1
|
Phamornnak C, Han B, Spencer BF, Ashton MD, Blanford CF, Hardy JG, Blaker JJ, Cartmell SH. Instructive electroactive electrospun silk fibroin-based biomaterials for peripheral nerve tissue engineering. BIOMATERIALS ADVANCES 2022; 141:213094. [PMID: 36162344 DOI: 10.1016/j.bioadv.2022.213094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/03/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Abstract
Aligned sub-micron fibres are an outstanding surface for orienting and promoting neurite outgrowth; therefore, attractive features to include in peripheral nerve tissue scaffolds. A new generation of peripheral nerve tissue scaffolds is under development incorporating electroactive materials and electrical regimes as instructive cues in order to facilitate fully functional regeneration. Herein, electroactive fibres composed of silk fibroin (SF) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) were developed as a novel peripheral nerve tissue scaffold. Mats of SF with sub-micron fibre diameters of 190 ± 50 nm were fabricated by double layer electrospinning with thicknesses of ∼100 μm (∼70-80 μm random fibres and ∼20-30 μm aligned fibres). Electrospun SF mats were modified with interpenetrating polymer networks (IPN) of PEDOT:PSS in various ratios of PSS/EDOT (α) and the polymerisation was assessed by hard X-ray photoelectron spectroscopy (HAXPES). The mechanical properties of electrospun SF and IPNs mats were characterised in the wet state tensile and the electrical properties were examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The cytotoxicity and biocompatibility of the optimal IPNs (α = 2.3 and 3.3) mats were ascertained via the growth and neurite extension of mouse neuroblastoma x rat glioma hybrid cells (NG108-15) for 7 days. The longest neurite outgrowth of 300 μm was observed in the parallel direction of fibre alignment on laminin-coated electrospun SF and IPN (α = 2.3) mats which is the material with the lowest electron transfer resistance (Ret, ca. 330 Ω). These electrically conductive composites with aligned sub-micron fibres exhibit promise for axon guidance and also have the potential to be combined with electrical stimulation treatment as a further step for the effective regeneration of nerves.
Collapse
|
2
|
Bierman-Duquette RD, Safarians G, Huang J, Rajput B, Chen JY, Wang ZZ, Seidlits SK. Engineering Tissues of the Central Nervous System: Interfacing Conductive Biomaterials with Neural Stem/Progenitor Cells. Adv Healthc Mater 2022; 11:e2101577. [PMID: 34808031 PMCID: PMC8986557 DOI: 10.1002/adhm.202101577] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/31/2021] [Indexed: 12/19/2022]
Abstract
Conductive biomaterials provide an important control for engineering neural tissues, where electrical stimulation can potentially direct neural stem/progenitor cell (NS/PC) maturation into functional neuronal networks. It is anticipated that stem cell-based therapies to repair damaged central nervous system (CNS) tissues and ex vivo, "tissue chip" models of the CNS and its pathologies will each benefit from the development of biocompatible, biodegradable, and conductive biomaterials. Here, technological advances in conductive biomaterials are reviewed over the past two decades that may facilitate the development of engineered tissues with integrated physiological and electrical functionalities. First, one briefly introduces NS/PCs of the CNS. Then, the significance of incorporating microenvironmental cues, to which NS/PCs are naturally programmed to respond, into biomaterial scaffolds is discussed with a focus on electrical cues. Next, practical design considerations for conductive biomaterials are discussed followed by a review of studies evaluating how conductive biomaterials can be engineered to control NS/PC behavior by mimicking specific functionalities in the CNS microenvironment. Finally, steps researchers can take to move NS/PC-interfacing, conductive materials closer to clinical translation are discussed.
