the quantum theory of atoms, Johnson's non-covalent interactions and natural bond orbital, the observed global minimum is stabilized by a combination of one sp2-C⋯O tetrel bond and a network of multiple C-H⋯O weak hydrogen bonds. The second isomer is characterized by carbonyl-carbonyl interactions, with the formation of one sp2- and one sp3-C⋯O tetrel bond. The conformational population of the two observed isomers in the supersonic expansion was estimated to be NCE1/NCC1 ≈ 7/5.
Collapse
Affiliation(s)
- Junhua Chen
- School of Pharmacy, Guizhou Medical University, Guiyang 550000, Guizhou, China.,Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Hao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Yang Zheng
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Xinyue Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Xuefang Xu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China. .,Chongqing Key Laboratory of Theoretical and Computational Chemistry, Daxuecheng South Rd. 55, 401331, Chongqing, China
| |
Collapse
|
7
|
Fischer TLL, Bödecker MADI, Zehnacker A, Mata RA, Suhm MA. Setting up the HyDRA blind challenge for the microhydration of organic molecules. Phys Chem Chem Phys 2022; 24:11442-11454. [DOI: 10.1039/d2cp01119k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The procedure leading to the first HyDRA blind challenge for the prediction of water donor stretching vibrations in monohydrates of organic molecules is described. A training set of 10 monohydrates...
Collapse
|
8
|
Fulvio D, Potapov A, He J, Henning T. Astrochemical Pathways to Complex Organic and Prebiotic Molecules: Experimental Perspectives for In Situ Solid-State Studies. Life (Basel) 2021; 11:life11060568. [PMID: 34204233 PMCID: PMC8235774 DOI: 10.3390/life11060568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/05/2023] Open
Abstract
A deep understanding of the origin of life requires the physical, chemical, and biological study of prebiotic systems and the comprehension of the mechanisms underlying their evolutionary steps. In this context, great attention is paid to the class of interstellar molecules known as "Complex Organic Molecules" (COMs), considered as possible precursors of prebiotic species. Although COMs have already been detected in different astrophysical environments (such as interstellar clouds, protostars, and protoplanetary disks) and in comets, the physical-chemical mechanisms underlying their formation are not yet fully understood. In this framework, a unique contribution comes from laboratory experiments specifically designed to mimic the conditions found in space. We present a review of experimental studies on the formation and evolution of COMs in the solid state, i.e., within ices of astrophysical interest, devoting special attention to the in situ detection and analysis techniques commonly used in laboratory astrochemistry. We discuss their main strengths and weaknesses and provide a perspective view on novel techniques, which may help in overcoming the current experimental challenges.
Collapse
Affiliation(s)
- Daniele Fulvio
- Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Naples, Italy
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany; (J.H.); (T.H.)
- Correspondence:
| | - Alexey Potapov
- Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, 07743 Jena, Germany;
| | - Jiao He
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany; (J.H.); (T.H.)
| | - Thomas Henning
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany; (J.H.); (T.H.)
| |
Collapse
|
9
|
Jiang S, Su M, Yang S, Wang C, Huang QR, Li G, Xie H, Yang J, Wu G, Zhang W, Zhang Z, Kuo JL, Liu ZF, Zhang DH, Yang X, Jiang L. Vibrational Signature of Dynamic Coupling of a Strong Hydrogen Bond. J Phys Chem Lett 2021; 12:2259-2265. [PMID: 33636082 DOI: 10.1021/acs.jpclett.1c00168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Elucidating the dynamic couplings of hydrogen bonds remains an important and challenging goal for spectroscopic studies of bulk systems, because their vibrational signatures are masked by the collective effects of the fluctuation of many hydrogen bonds. Here we utilize size-selected infrared spectroscopy based on a tunable vacuum ultraviolet free electron laser to unmask the vibrational signatures for the dynamic couplings in neutral trimethylamine-water and trimethylamine-methanol complexes, as microscopic models with only one single hydrogen bond holding two molecules. Surprisingly broad progression of OH stretching peaks with distinct intensity modulation over ∼700 cm-1 is observed for trimethylamine-water, while the dramatic reduction of this progression in the trimethylamine-methanol spectrum offers direct experimental evidence for the dynamic couplings. State-of-the-art quantum mechanical calculations reveal that such dynamic couplings are originated from strong Fermi resonance between the stretches of hydrogen-bonded OH and several motions of the solvent water/methanol, such as translation, rocking, and bending, which are significant in various solvated complexes commonly found in atmospheric and biological systems.
