1
|
Kodikara S, Lê Cao KA. Microbial network inference for longitudinal microbiome studies with LUPINE. MICROBIOME 2025; 13:64. [PMID: 40033386 PMCID: PMC11874778 DOI: 10.1186/s40168-025-02041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/17/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND The microbiome is a complex ecosystem of interdependent taxa that has traditionally been studied through cross-sectional studies. However, longitudinal microbiome studies are becoming increasingly popular. These studies enable researchers to infer taxa associations towards the understanding of coexistence, competition, and collaboration between microbes across time. Traditional metrics for association analysis, such as correlation, are limited due to the data characteristics of microbiome data (sparse, compositional, multivariate). Several network inference methods have been proposed, but have been largely unexplored in a longitudinal setting. RESULTS We introduce LUPINE (LongitUdinal modelling with Partial least squares regression for NEtwork inference), a novel approach that leverages on conditional independence and low-dimensional data representation. This method is specifically designed to handle scenarios with small sample sizes and small number of time points. LUPINE is the first method of its kind to infer microbial networks across time, while considering information from all past time points and is thus able to capture dynamic microbial interactions that evolve over time. We validate LUPINE and its variant, LUPINE_single (for single time point analysis) in simulated data and four case studies, where we highlight LUPINE's ability to identify relevant taxa in each study context, across different experimental designs (mouse and human studies, with or without interventions, and short or long time courses). To detect changes in the networks across time and groups or in response to external disturbances, we used different metrics to compare the inferred networks. CONCLUSIONS LUPINE is a simple yet innovative network inference methodology that is suitable for, but not limited to, analysing longitudinal microbiome data. The R code and data are publicly available for readers interested in applying these new methods to their studies. Video Abstract.
Collapse
Affiliation(s)
- Saritha Kodikara
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Royal Parade, 3052, Parkville, Victoria, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Royal Parade, 3052, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Xu Y, Huang Y, Wei S, Tian J, Huang Y, Nie Q, Zhang D. Changes in gut microbiota affect DNA methylation levels and development of chicken muscle tissue. Poult Sci 2025; 104:104869. [PMID: 39952142 PMCID: PMC11874558 DOI: 10.1016/j.psj.2025.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
The intestinal microbiome is essential in regulating host muscle growth and development. Antibiotic treatment is commonly used to model dysbiosis of the intestinal microbiota, yet limited research addresses the relationship between gut microbes and muscle growth in yellow-feathered broilers. In this study, Xinghua chickens were administered broad-spectrum antibiotics for eight weeks to induce gut microbiome suppression. We investigated the relationships between the gut microbiome and muscle growth using 16S rRNA sequencing and transcriptomic analysis. Results indicated that antibiotic treatment significantly reduced body weight, dressed weight, eviscerated weight, and breast and leg muscle weight. Microbial diversity and richness in the duodenum, jejunum, ileum, and cecum were significantly decreased. The relative abundances of Firmicutes, Actinobacteria, and Bacteroidetes declined, while Proteobacteria increased. This microbial imbalance led to 298 differentially expressed genes (DEGs) in muscle tissue, of which 67 down-regulated genes were enriched in skeletal muscle development, including MYF6, MYBPC1 and METTL21C genes essential for muscle development. The DEGs were primarily involved in the MAPK signaling pathway, calcium signaling pathway, ECM-receptor interaction, actin cytoskeleton regulation, and nitrogen metabolism. Correlation analysis showed that dysregulation of the cecal microbiome had the most substantial effect on muscle growth and development. Furthermore, intestinal microbiome dysregulation reduced DNMT3b and METTL21C mRNA expression in muscle tissue, lowered overall DNA methylation and SAM levels, and induced methylation changes that impacted skeletal muscle development. This study demonstrates that gut microbiota influence DNA methylation in muscle tissue, thereby associated with muscle growth and development.
Collapse
Affiliation(s)
- Yibin Xu
- State Key Laboratory of· Livestock· and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangzhou Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, PR China
| | - Yunpeng Huang
- State Key Laboratory of· Livestock· and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangzhou Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, PR China
| | - Shenghua Wei
- State Key Laboratory of· Livestock· and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangzhou Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, PR China
| | - Jinghong Tian
- State Key Laboratory of· Livestock· and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangzhou Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, PR China
| | - Yulin Huang
- Wens Foodstuff Group Co. Ltd., Yunfu 527400, PR China
| | - Qinghua Nie
- State Key Laboratory of· Livestock· and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangzhou Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, PR China
| | - Dexiang Zhang
- State Key Laboratory of· Livestock· and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, & Guangzhou Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, PR China; Wens Foodstuff Group Co. Ltd., Yunfu 527400, PR China.
| |
Collapse
|
3
|
Luo Y, Li J, Wu S, Jia W, Zhou Z, Liu M, Jiang F, Huang T, Shen X, Li Y, He F, Cheng R. Oral supplementation with Bifidobacterium longum ssp. infantis and 2'-fucosyllactose revives gut microbiota perturbation and intestinal and immune developmental delay following early-life antibiotic challenge in BALB/c mice. J Dairy Sci 2025; 108:101-118. [PMID: 39477061 DOI: 10.3168/jds.2024-24912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/03/2024] [Indexed: 12/28/2024]
Abstract
Probiotics and synbiotics can mitigate the negative health consequences of early-life antibiotic exposure. This study aimed to determine whether supplementation with Bifidobacterium longum ssp. infantis 79 (B79) or synbiotics composed of B79 and 2'-fucosyllactose (2'-FL) could mitigate the negative impact of ceftriaxone exposure in early life. We found that antibiotic-treated mice exhibited lower BW, crypt depth, short-chain fatty acid content, and α-diversity indices at weaning, whereas they had increased relative abundance of opportunistic pathogens (such as Enterococcus and Staphylococcus) and decreased relative abundance of intestinal commensal bacteria. Supplementation with B79 and 2'-FL revived these antibiotic-induced negative effects and reduced the mRNA expression of IL-6, IL-12p40, and TNF-α in the spleen at weaning. Moreover, B79 and 2'-FL supplementation persistently improved crypt depth, propionic acid synthesis, and IgG and secretory IgA production, as well as revived the gut microbiota structure and composition in adulthood. Overall, our study suggests that early-life supplementation with B79 alone or in combination with 2'-FL can mitigate ceftriaxone-induced negative effects on the gut microbiota and intestinal and immune development of mice, and these improvements can partially last into adulthood.