Collapse
Affiliation(s)
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, USA
| | - Joyce Huang
- Department of Bioengineering, University of California Los Angeles, USA
| | - Bushra Rajput
- Department of Bioengineering, University of California Los Angeles, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, USA
- David Geffen School of Medicine, University of California Los Angeles, USA
| | - Ze Zhong Wang
- Department of Bioengineering, University of California Los Angeles, USA
| | | |
Collapse
|
3
|
Mariano A, Lubrano C, Bruno U, Ausilio C, Dinger NB, Santoro F. Advances in Cell-Conductive Polymer Biointerfaces and Role of the Plasma Membrane. Chem Rev 2022; 122:4552-4580. [PMID: 34582168 PMCID: PMC8874911 DOI: 10.1021/acs.chemrev.1c00363] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 02/07/2023]
Abstract
The plasma membrane (PM) is often described as a wall, a physical barrier separating the cell cytoplasm from the extracellular matrix (ECM). Yet, this wall is a highly dynamic structure that can stretch, bend, and bud, allowing cells to respond and adapt to their surrounding environment. Inspired by shapes and geometries found in the biological world and exploiting the intrinsic properties of conductive polymers (CPs), several biomimetic strategies based on substrate dimensionality have been tailored in order to optimize the cell-chip coupling. Furthermore, device biofunctionalization through the use of ECM proteins or lipid bilayers have proven successful approaches to further maximize interfacial interactions. As the bio-electronic field aims at narrowing the gap between the electronic and the biological world, the possibility of effectively disguising conductive materials to "trick" cells to recognize artificial devices as part of their biological environment is a promising approach on the road to the seamless platform integration with cells.
Collapse
Affiliation(s)
- Anna Mariano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Claudia Lubrano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Ugo Bruno
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Chiara Ausilio
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Nikita Bhupesh Dinger
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Francesca Santoro
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| |
Collapse
|
4
|
Peressotti S, Koehl GE, Goding JA, Green RA. Self-Assembling Hydrogel Structures for Neural Tissue Repair. ACS Biomater Sci Eng 2021; 7:4136-4163. [PMID: 33780230 PMCID: PMC8441975 DOI: 10.1021/acsbiomaterials.1c00030] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Hydrogel materials have been employed as biological scaffolds for tissue regeneration across a wide range of applications. Their versatility and biomimetic properties make them an optimal choice for treating the complex and delicate milieu of neural tissue damage. Aside from finely tailored hydrogel properties, which aim to mimic healthy physiological tissue, a minimally invasive delivery method is essential to prevent off-target and surgery-related complications. The specific class of injectable hydrogels termed self-assembling peptides (SAPs), provide an ideal combination of in situ polymerization combined with versatility for biofunctionlization, tunable physicochemical properties, and high cytocompatibility. This review identifies design criteria for neural scaffolds based upon key cellular interactions with the neural extracellular matrix (ECM), with emphasis on aspects that are reproducible in a biomaterial environment. Examples of the most recent SAPs and modification methods are presented, with a focus on biological, mechanical, and topographical cues. Furthermore, SAP electrical properties and methods to provide appropriate electrical and electrochemical cues are widely discussed, in light of the endogenous electrical activity of neural tissue as well as the clinical effectiveness of stimulation treatments. Recent applications of SAP materials in neural repair and electrical stimulation therapies are highlighted, identifying research gaps in the field of hydrogels for neural regeneration.