Collapse
Affiliation(s)
- Shukang Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingzhi Su
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Shuo Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Chong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qian-Rui Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiayue Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Zhi-Feng Liu
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, No. 10, 2nd Yuexing Road, Nanshan District, Shenzhen 518507, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
10
|
Fischer TL, Wagner T, Gottschalk HC, Nejad A, Suhm MA. A Rather Universal Vibrational Resonance in 1:1 Hydrates of Carbonyl Compounds. J Phys Chem Lett 2021; 12:138-144. [PMID: 33315407 DOI: 10.1021/acs.jpclett.0c03197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
When the lower frequency OH stretching fundamental of a water molecule is shifted to the 3500 cm-1 spectral range by the solvation of a carbonyl compound, in this case a ketone, its infrared intensity is shared with a dark state. It is shown by chemical and isotope substitution for more than a dozen systems that the location of this resonance is remarkably substitution-independent. Harmonic and anharmonic model calculations support its assignment to a combination of the water bending overtone and in-plane water libration. This previously unrecognized intramolecular-intermolecular coupling in single solvent water has a strength of 7-10 cm-1. It may have been sporadically observed before in a few other carbonyl compounds such as amides, without any previous exploration of its potential universality. The resulting generic picosecond energy redistribution channel for aqueous solutions may represent a slow counterpart and doorway model of what happens on a subpicosecond time scale when the hydrogen bonds become stronger, such as in carboxylic acid dimers or protonated water clusters.
Collapse
Affiliation(s)
- Taija L Fischer
- Institute of Physical Chemistry, University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Till Wagner
- Institute of Physical Chemistry, University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Hannes C Gottschalk
- Institute of Physical Chemistry, University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Arman Nejad
- Institute of Physical Chemistry, University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Martin A Suhm
- Institute of Physical Chemistry, University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| |
Collapse
|
11
|
Pérez C, Steber AL, Temelso B, Kisiel Z, Schnell M. Water Triggers Hydrogen-Bond-Network Reshaping in the Glycoaldehyde Dimer. Angew Chem Int Ed Engl 2020; 59:8401-8405. [PMID: 32096889 PMCID: PMC7318665 DOI: 10.1002/anie.201914888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/28/2020] [Indexed: 11/19/2022]
Abstract
Carbohydrates are ubiquitous biomolecules in nature. The vast majority of their biomolecular activity takes place in aqueous environments. Molecular reactivity and functionality are, therefore, often strongly influenced by not only interactions with equivalent counterparts, but also with the surrounding water molecules. Glycoaldehyde (Gly) represents a prototypical system to identify the relevant interactions and the balance that governs them. Here we present a broadband rotational‐spectroscopy study on the stepwise hydration of the Gly dimer with up to three water molecules. We reveal the preferred hydrogen‐bond networks formed when water molecules sequentially bond to the sugar dimer. We observe that the dimer structure and the hydrogen‐bond networks at play remarkably change upon the addition of just a single water molecule to the dimer. Further addition of water molecules does not significantly alter the observed hydrogen‐bond topologies.
Collapse
Affiliation(s)
- Cristóbal Pérez
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany.,Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118, Kiel, Germany
| | - Amanda L Steber
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany.,Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118, Kiel, Germany
| | - Berhane Temelso
- Division of Information Technology, College of Charleston, Charleston, SC, 29424, USA
| | - Zbigniew Kisiel
- Institute of Physics, Polish Academy of Sciences, 02-668, Warszawa, Poland
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany.,Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118, Kiel, Germany
| |
Collapse
|
12
|
Pérez C, Steber AL, Temelso B, Kisiel Z, Schnell M. Water Triggers Hydrogen‐Bond‐Network Reshaping in the Glycoaldehyde Dimer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cristóbal Pérez
- Deutsches Elektronen-Synchrotron DESY Notkestraße 85 22607 Hamburg Germany
- Christian-Albrechts-Universität zu Kiel Max-Eyth-Str. 1 24118 Kiel Germany
| | - Amanda L. Steber
- Deutsches Elektronen-Synchrotron DESY Notkestraße 85 22607 Hamburg Germany
- Christian-Albrechts-Universität zu Kiel Max-Eyth-Str. 1 24118 Kiel Germany
| | - Berhane Temelso
- Division of Information Technology College of Charleston Charleston SC 29424 USA
| | - Zbigniew Kisiel
- Institute of Physics Polish Academy of Sciences 02-668 Warszawa Poland
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY Notkestraße 85 22607 Hamburg Germany
- Christian-Albrechts-Universität zu Kiel Max-Eyth-Str. 1 24118 Kiel Germany
| |
Collapse
|
13
|
Hansen AS, Vogt E, Kjaergaard HG. Gibbs energy of complex formation – combining infrared spectroscopy and vibrational theory. INT REV PHYS CHEM 2019. [DOI: 10.1080/0144235x.2019.1608689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Anne S. Hansen
- Department of Chemistry, University of Copenhagen, Copenhagen Ø, Denmark
| | - Emil Vogt
- Department of Chemistry, University of Copenhagen, Copenhagen Ø, Denmark
| | | |
Collapse
|
14
|
Lemmens AK, Gruet S, Steber AL, Antony J, Grimme S, Schnell M, Rijs AM. Far-IR and UV spectral signatures of controlled complexation and microhydration of the polycyclic aromatic hydrocarbon acenaphthene. Phys Chem Chem Phys 2019; 21:3414-3422. [DOI: 10.1039/c8cp04480e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UV and IR spectroscopic study of the controlled complexation and microhydration of a polycyclic aromatic hydrocarbon under isolated conditions using free electron laser FELIX.