Collapse
Affiliation(s)
- Yating Luo
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinxing Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Simou Wu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wen Jia
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhimo Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meixun Liu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fengling Jiang
- Department of Maternal and Child Health, Sichuan Tianfu New Area Public Health Center, Chengdu 610213, Sichuan, China
| | - Ting Huang
- Department of Maternal and Child Health, Sichuan Tianfu New Area Public Health Center, Chengdu 610213, Sichuan, China
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yun Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Duclot F, Wu L, Wilkinson CS, Kabbaj M, Knackstedt LA. Ceftriaxone alters the gut microbiome composition and reduces alcohol intake in male and female Sprague-Dawley rats. Alcohol 2024; 120:169-178. [PMID: 38290696 DOI: 10.1016/j.alcohol.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Ceftriaxone is an antibiotic that increases central nervous system (CNS) protein expression of the glutamate transporters GLT-1 and xCT and ameliorates pathological behaviors in rodent models of neurological disease and substance use disorder. However, little ceftriaxone passes through the blood-brain barrier, the CNS binding partner of ceftriaxone is unknown, and ceftriaxone does not consistently upregulate GLT-1 and xCT in cell culture. Ceftriaxone alters the gut microbiome composition in rodents and humans, and the microbiome-gut-brain axis regulates drug-seeking. Thus, here we test the hypothesis that ceftriaxone reduces alcohol intake while ameliorating alcohol-induced disruption of the gut microbiome composition. Male and female Sprague-Dawley rats received intermittent access to alcohol (IAA) while controls received access to only water. Following 17 IAA sessions, ceftriaxone/vehicle treatment was given for 5 days. Analysis of the gut microbiome composition was assessed by 16S rRNA gene amplicon sequencing conducted on fecal pellets collected prior to and after alcohol consumption and following ceftriaxone treatment. Male rats displayed escalated alcohol intake and preference over the course of the 17 sessions; however, total alcohol intake did not differ between the sexes. Ceftriaxone reduced alcohol intake and preference in male and female rats. While alcohol affected a diverse set of amplicon sequencing variants (ASV), ceftriaxone markedly reduced the diversity of microbial communities reflected by a blooming of the Enterococcaceae family. The remaining effects of ceftriaxone, however, encompassed families both affected and unaffected by prior alcohol drinking and highlight the Ruminococcaceae and Muribaculaceae families as bidirectionally modulated by alcohol and ceftriaxone. Altogether, our study confirms that ceftriaxone reduces alcohol intake in rats and partially reverses alcohol-induced dysbiosis.
Collapse
Affiliation(s)
- Florian Duclot
- Florida State University, Biomedical Sciences Department, Tallahassee, FL, United States.
| | - Lizhen Wu
- University of Florida, Psychology Department, Gainesville, FL, United States.
| | - Courtney S Wilkinson
- University of Florida, Psychology Department, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States.
| | - Mohamed Kabbaj
- Florida State University, Biomedical Sciences Department, Tallahassee, FL, United States.
| | - Lori A Knackstedt
- University of Florida, Psychology Department, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
5
|
Behairi N, Samer A, Sahraoui L, Mataam DH, Trari R, Flissi B, Belguendouz H, Amir ZC, Touil-Boukoffa C. Neuroinflammation, neurodegeneration and alteration of spatial memory in BALB/c mice through ampicillin-induced gut dysbiosis; NOS2 and NFL involvement in a microbiota-gut-brain axis model. J Neuroimmunol 2024; 392:578374. [PMID: 38797060 DOI: 10.1016/j.jneuroim.2024.578374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
We aimed to investigate ampicillin (AMP) mechanisms in microbiota-gut-brain axis. We evaluated its effect on two gut and brain regions and behavioral performances. We administred AMP (1 g/l) to BALB/c mice for 21 days. Then, we analyzed body weigth change, stool consistency scoring, gut length, intestinal microbiota composition, nitric oxide synthase 2 (NOS2) expression and tissue integrity. We subsequently evaluated NOS2, GFAP, CD68 and NFL cerebral expression and spatial memory.Interestingly, our data showed gut microbiota disruption, NOS2 upregulation and tissue damage, associated to cerebral NOS2, GFAP, CD68 and NFL over-expression and behavioral alteration. Antiobiotic therapy should be prescribed with great caution.
Collapse
Affiliation(s)
- Nassima Behairi
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria
| | - Arezki Samer
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria
| | - Lynda Sahraoui
- Laboratory of Animal Health and Production, Higher National Veterinary School of Issad-Abbes Oued-Smar, Algiers, Algeria
| | - Djehane Houria Mataam
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria
| | - Ryad Trari
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria
| | - Billel Flissi
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria
| | - Houda Belguendouz
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria
| | - Zine-Charaf Amir
- Department of Anatomy and Pathological Cytology, University Hospital Center Mustapha Pacha, 1945 Pl. May 1st, Sidi M'Hamed, 16000 Algiers, Algeria
| | - Chafia Touil-Boukoffa
- University of Sciences and Technology Houari Boumediene (USTHB), Faculty of Biological Sciences, Cellular and Molecular Biology Laboratory, Cytokines and NO Synthases, Immunity and Pathogeny Team, El-Alia, BP 32, 16111 Algiers, Algeria.
| |
Collapse
|
6
|
Liu X, Qiu X, Yang Y, Wang J, Wang Q, Liu J, Yang F, Liu Z, Qi R. Alteration of gut microbiome and metabolome by Clostridium butyricum can repair the intestinal dysbiosis caused by antibiotics in mice. iScience 2023; 26:106190. [PMID: 36895644 PMCID: PMC9988658 DOI: 10.1016/j.isci.2023.106190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/24/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
This study evaluated the repair effects of Clostridium butyricum (CBX 2021) on the antibiotic (ABX)-induced intestinal dysbiosis in mice by the multi-omics method. Results showed that ABX eliminated more than 90% of cecal bacteria and also exerted adverse effects on the intestinal structure and overall health in mice after 10 days of the treatment. Of interest, supplementing CBX 2021 in the mice for the next 10 days colonized more butyrate-producing bacteria and accelerated butyrate production compared with the mice by natural recovery. The reconstruction of intestinal microbiota efficiently promoted the improvement of the damaged gut morphology and physical barrier in the mice. In addition, CBX 2021 significantly reduced the content of disease-related metabolites and meanwhile promoted carbohydrate digestion and absorption in mice followed the microbiome alternation. In conclusion, CBX 2021 can repair the intestinal ecology of mice damaged by the antibiotics through reconstructing gut microbiota and optimizing metabolic functions.