Collapse
Affiliation(s)
- Sofia Peressotti
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Gillian E. Koehl
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Josef A. Goding
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Rylie A. Green
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| |
Collapse
|
5
|
De Alvarenga G, Hryniewicz BM, Jasper I, Silva RJ, Klobukoski V, Costa FS, Cervantes TN, Amaral CD, Schneider JT, Bach-Toledo L, Peralta-Zamora P, Valerio TL, Soares F, Silva BJ, Vidotti M. Recent trends of micro and nanostructured conducting polymers in health and environmental applications. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Ashton MD, Appen IC, Firlak M, Stanhope NE, Schmidt CE, Eisenstadt WR, Hur B, Hardy JG. Wirelessly triggered bioactive molecule delivery from degradable electroactive polymer films. POLYM INT 2020. [DOI: 10.1002/pi.6089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mark D Ashton
- Department of Chemistry Lancaster University Lancaster UK
| | - Isabel C Appen
- Department of Chemistry Lancaster University Lancaster UK
| | - Melike Firlak
- Department of Chemistry Lancaster University Lancaster UK
- Department of Chemistry Gebze Technical University Kocaeli Turkey
| | | | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida, Biomedical Sciences Building JG‐53 Gainesville FL USA
| | - William R Eisenstadt
- Department of Electrical and Computer Engineering University of Florida, New Engineering Building Gainesville FL USA
| | - Byul Hur
- Department of Engineering Technology and Industrial Distribution Texas A&M University College Station TX USA
| | - John G Hardy
- Department of Chemistry Lancaster University Lancaster UK
- J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida, Biomedical Sciences Building JG‐53 Gainesville FL USA
- Materials Science Institute, Lancaster University Lancaster UK
| |
Collapse
|
7
|
Pfister BJ, Grasman JM, Loverde JR. Exploiting biomechanics to direct the formation of nervous tissue. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Vandghanooni S, Eskandani M. Natural polypeptides-based electrically conductive biomaterials for tissue engineering. Int J Biol Macromol 2020; 147:706-733. [PMID: 31923500 DOI: 10.1016/j.ijbiomac.2019.12.249] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/28/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
Abstract
Fabrication of an appropriate scaffold is the key fundamental step required for a successful tissue engineering (TE). The artificial scaffold as extracellular matrix in TE has noticeable role in the fate of cells in terms of their attachment, proliferation, differentiation, orientation and movement. In addition, chemical and electrical stimulations affect various behaviors of cells such as polarity and functionality. Therefore, the fabrication approach and materials used for the preparation of scaffold should be more considered. Various synthetic and natural polymers have been used extensively for the preparation of scaffolds. The electrically conductive polymers (ECPs), moreover, have been used in combination with other polymers to apply electric fields (EF) during TE. In this context, composites of natural polypeptides and ECPs can be taken into account as context for the preparation of suitable scaffolds with superior biological and physicochemical features. In this review, we overviewed the simultaneous usage of natural polypeptides and ECPs for the fabrication of scaffolds in TE.
Collapse
Affiliation(s)
- Somayeh Vandghanooni
- Research Center for Pharmaceutical Nanotechnology, Biomedicine institute, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Wang L, Wu Y, Hu T, Ma PX, Guo B. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation. Acta Biomater 2019; 96:175-187. [PMID: 31260823 DOI: 10.1016/j.actbio.2019.06.035] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/03/2019] [Accepted: 06/20/2019] [Indexed: 01/09/2023]
Abstract
Aligned topographical cue has been demonstrated as a critical role in neuronal guidance, and it is highly beneficial to develop a scaffold with aligned structure for peripheral nerve tissue regeneration. Although considerable efforts have been devoted to guiding neurite alignment and extension, it remains a remarkable challenge for developing a biomimetic scaffold for enhancing 3D aligned neuronal outgrowth. Herein, we present a core-shell scaffold based on aligned conductive nanofiber yarns (NFYs) within the hydrogel to mimic the 3D hierarchically aligned structure of the native nerve tissue. The aligned NFYs assembled by a bundle of aligned nanofibers composed of polycaprolactone (PCL), silk fibroin (SF), and carbon nanotubes (CNTs) are prepared by a developed dry-wet electrospinning method, which has the ability to induce neurite alignment and elongation when PC12 cells and dorsal root ganglia (DRG) cells are cultured on their 3D peripheral surface. Particularly, such an aligned nanofibrous structure also induces aligned neurite extension and cell migration from DRG explants along the direction of nanofibers. 