Collapse
Affiliation(s)
- Alexander K. Lemmens
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Sébastien Gruet
- Deutsches Elektronen-Synchrotron
- D-22607 Hamburg
- Germany
- Institut für Physikalische Chemie
- Christian-Albrechts-Universität zu Kiel
| | - Amanda L. Steber
- Deutsches Elektronen-Synchrotron
- D-22607 Hamburg
- Germany
- Institut für Physikalische Chemie
- Christian-Albrechts-Universität zu Kiel
| | - Jens Antony
- Mulliken Center for Theoretical Chemistry
- University of Bonn
- D-53115 Bonn
- Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry
- University of Bonn
- D-53115 Bonn
- Germany
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron
- D-22607 Hamburg
- Germany
- Institut für Physikalische Chemie
- Christian-Albrechts-Universität zu Kiel
| | - Anouk M. Rijs
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| |
Collapse
|
15
|
Liu Y, Li J. An accurate full-dimensional permutationally invariant potential energy surface for the interaction between H2O and CO. Phys Chem Chem Phys 2019; 21:24101-24111. [DOI: 10.1039/c9cp04405a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first full-dimensional accurate potential energy surface was developed for the CO + H2O system based onca.102 000 points calculated at the CCSD(T)-F12a/AVTZ level using a permutation invariant polynomial-neural network (PIP-NN) method.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| | - Jun Li
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| |
Collapse
|
16
|
Banerjee P, Chakraborty T. Weak hydrogen bonds: insights from vibrational spectroscopic studies. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1419731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Pujarini Banerjee
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Kolkata, India
| | - Tapas Chakraborty
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Kolkata, India
| |
Collapse
|
17
|
Potapov A, Canosa A, Jiménez E, Rowe B. Chemie mit Überschall: 30 Jahre astrochemische Forschung und künftige Herausforderungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexey Potapov
- Laborastrophysikgruppe des Max-Planck-Instituts für Astronomie am Institut für Festkörperphysik; Friedrich-Schiller-Universität Jena; Helmholtzweg 3 07743 Jena Deutschland
| | - André Canosa
- Département de Physique Moléculaire; Institut de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, Campus de Beaulieu; 263 Avenue du Général Leclerc 35042 Rennes Cedex Frankreich
| | - Elena Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas; Universidad de Castilla-La Mancha; Avda. Camilo José Cela, 1B 13071 Ciudad Real Spanien
| | - Bertrand Rowe
- Rowe-consulting, 22 Chemin des Moines; 22750 Saint Jacut de la Mer Frankreich
| |
Collapse
|
18
|
Potapov A, Canosa A, Jiménez E, Rowe B. Uniform Supersonic Chemical Reactors: 30 Years of Astrochemical History and Future Challenges. Angew Chem Int Ed Engl 2017; 56:8618-8640. [DOI: 10.1002/anie.201611240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/27/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Alexey Potapov
- Laborastrophysikgruppe des Max-Planck-Instituts für Astronomie am Institut für Festkörperphysik; Friedrich-Schiller-Universität Jena; Helmholtzweg 3 07743 Jena Germany
| | - André Canosa
- Département de Physique Moléculaire; Institut de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, Campus de Beaulieu; 263 Avenue du Général Leclerc 35042 Rennes Cedex France
| | - Elena Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas; Universidad de Castilla-La Mancha; Avda. Camilo José Cela, 1B 13071 Ciudad Real Spain
| | - Bertrand Rowe
- Rowe-consulting, 22 Chemin des Moines; 22750 Saint Jacut de la Mer France
| |
Collapse
|
19
|
Dargent D, Madebène B, Soulard P, Tremblay B, Zins EL, Alikhani ME, Asselin P. Conformational Landscape of the 1/1 Diacetyl/Water Complex Investigated by Infrared Spectroscopy and ab Initio Calculations. J Phys Chem A 2017; 121:88-97. [PMID: 27959532 DOI: 10.1021/acs.jpca.6b10492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complexes of diacetyl with water have been studied experimentally by Fourier transform infrared (FTIR) spectroscopy coupled to solid neon matrix and supersonic jet, and anharmonic ab initio calculations. The vibrational analysis of neon matrix spectra over the 100-7500 cm-1 infrared range confirms the existence of two nearly isoenergetic one-to-one (1/1) diacetyl-water S1 and S2 isomers already evidenced in a previous argon matrix study. A third form (S3) predicted slightly less stable ( J. Mol. Mod. 2015 , 21 , 214 ) is not observed. The correct agreement obtained between neon matrix and anharmonic calculated vibrational frequencies is exploited in several cases to derive band assignments for the vibrational modes of a specific isomer. Thereafter, theoretical xij anharmonic coupling constants are used for the attribution of combination bands and overtones relative to the 1/1 dimer. Finally, the most stable isomer of the one-to-two (1/2) diacetyl-water complex is identified in the OH stretching region of water on the grounds of comparison of experimental and calculated vibrational shifts between water dimer and the three most stable 1/2 isomers.