Collapse
Affiliation(s)
- Xin Liu
- Chongqing Academy of Animal Science, Chongqing 402460, China.,College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Yong Yang
- College of Life Sciences, Southwest University of Science and Technology, Mianyang 621000, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Jingbo Liu
- College of Life Sciences, Southwest University of Science and Technology, Mianyang 621000, China
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| | - Renli Qi
- Chongqing Academy of Animal Science, Chongqing 402460, China.,National Pig Technology Innovation Center, Chongqing 402460, China
| |
Collapse
|
7
|
Barnes KB, Bayliss M, Davies C, Richards MI, Laws TR, Vente A, Harding SV. Efficacy of finafloxacin in a murine model of inhalational glanders. Front Microbiol 2022; 13:1057202. [PMID: 36504783 PMCID: PMC9730244 DOI: 10.3389/fmicb.2022.1057202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Burkholderia mallei, the causative agent of glanders, is principally a disease of equines, although it can also infect humans and is categorized by the U.S. Centers for Disease Control and Prevention as a category B biological agent. Human cases of glanders are rare and thus there is limited information on treatment. It is therefore recommended that cases are treated with the same therapies as used for melioidosis, which for prophylaxis, is co-trimoxazole (trimethoprim/sulfamethoxazole) or co-amoxiclav (amoxicillin/clavulanic acid). In this study, the fluoroquinolone finafloxacin was compared to co-trimoxazole as a post-exposure prophylactic in a murine model of inhalational glanders. BALB/c mice were exposed to an aerosol of B. mallei followed by treatment with co-trimoxazole or finafloxacin initiated at 24 h post-challenge and continued for 14 days. Survival at the end of the study was 55% or 70% for mice treated with finafloxacin or co-trimoxazole, respectively, however, this difference was not significant. However, finafloxacin was more effective than co-trimoxazole in controlling bacterial load within tissues and demonstrating clearance in the liver, lung and spleen following 14 days of therapy. In summary, finafloxacin should be considered as a promising alternative treatment following exposure to B. mallei.
Collapse
Affiliation(s)
- Kay B. Barnes
- Defence Science and Technology Laboratory, Salisbury, United Kingdom,*Correspondence: Kay B. Barnes,
| | - Marc Bayliss
- Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Carwyn Davies
- Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Mark I. Richards
- Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Thomas R. Laws
- Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | | | - Sarah V. Harding
- Defence Science and Technology Laboratory, Salisbury, United Kingdom,Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
8
|
Shan L, Gao M, Pan X, Li W, Wang J, Li H, Tian H. Association between fluoroquinolone exposure and children's growth and development: A multisite biomonitoring-based study in northern China. ENVIRONMENTAL RESEARCH 2022; 214:113924. [PMID: 35868578 DOI: 10.1016/j.envres.2022.113924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Although animal experiments found that antibiotic exposure during early life increased adiposity, limited human epidemiological evidence is available for the effects of veterinary antibiotic exposure on children's growth and development. OBJECTIVE This study was conducted to examine the body burden of fluoroquinolones in northern Chinese children and assess its association with growth and development. METHODS After recruiting 233 children aged 0-15 years from 12 different sites in northern China in 2020, we measured urinary concentrations of 5 respective fluoroquinolones (fleroxacin, ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin) by high performance liquid chromatography. Categories of children's growth and development were identified based on the Z score of body mass index. The health risks of individual and combined antibiotic exposure were estimated by the hazard quotient (HQ) and hazard index (HI), respectively. The association between children's growth and development with antibiotic concentrations was evaluated via multiple logistic regression analysis. RESULTS In total, 4 antibiotics, fleroxacin, ofloxacin, ciprofloxacin, and enrofloxacin, were found in urine samples of northern Chinese children at an overall frequency of 57.08%. Due to diet and economic differences, antibiotic concentrations in urine samples differed by study area, and the highest concentrations were found in Tianjin, Henan, and Beijing. The percentage of the participants with HQ > 1 caused by ciprofloxacin exposure was 20.61%, and the HI values in 23.18% of samples exceeded 1, suggesting potential health risks. The odds ratio (95% confidence interval) of overweight or obesity risk of tertile 2 of enrofloxacin was 3.01 (1.12, 8.11), indicating an increase in overweight or obesity risk for children with middle-concentration enrofloxacin exposure. CONCLUSION This is the first study to show a positive association of enrofloxacin internal exposure with overweight or obesity risk in children, demonstrating that more attention should be given to the usage and disposal of fluoroquinolones to safeguard children's health.