3D core-shell scaffolds are fabricated by encapsulating NFYs within the hydrogel shell after photocrosslinking, and these 3D aligned scaffolds are able to control cellular alignment and elongation of nerve cells in this 3D environment. Our results suggest that such 3D hierarchically aligned core-shell scaffold consists of NFYs that mimic the aligned nerve fiber structure to induce neurite alignment and extension and a hydrogel shell that mimics the epineurium layer to protect nerve cell organization within a 3D environment, which is largely promising for the design of biomimetic scaffolds in nerve tissue engineering. STATEMENT OF SIGNIFICANCE: Designing scaffolds with 3D aligned structure has been paid more attention for peripheral nerve tissue regeneration, because the aligned topographical cue is able to induce neurites alignment and extension. However, developing scaffolds mimicking the hierarchically aligned structure of native nerve tissue for directing 3D aligned neuronal outgrowth without external stimulation remains challenging. This work presented a simple and efficient strategy to prepare a 3D biomimetic core-shell scaffold based on electrospun aligned conductive nanofiber yarns within photocurable hydrogel shell to mimic the hierarchically aligned structure of native nerve tissue. These 3D aligned composite scaffolds performed the ability to direct 3D cellular alignment and elongation of nerve cells along with the nanofiber yarn direction, and the hydrogel shell mimicking the epineurium layer was able to protect nerve cells organization within the 3D environment, which indicated their great potential in peripheral nerve tissue engineering applications.
Collapse
Affiliation(s)
- Ling Wang
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yaobin Wu
- Department of Anatomy, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| | - Tianli Hu
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Peter X Ma
- Department of Biomedical Engineering, and Department of Biologic and Materials Sciences, University of Michigan, 1011, North University Ave., Room 2209, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Baolin Guo
- Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, PR China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
10
|
Janani G, Kumar M, Chouhan D, Moses JC, Gangrade A, Bhattacharjee S, Mandal BB. Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 2:5460-5491. [DOI: 10.1021/acsabm.9b00576] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Saberi A, Jabbari F, Zarrintaj P, Saeb MR, Mozafari M. Electrically Conductive Materials: Opportunities and Challenges in Tissue Engineering. Biomolecules 2019; 9:448. [PMID: 31487913 PMCID: PMC6770812 DOI: 10.3390/biom9090448] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering endeavors to regenerate tissues and organs through appropriate cellular and molecular interactions at biological interfaces. To this aim, bio-mimicking scaffolds have been designed and practiced to regenerate and repair dysfunctional tissues by modifying cellular activity. Cellular activity and intracellular signaling are performances given to a tissue as a result of the function of elaborated electrically conductive materials. In some cases, conductive materials have exhibited antibacterial properties; moreover, such materials can be utilized for on-demand drug release. Various types of materials ranging from polymers to ceramics and metals have been utilized as parts of conductive tissue engineering scaffolds, having conductivity assortments from a range of semi-conductive to conductive. The cellular and molecular activity can also be affected by the microstructure; therefore, the fabrication methods should be evaluated along with an appropriate selection of conductive materials. This review aims to address the research progress toward the use of electrically conductive materials for the modulation of cellular response at the material-tissue interface for tissue engineering applications.
Collapse
Affiliation(s)
- Azadeh Saberi
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316 Tehran, Iran.
| | - Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316 Tehran, Iran.
| | - Payam Zarrintaj
- Polymer Engineering Department, Faculty of Engineering, Urmia University, P.O. Box: 5756151818-165 Urmia, Iran.
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box: 16765-654 Tehran, Iran.