Collapse
Affiliation(s)
- D Dargent
- Sorbonne Universités, UPMC Université Paris 06, UMR 8233, MONARIS , F-75005, Paris, France.,CNRS, UMR 8233, MONARIS , F-75005, Paris, France
| | - B Madebène
- Sorbonne Universités, UPMC Université Paris 06, UMR 8233, MONARIS , F-75005, Paris, France.,CNRS, UMR 8233, MONARIS , F-75005, Paris, France
| | - P Soulard
- Sorbonne Universités, UPMC Université Paris 06, UMR 8233, MONARIS , F-75005, Paris, France.,CNRS, UMR 8233, MONARIS , F-75005, Paris, France
| | - B Tremblay
- Sorbonne Universités, UPMC Université Paris 06, UMR 8233, MONARIS , F-75005, Paris, France.,CNRS, UMR 8233, MONARIS , F-75005, Paris, France
| | - E L Zins
- Sorbonne Universités, UPMC Université Paris 06, UMR 8233, MONARIS , F-75005, Paris, France.,CNRS, UMR 8233, MONARIS , F-75005, Paris, France
| | - M E Alikhani
- Sorbonne Universités, UPMC Université Paris 06, UMR 8233, MONARIS , F-75005, Paris, France.,CNRS, UMR 8233, MONARIS , F-75005, Paris, France
| | - P Asselin
- Sorbonne Universités, UPMC Université Paris 06, UMR 8233, MONARIS , F-75005, Paris, France.,CNRS, UMR 8233, MONARIS , F-75005, Paris, France
| |
Collapse
|
20
|
Herman M, Földes T, Didriche K, Lauzin C, Vanfleteren T. Overtone spectroscopy of molecular complexes containing small polyatomic molecules. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1171039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Suas-David N, Vanfleteren T, Földes T, Kassi S, Georges R, Herman M. The Water Dimer Investigated in the 2OH Spectral Range Using Cavity Ring-Down Spectroscopy. J Phys Chem A 2015; 119:10022-34. [DOI: 10.1021/acs.jpca.5b06746] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- N. Suas-David
- Institut
de Physique de Rennes, UMR 6251, Campus de Beaulieu,
Bât. 11C, Université de Rennes 1/CNRS, F-35042 Rennes
Cedex, France
| | - T. Vanfleteren
- Laboratoire
de Chimie quantique et Photophysique, CP160/09 Faculté des
Sciences, Université Libre de Bruxelles, 50, ave. Roosevelt, B-1050 Bruxelles, Belgium
| | - T. Földes
- Laboratoire
de Chimie quantique et Photophysique, CP160/09 Faculté des
Sciences, Université Libre de Bruxelles, 50, ave. Roosevelt, B-1050 Bruxelles, Belgium
| | - S. Kassi
- Laboratoire
Interdisciplinaire de Physique, UMR 5588, Université de Grenoble Alpes/CNRS, F-38041 Grenoble, France
| | - R. Georges
- Institut
de Physique de Rennes, UMR 6251, Campus de Beaulieu,
Bât. 11C, Université de Rennes 1/CNRS, F-35042 Rennes
Cedex, France
| | - M. Herman
- Laboratoire
de Chimie quantique et Photophysique, CP160/09 Faculté des
Sciences, Université Libre de Bruxelles, 50, ave. Roosevelt, B-1050 Bruxelles, Belgium
| |
Collapse
|