Collapse
Affiliation(s)
- Lixin Shan
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China
| | - Xiaohua Pan
- Qingdao Women and Children's Hospital, Qingdao, 266034, Qingdao, China
| | - Wenjie Li
- Qingdao Women and Children's Hospital, Qingdao, 266034, Qingdao, China
| | - Jingjie Wang
- Qingdao Women and Children's Hospital, Qingdao, 266034, Qingdao, China
| | - Huaxin Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
9
|
Paeonia lactiflora Pallas extract alleviates antibiotics and DNCB-induced atopic dermatitis symptoms by suppressing inflammation and changing the gut microbiota composition in mice. Biomed Pharmacother 2022; 154:113574. [DOI: 10.1016/j.biopha.2022.113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
|
10
|
Sharma P, Silva C, Pfreundschuh S, Ye H, Sampath H. Metabolic protection by the dietary flavonoid 7,8-dihydroxyflavone requires an intact gut microbiome. Front Nutr 2022; 9:987956. [PMID: 36061902 PMCID: PMC9428675 DOI: 10.3389/fnut.2022.987956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background 7,8-dihydroxyflavone (DHF) is a naturally occurring flavonoid found in Godmania, Tridax, and Primula species that confers protection against high-fat diet (HFD) induced metabolic pathologies selectively in female mice. We have previously reported that this metabolic protection is associated with early and stable remodeling of the intestinal microbiome, evident in female but not male DHF-supplemented mice. Early changes in the gut microbiome in female DHF-fed mice were highly predictive of subsequent metabolic protection, suggesting a causative association between the gut microbiome and the metabolic effects of DHF. Objective To investigate a causal association between the gut microbiome and the metabolic effects of DHF using a model of antibiotic-induced gut microbiome ablation. Materials and methods Age-matched male and female C57Bl6/J mice were given ad libitum access to HFD and drinking water containing vehicle or DHF for 12 weeks. For antibiotic (Abx) treatment, female mice were given drinking water containing a cocktail of antibiotics for 2 weeks prior to HFD feeding and throughout the feeding period. Metabolic phenotyping consisted of longitudinal assessments of body weights, body composition, food, and water intake, as well as measurement of energy expenditure, glucose tolerance, and plasma and hepatic lipids. Protein markers mediating the cellular effects of DHF were assessed in brown adipose tissue (BAT) and skeletal muscle. Results Metabolic protection conferred by DHF in female HFD-fed mice was only apparent in the presence of an intact gut microbiome. Abx-treated mice were not protected from HFD-induced obesity by DHF administration. Further, tissue activation of the tropomyosin-related kinase receptor B (TrkB) receptor, which has been attributed to the biological activity of DHF, was lost upon gut microbiome ablation, indicating a requirement for microbial “activation” of DHF for its systemic effects. In addition, we report for the first time that DHF supplementation significantly activates TrkB in BAT of female, but not male, mice uncovering a novel target tissue of DHF. DHF supplementation also increased uncoupling protein 1 (UCP1) and AMP-activated protein kinase (AMPK) protein in BAT, consistent with protection from diet-induced obesity. Conclusion These results establish for the first time a requirement for the gut microbiome in mediating the metabolic effects of DHF in female mice and uncover a novel target tissue that may mediate these sexually-dimorphic protective effects.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
| | - Camila Silva
- Department of Biotechnology, Rutgers University, New Brunswick, NJ, United States
| | - Sarah Pfreundschuh
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Hong Ye
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
- *Correspondence: Harini Sampath,
| |
Collapse
|
11
|
Doroftei B, Ilie OD, Diaconu R, Hutanu D, Stoian I, Ilea C. An Updated Narrative Mini-Review on the Microbiota Changes in Antenatal and Post-Partum Depression. Diagnostics (Basel) 2022; 12:diagnostics12071576. [PMID: 35885482 PMCID: PMC9315700 DOI: 10.3390/diagnostics12071576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Antenatal depression (AND) and post-partum depression (PPD) are long-term debilitating psychiatric disorders that significantly influence the composition of the gut flora of mothers and infants that starts from the intrauterine life. Not only does bacterial ratio shift impact the immune system, but it also increases the risk of potentially life-threatening disorders. Material and Methods: Therefore, we conducted a narrative mini-review aiming to gather all evidence published between 2018–2022 regarding microflora changes in all three stages of pregnancy. Results: We initially identified 47 potentially eligible studies, from which only 7 strictly report translocations; 3 were conducted on rodent models and 4 on human patients. The remaining studies were divided based on their topic, precisely focused on how probiotics, breastfeeding, diet, antidepressants, exogenous stressors, and plant-derived compounds modulate in a bidirectional way upon behavior and microbiota. Almost imperatively, dysbacteriosis cause cognitive impairments, reflected by abnormal temperament and personality traits that last up until 2 years old. Thankfully, a distinct technique that involves fecal matter transfer between individuals has been perfected over the years and was successfully translated into clinical practice. It proved to be a reliable approach in diminishing functional non- and gastrointestinal deficiencies, but a clear link between depressive women’s gastrointestinal/vaginal microbiota and clinical outcomes following reproductive procedures is yet to be established. Another gut-dysbiosis-driving factor is antibiotics, known for their potential to trigger inflammation. Fortunately, the studies conducted on mice that lack microbiota offer, without a shadow of a doubt, insight. Conclusions: It can be concluded that the microbiota is a powerful organ, and its optimum functionality is crucial, likely being the missing puzzle piece in the etiopathogenesis of psychiatric disorders.
Collapse
Affiliation(s)
- Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (B.D.); (I.S.); (C.I.)
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania;
- Origyn Fertility Center, Palace Street, No. 3C, 700032 Iasi, Romania
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No. 20A, 700505 Iasi, Romania
- Correspondence:
| | - Roxana Diaconu
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania;
- Origyn Fertility Center, Palace Street, No. 3C, 700032 Iasi, Romania
| | - Delia Hutanu
- Department of Biology, Faculty of Chemistry-Biology-Geography, West University of Timisoara, Vasile Pârvan Avenue, No. 4, 300115 Timisoara, Romania;
| | - Irina Stoian
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (B.D.); (I.S.); (C.I.)
| | - Ciprian Ilea
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, No. 16, 700115 Iasi, Romania; (B.D.); (I.S.); (C.I.)
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, No. 34, 700038 Iasi, Romania;
| |
Collapse
|
12
|
Yi X, Cha M. Gut Dysbiosis Has the Potential to Reduce the Sexual Attractiveness of Mouse Female. Front Microbiol 2022; 13:916766. [PMID: 35677910 PMCID: PMC9169628 DOI: 10.3389/fmicb.2022.916766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence has shown that the gut microbiome has significant effects on mate preferences of insects; however, whether gut microbiota composition affects sexual attractiveness and mate preference in mammals remains largely unknown. Here, we showed that antibiotic treatment significantly restructured the gut microbiota composition of both mouse males and females. Males, regardless of antibiotic treatment, exhibited a higher propensity to interact with the control females than the antibiotic-treated females. The data clearly showed that gut microbiota dysbiosis reduced the sexual attractiveness of females to males, implying that commensal gut microbiota influences female attractiveness to males. The reduced sexual attractiveness of the antibiotic-treated females may be beneficial to discriminating males by avoiding disorders of immunity and sociability in offspring that acquire maternal gut microbiota via vertical transmission. We suggest further work should be oriented to increase our understanding of the interactions between gut microbiota dysbiosis, sexual selection, and mate choice of wild animals at the population level.
Collapse
Affiliation(s)
- Xianfeng Yi
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Muha Cha
- College of Life Sciences, Qufu Normal University, Qufu, China.,Academy of Agricultural Sciences, Chifeng University, Chifeng, China
| |
Collapse
|
13
|
Zhang S, Zhong R, Tang S, Han H, Chen L, Zhang H. Baicalin Alleviates Short-Term Lincomycin-Induced Intestinal and Liver Injury and Inflammation in Infant Mice. Int J Mol Sci 2022; 23:ijms23116072. [PMID: 35682750 PMCID: PMC9181170 DOI: 10.3390/ijms23116072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
The adverse effects of short-term megadose of antibiotics exposure on the gastrointestinal and liver tissue reactions in young children have been reported. Antibiotic-induced intestinal and liver reactions are usually unpredictable and present a poorly understood pathogenesis. It is, therefore, necessary to develop strategies for reducing the adverse effects of antibiotics. Studies on the harm and rescue measures of antibiotics from the perspective of the gut–liver system are lacking. Here, we demonstrate that lincomycin exposure reduced body weight, disrupted the composition of gut microbiota and intestinal morphology, triggered immune-mediated injury and inflammation, caused liver dysfunction, and affected lipid metabolism. However, baicalin administration attenuated the lincomycin-induced changes. Transcriptome analysis showed that baicalin improved immunity in mice, as evidenced by the decreased levels of intestinal inflammatory cytokines and expression of genes that regulate Th1, Th2, and Th17 cell differentiation, and inhibited mucin type O-glycan biosynthesis pathways. In addition, baicalin improved liver function by upregulating the expression of genes involved in bile acid secretion and lipid degradation, and downregulating genes involved in lipid synthesis in lincomycin-treated mice. Bile acids can regulate intestinal immunity and strengthen hepatoenteric circulation. In addition, baicalin also improved anti-inflammatory bacteria abundance (Blautia and Coprobacillus) and reduced pathogenic bacteria abundance (Proteobacteria, Klebsiella, and Citrobacter) in lincomycin-treated mice. Thus, baicalin can ameliorate antibiotic-induced injury and its associated complications such as liver disease.
Collapse
Affiliation(s)
| | | | | | | | - Liang Chen
- Correspondence: (L.C.); (H.Z.); Tel.: +86-10-6281-8910 (L.C.); Fax: +86-10-6281-6013 (H.Z.)
| | - Hongfu Zhang
- Correspondence: (L.C.); (H.Z.); Tel.: +86-10-6281-8910 (L.C.); Fax: +86-10-6281-6013 (H.Z.)
| |
Collapse
|
14
|
Chakaroun R, Massier L, Musat N, Kovacs P. New Paradigms for Familiar Diseases: Lessons Learned on Circulatory Bacterial Signatures in Cardiometabolic Diseases. Exp Clin Endocrinol Diabetes 2022; 130:313-326. [PMID: 35320847 DOI: 10.1055/a-1756-4509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Despite the strongly accumulating evidence for microbial signatures in metabolic tissues, including the blood, suggesting a novel paradigm for metabolic disease development, the notion of a core blood bacterial signature in health and disease remains a contentious concept. Recent studies clearly demonstrate that under a strict contamination-free environment, methods such as 16 S rRNA gene sequencing, fluorescence in-situ hybridization, transmission electron microscopy, and several more, allied with advanced bioinformatics tools, allow unambiguous detection and quantification of bacteria and bacterial DNA in human tissues. Bacterial load and compositional changes in the blood have been reported for numerous disease states, suggesting that bacteria and their components may partially induce systemic inflammation in cardiometabolic disease. This concept has been so far primarily based on measurements of surrogate parameters. It is now highly desirable to translate the current knowledge into diagnostic, prognostic, and therapeutic approaches.This review addresses the potential clinical relevance of a blood bacterial signature pertinent to cardiometabolic diseases and outcomes and new avenues for translational approaches. It discusses pitfalls related to research in low bacterial biomass while proposing mitigation strategies for future research and application approaches.
Collapse
Affiliation(s)
- Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
| | - Lucas Massier
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,Deutsches Zentrum für Diabetesforschung eV, Neuherberg, Germany
| |
Collapse
|
15
|
Rodenhouse A, Talukder MAH, Lee JI, Govindappa PK, O'Brien M, Manto KM, Lloyd K, Wandling GD, Wright JR, Chen See JR, Anderson SL, Lamendella R, Hegarty JP, Elfar JC. Altered gut microbiota composition with antibiotic treatment impairs functional recovery after traumatic peripheral nerve crush injury in mice: effects of probiotics with butyrate producing bacteria. BMC Res Notes 2022; 15:80. [PMID: 35197129 PMCID: PMC8867741 DOI: 10.1186/s13104-022-05967-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Antibiotics (ABX) are widely used for life-threatening infections and also for routine surgical operations. Compelling evidence suggests that ABX-induced alterations of gut microbiota composition, termed dysbiosis, are linked with diverse disease states including neurological and neurodegenerative conditions. To combat the consequences of dysbiosis, probiotics (PBX) are widely used. ABX-induced dysbiosis is reported to impair neurological function after spinal cord injury. Traumatic peripheral nerve injury (TPNI) results in profound neurologic impairment and permanent disability. It is unknown whether ABX treatment-induced dysbiosis has any impact on TPNI-induced functional recovery, and if so, what role medical-grade PBX could have on TPNI recovery. RESULTS In this study, ABX-induced dysbiosis and PBX-induced microbiota enrichment models were used to explore the potential role of gut microbiome in TPNI. Stool analysis with 16S ribosomal RNA (rRNA) gene sequencing confirmed ABX-induced dysbiosis and revealed that ABX-induced changes could be partially restored by PBX administration with an abundance of butyrate producing bacteria. Pre-injury ABX significantly impaired, but pre-injury PBX significantly improved post-TPNI functional recovery. Importantly, post-injury PBX protected against pre-injury ABX-induced functional impairment. These findings demonstrate that reestablishment of gut microbiota composition with butyrate producing PBX during ABX-induced dysbiosis could be a useful adjuvant therapy for TPNI.
Collapse
Affiliation(s)
- Andrew Rodenhouse
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | - M A Hassan Talukder
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA.
| | - Jung Il Lee
- Department of Orthopedic Surgery, Korea University Guro Hospital, Seoul, South Korea
| | - Prem Kumar Govindappa
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | - Mary O'Brien
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | - Kristen M Manto
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | - Kelsey Lloyd
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | - Grant D Wandling
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | | | | | | | - Regina Lamendella
- Wright Labs LLC, Huntingdon, PA, USA
- Juniata College, Huntingdon, PA, USA
| | - John P Hegarty
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Mail code H089, 500 University Drive, P.O. Box-850, Hershey, PA, USA.
| |
Collapse
|
16
|
Chaudhari SN, McCurry MD, Devlin AS. Chains of evidence from correlations to causal molecules in microbiome-linked diseases. Nat Chem Biol 2021; 17:1046-1056. [PMID: 34552222 PMCID: PMC8480537 DOI: 10.1038/s41589-021-00861-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 07/16/2021] [Indexed: 12/27/2022]
Abstract
Human-associated microorganisms play a vital role in human health, and microbial imbalance has been linked to a wide range of disease states. In this Review, we explore recent efforts to progress from correlative studies that identify microorganisms associated with human disease to experiments that establish causal relationships between microbial products and host phenotypes. We propose that successful efforts to uncover phenotypes often follow a chain of evidence that proceeds from (1) association studies; to (2) observations in germ-free animals and antibiotic-treated animals and humans; to (3) fecal microbiota transplants (FMTs); to (4) identification of strains; and then (5) molecules that elicit a phenotype. Using this experimental 'funnel' as our guide, we explore how the microbiota contributes to metabolic disorders and hypertension, infections, and neurological conditions. We discuss the potential to use FMTs and microbiota-inspired therapies to treat human disease as well as the limitations of these approaches.
Collapse
Affiliation(s)
- Snehal N Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Megan D McCurry
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Yang K, He S, Dong W. Gut microbiota and bronchopulmonary dysplasia. Pediatr Pulmonol 2021; 56:2460-2470. [PMID: 34077996 DOI: 10.1002/ppul.25508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/02/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022]
Abstract
Bronchopulmonary dysplasia is a relatively common and severe complication of prematurity, and its pathogenesis remains ambiguous. Revolutionary advances in microbiological analysis techniques, together with the growing sophistication of the gut-lung axis hypothesis, have resulted in more studies linking gut microbiota dysbiosis to the occurrence and development of bronchopulmonary dysplasia. The present article builds on current findings to examine the intrinsic associations between gut microbiota and bronchopulmonary dysplasia. Gut microbiota dysbiosis may insult the intestinal barrier, triggering inflammation, metabolic disturbances, and malnutrition, consequences of which might impact bronchopulmonary dysplasia by altering the gut-lung axis. By evaluating the potential mechanisms, new therapeutic targets and potential therapeutic modalities for bronchopulmonary dysplasia can be identified from a microecological perspective.
Collapse
Affiliation(s)
- Kun Yang
- Department of Pediatrics, Division of Neonatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shasha He
- Department of Pediatrics, Division of Neonatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenbin Dong
- Department of Pediatrics, Division of Neonatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
18
|
Miao ZH, Zhou WX, Cheng RY, Liang HJ, Jiang FL, Shen X, Lu JH, Li M, He F. Dysbiosis of intestinal microbiota in early life aggravates high-fat diet induced dysmetabolism in adult mice. BMC Microbiol 2021; 21:209. [PMID: 34238228 PMCID: PMC8268513 DOI: 10.1186/s12866-021-02263-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/15/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Accumulating evidence have shown that the intestinal microbiota plays an important role in prevention of host obesity and metabolism disorders. Recent studies also demonstrate that early life is the key time for the colonization of intestinal microbes in host. However, there are few studies focusing on possible association between intestinal microbiota in the early life and metabolism in adulthood. Therefore the present study was conducted to examine whether the short term antibiotic and/or probiotic exposure in early life could affect intestinal microbes and their possible long term effects on host metabolism. RESULTS A high-fat diet resulted in glucose and lipid metabolism disorders with higher levels of visceral fat rate, insulin-resistance indices, and leptin. Exposure to ceftriaxone in early life aggravated the negative influences of a high-fat diet on mouse physiology. Orally fed TMC3115 protected mice, especially those who had received treatment throughout the whole study, from damage due to a high-fat diet, such as increases in levels of fasting blood glucose and serum levels of insulin, leptin, and IR indices. Exposure to ceftriaxone during the first 2 weeks of life was linked to dysbiosis of the fecal microbiota with a significant decrease in the species richness and diversity. However, the influence of orally fed ceftriaxone on the fecal microbiota was limited to 12 weeks after the termination of treatment. Of note, at week 12 there were still some differences in the composition of intestinal microbiota between mice provided with high fat diet and antibiotic exposure and those only fed a high fat diet. CONCLUSIONS These results indicated that exposure to antibiotics, such as ceftriaxone, in early life may aggravate the negative influences of a high-fat diet on the physiology of the host animal. These results also suggest that the crosstalk between the host and their intestinal microbiota in early life may be more important than that in adulthood, even though the same intestinal microbes are present in adulthood.
Collapse
Affiliation(s)
- Z H Miao
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, Sichuan, P. R. China
| | - W X Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, Sichuan, P. R. China
| | - R Y Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, Sichuan, P. R. China
| | - H J Liang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, Sichuan, P. R. China
| | - F L Jiang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, Sichuan, P. R. China
| | - X Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, Sichuan, P. R. China.
| | - J H Lu
- Basic Research and Development Center, Hebei Inatrual Bio-tech Co., Ltd, Shijiazhuang, Hebei, P. R. China
| | - M Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, Sichuan, P. R. China
| | - F He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041, Chengdu, Sichuan, P. R. China.
| |
Collapse
|
19
|
Mezhibovsky E, Knowles KA, He Q, Sui K, Tveter KM, Duran RM, Roopchand DE. Grape Polyphenols Attenuate Diet-Induced Obesity and Hepatic Steatosis in Mice in Association With Reduced Butyrate and Increased Markers of Intestinal Carbohydrate Oxidation. Front Nutr 2021; 8:675267. [PMID: 34195217 PMCID: PMC8238044 DOI: 10.3389/fnut.2021.675267] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
A Western Diet (WD) low in fiber but high in fats and sugars contributes to obesity and non-alcoholic fatty liver disease (NAFLD). Supplementation with grape polyphenols (GPs) rich in B-type proanthocyanidins (PACs) can attenuate symptoms of cardiometabolic disease and alter the gut microbiota and its metabolites. We hypothesized that GP-mediated metabolic improvements would correlate with altered microbial metabolites such as short chain fatty acids (SCFAs). To more closely mimic a WD, C57BL/6J male mice were fed a low-fiber diet high in sucrose and butterfat along with 20% sucrose water to represent sugary beverages. This WD was supplemented with 1% GPs (WD-GP) to investigate the impact of GPs on energy balance, SCFA profile, and intestinal metabolism. Compared to WD-fed mice, the WD-GP group had higher lean mass along with lower fat mass, body weight, and hepatic steatosis despite consuming more calories from sucrose water. Indirect and direct calorimetry revealed that reduced adiposity in GP-supplemented mice was likely due to their greater energy expenditure, which resulted in lower energy efficiency compared to WD-fed mice. GP-supplemented mice had higher abundance of Akkermansia muciniphila, a gut microbe reported to increase energy expenditure. Short chain fatty acid measurements in colon content revealed that GP-supplemented mice had lower concentrations of butyrate, a major energy substrate of the distal intestine, and reduced valerate, a putrefactive SCFA. GP-supplementation also resulted in a lower acetate:propionate ratio suggesting reduced hepatic lipogenesis. Considering the higher sucrose consumption and reduced butyrate levels in GP-supplemented mice, we hypothesized that enterocytes would metabolize glucose and fructose as a replacement energy source. Ileal mRNA levels of glucose transporter-2 (GLUT2, SLC2A2) were increased indicating higher glucose and fructose uptake. Expression of ketohexokinase (KHK) was increased in ileum tissue suggesting increased fructolysis. A GP-induced increase in intestinal carbohydrate oxidation was supported by: (1) increased gene expression of duodenal pyruvate dehydrogenase (PDH), (2) a decreased ratio of lactate dehydrogenase a (LDHa): LDHb in jejunum and colon tissues, and (3) decreased duodenal and colonic lactate concentrations. These data indicate that GPs protect against WD-induced obesity and hepatic steatosis by diminishing portal delivery of lipogenic butyrate and sugars due to their increased intestinal utilization.
Collapse
Affiliation(s)
- Esther Mezhibovsky
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
- Department of Nutritional Sciences Graduate Program, Rutgers University, New Brunswick, NJ, United States
| | - Kim A. Knowles
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Qiyue He
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Ke Sui
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Kevin M. Tveter
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Rocio M. Duran
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Diana E. Roopchand
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| |
Collapse
|
20
|
Almugadam BS, Yang P, Tang L. Analysis of jejunum microbiota of HFD/STZ diabetic rats. Biomed Pharmacother 2021; 138:111094. [PMID: 34311521 DOI: 10.1016/j.biopha.2020.111094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 11/30/2022] Open
Abstract
Currently, several studies propose that the dominant intestinal bacteria are core flora. Besides keeping the homeostasis of the intestinal environment, the intestinal microflora also plays a role in body metabolism, production of some vitamins, and control of barrier function. The study aimed to investigate the jejunum microbiota in diabetic rats as well as it's the relationship with Ceftriaxone sodium-mediated gut dysbiosis, diabetic parameters, and intestinal permeability. Thirty-two Wistar rats (Male) were enrolled and divided into four groups (A, B, C, and D; N = 8). Subsequently, T2DM was induced in C and D groups by HFD/STZ model and then gut dysbiosis in B and D groups via intragastric administration of Ceftriaxone sodium for two weeks. The food-water intake, body weight, fasting blood glucose, plasma insulin, HOMA-IR, intestinal permeability, and jejunum microbiota and it's histology were investigated. In this study, T2DM was associated with a significant decrease in the richness and diversity of jejunum microbiota, elevation in the intestinal permeability, and higher abundance of some opportunistic pathogens. Ceftriaxone sodium-induced gut dysbiosis declined food-water intake, damagedthe villi of jejunum tissue, increased intestinal permeability, and affected the diversity of jejunum microbiota. In diabetic rats, Ceftriaxone sodium-mediated gut dysbiosis also declined the abundance of someSCFAs bacteria and raised the abundant of some opportunistic bacteria such as Staphylococcus_sciuri. Interestingly, we found that several bacteria were negatively correlated with HOMA-IR, fasting blood glucose, body weight, and intestinal permeability. Overall, the study highlighted the jejunum microflora alterations in HFD/STZ diabetic rats and assessed the effect of Ceftriaxone sodium-induced gut dysbiosis on diabetic parameters, jejunum microbiota and histology, and intestinal permeability, which are of potential for further studies.
Collapse
Affiliation(s)
- Babiker Saad Almugadam
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China; Department of Microbiology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, White Nile State, Sudan.
| | - Peng Yang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.
| | - Li Tang
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
21
|
Angoa-Pérez M, Kuhn DM. Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight. Pharmacol Rev 2021; 73:571-596. [PMID: 33597276 PMCID: PMC7896134 DOI: 10.1124/pharmrev.120.000144] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome modulates neurochemical function and behavior and has been implicated in numerous central nervous system (CNS) diseases, including developmental, neurodegenerative, and psychiatric disorders. Substance use disorders (SUDs) remain a serious threat to the public well-being, yet gut microbiome involvement in drug abuse has received very little attention. Studies of the mechanisms underlying SUDs have naturally focused on CNS reward circuits. However, a significant body of research has accumulated over the past decade that has unwittingly provided strong support for gut microbiome participation in drug reward. β-Lactam antibiotics have been employed to increase glutamate transporter expression to reverse relapse-induced release of glutamate. Sodium butyrate has been used as a histone deacetylase inhibitor to prevent drug-induced epigenetic alterations. High-fat diets have been used to alter drug reward because of the extensive overlap of the circuitry mediating them. This review article casts these approaches in a different light and makes a compelling case for gut microbiome modulation of SUDs. Few factors alter the structure and composition of the gut microbiome more than antibiotics and a high-fat diet, and butyrate is an endogenous product of bacterial fermentation. Drugs such as cocaine, alcohol, opiates, and psychostimulants also modify the gut microbiome. Therefore, their effects must be viewed on a complex background of cotreatment-induced dysbiosis. Consideration of the gut microbiome in SUDs should have the beneficial effects of expanding the understanding of SUDs and aiding in the design of new therapies based on opposing the effects of abused drugs on the host's commensal bacterial community. SIGNIFICANCE STATEMENT: Proposed mechanisms underlying substance use disorders fail to acknowledge the impact of drugs of abuse on the gut microbiome. β-Lactam antibiotics, sodium butyrate, and high-fat diets are used to modify drug seeking and reward, overlooking the notable capacity of these treatments to alter the gut microbiome. This review aims to stimulate research on substance abuse-gut microbiome interactions by illustrating how drugs of abuse share with antibiotics, sodium butyrate, and fat-laden diets the ability to modify the host microbial community.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
22
|
Kwon HJ, Mohammed AE, Eltom KH, Albrahim JS, Alburae NA. Evaluation of antibiotic-induced behavioral changes in mice. Physiol Behav 2020; 223:113015. [PMID: 32553641 DOI: 10.1016/j.physbeh.2020.113015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Gut microbiota (GM) plays a critical role in health maintenance. Previous reports connected GM with metabolic, immunologic and neurologic pathways. The main purpose of the current investigation was to study whether antibiotic-induced disturbances of GM affects psychological or behavioral conditions on mice as animal model. Mice were exposed to clindamycin or amoxicillin, and their behaviors were evaluated. Antibiotic-treated groups displayed reduced recognition memory and increased depression. No significant changes in the locomotor activity and anxiety were observed. Our data suggested that changes in GM composition by antibiotics may lead to the cognitive and behavioral deficit.
Collapse
Affiliation(s)
- Hye-Joo Kwon
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia; The University of Utah Asia Campus, Incheon, Korea
| | - Afrah E Mohammed
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia.
| | - Kamal H Eltom
- Unit of Animal Health and Safety of Animal Products, Institute for Studies and Promotion of Animal Exports, University of Khartoum, Shambat Postal Code 13314, Khartoum North, Sudan
| | - Jehan S Albrahim
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Najla Ali Alburae
- Department of Biology, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
23
|
Effect of Moxibustion on the Intestinal Flora of Rats with Knee Osteoarthritis Induced by Monosodium Iodoacetate. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3196427. [PMID: 32714401 PMCID: PMC7355364 DOI: 10.1155/2020/3196427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/07/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
In this study, a knee osteoarthritis (KOA) rat model induced by monosodium iodoacetate (MIA) was used to study the effect of moxibustion on improving knee cartilage damage and its effect on the intestinal flora. The experimental rats were divided into the normal group (N), model group (M), moxibustion treatment group (MS), and diclofenac sodium treatment group (DS). After 4 weeks, cartilage pathological damage in the knee joint was evaluated using hematoxylin-eosin and safranin O-fast green staining analysis. ELISAs and Western blots were used to detect the expression levels of IL-1β and TNF-α in the serum and cartilage, respectively. The total DNA of the fecal samples was extracted and subjected to high-throughput sequencing of the V3-V4 region of the 16S rRNA gene to analyze the changes in the intestinal flora. In the model group, the cartilage was obviously damaged, the expression levels of IL-1β and TNF-α in the serum and cartilage were increased, and the abundance and diversity of the intestinal flora were decreased. Moxibustion treatment significantly improved the cartilage damage and reduced the concentration of inflammatory factors in the serum and cartilage. The high-throughput sequencing results showed that compared to the model group, the moxibustion treatment regulated some specific species in the intestinal microorganisms rather than the α diversity. In conclusion, our findings suggest that moxibustion treatment may work through two aspects in rats. On one hand, it directly acts on knee cartilage to promote repair, and on the other hand, it regulates the composition of the intestinal flora and reduces the production of inflammatory factors.
Collapse
|
24
|
Zhao Z, Wang B, Mu L, Wang H, Luo J, Yang Y, Yang H, Li M, Zhou L, Tao C. Long-Term Exposure to Ceftriaxone Sodium Induces Alteration of Gut Microbiota Accompanied by Abnormal Behaviors in Mice. Front Cell Infect Microbiol 2020; 10:258. [PMID: 32714875 PMCID: PMC7344183 DOI: 10.3389/fcimb.2020.00258] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/04/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Growing evidence points out that a disturbance of gut microbiota may also disturb the gut–brain communication. However, it is not clear to what extent the alteration of microbiota composition can modulate brain function, affecting host behaviors. Here, we investigated the effects of gut microbiota depletion on emotional behaviors. Methods: Mice in the experimental group were orally administered ceftriaxone sodium solution (250 mg/ml, 0.2 ml/d) for 11 weeks. The open-field test and tail-suspension test were employed for the neurobehavioral assessment of the mice. Fecal samples were collected for 16s rDNA sequencing. The serum levels of cytokines and corticosterone were quantified using enzyme-linked immunosorbent assays. The immunohistochemistry method was used for the detection of brain-derived neurotrophic factor (BDNF) and c-Fos protein. Results: The gut microbiota for antibiotic-treated mice showed lower richness and diversity compared with normal controls. This effect was accompanied by increased anxiety-like, depression-like, and aggressive behaviors. We found these changes to be possibly associated with a dysregulation of the immune system, abnormal activity of the hypothalamic-pituitary-adrenal axis, and an alteration of neurochemistry. Conclusions: The findings demonstrate the indispensable role of microbiota in the gut–brain communication and suggest that the absence of conventional gut microbiota could affect the nervous system, influencing brain function.
Collapse
Affiliation(s)
- Zhongyi Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Baoning Wang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Liyuan Mu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hongren Wang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingjing Luo
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hui Yang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingyuan Li
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Linlin Zhou
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|