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), P.O Box: 14665-354 Tehran, Iran.
| |
Collapse
|
12
|
Zhang Q, Shi B, Ding J, Yan L, Thawani JP, Fu C, Chen X. Polymer scaffolds facilitate spinal cord injury repair. Acta Biomater 2019; 88:57-77. [PMID: 30710714 DOI: 10.1016/j.actbio.2019.01.056] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 12/23/2022]
Abstract
During the past decades, improving patient neurological recovery following spinal cord injury (SCI) has remained a challenge. An effective treatment for SCI would not only reduce fractured elements and isolate developing local glial scars to promote axonal regeneration but also ameliorate secondary effects, including inflammation, apoptosis, and necrosis. Three-dimensional (3D) scaffolds provide a platform in which these mechanisms can be addressed in a controlled manner. Polymer scaffolds with favorable biocompatibility and appropriate mechanical properties have been engineered to minimize cicatrization, customize drug release, and ensure an unobstructed space to promote cell growth and differentiation. These properties make polymer scaffolds an important potential therapeutic platform. This review highlights the recent developments in polymer scaffolds for SCI engineering. STATEMENT OF SIGNIFICANCE: How to improve the efficacy of neurological recovery after spinal cord injury (SCI) is always a challenge. Tissue engineering provides a promising strategy for SCI repair, and scaffolds are one of the most important elements in addition to cells and inducing factors. The review highlights recent development and future prospects in polymer scaffolds for SCI therapy. The review will guide future studies by outlining the requirements and characteristics of polymer scaffold technologies employed against SCI. Additionally, the peculiar properties of polymer materials used in the therapeutic process of SCI also have guiding significance to other tissue engineering approaches.
Collapse
|
13
|
Yan S, Yang Q, Han G, Wang Q, Li X, Wang L, Luo Z, You R, Zhang Q. Facile fabrication of electroconductive natural silk composites by microscale manipulation. NEW J CHEM 2019. [DOI: 10.1039/c8nj05041d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silk/PPy composites with high biocompatibility and electroconductivity were fabricated via the enhanced loading capacity of silk fibers.
Collapse
Affiliation(s)
- Shuqin Yan
- National Engineering Laboratory for Advanced Textile Processing and Clean Production
- Wuhan Textile University
- Wuhan 430200
- China
- Key Laboratory of Textile Fiber & Product (Ministry of Education)
| | - Qingqing Yang
- National Engineering Laboratory for Advanced Textile Processing and Clean Production
- Wuhan Textile University
- Wuhan 430200
- China
- Key Laboratory of Textile Fiber & Product (Ministry of Education)
| | - Guocong Han
- National Engineering Laboratory for Advanced Textile Processing and Clean Production
- Wuhan Textile University
- Wuhan 430200
- China
- Key Laboratory of Textile Fiber & Product (Ministry of Education)
| | - Qiusheng Wang
- National Engineering Laboratory for Advanced Textile Processing and Clean Production
- Wuhan Textile University
- Wuhan 430200
- China
- Key Laboratory of Textile Fiber & Product (Ministry of Education)
| | - Xiufang Li
- School of Material Science and Engineering
- Wuhan Textile University
- Wuhan 430200
- China
| | - Lu Wang
- Department of Stomatology
- Shanxi Medical University
- Taiyuan
- China
| | - Zuwei Luo
- Key Laboratory of Textile Fiber & Product (Ministry of Education)
- School of Textile Science and Engineering
- Wuhan Textile University
- Wuhan 430200
- China
| | - Renchuan You
- Key Laboratory of Textile Fiber & Product (Ministry of Education)
- School of Textile Science and Engineering
- Wuhan Textile University
- Wuhan 430200
- China
| | - Qiang Zhang
- National Engineering Laboratory for Advanced Textile Processing and Clean Production
- Wuhan Textile University
- Wuhan 430200
- China
- Key Laboratory of Textile Fiber & Product (Ministry of Education)
| |
Collapse
|
14
|
Magaz A, Faroni A, Gough JE, Reid AJ, Li X, Blaker JJ. Bioactive Silk-Based Nerve Guidance Conduits for Augmenting Peripheral Nerve Repair. Adv Healthc Mater 2018; 7:e1800308. [PMID: 30260575 DOI: 10.1002/adhm.201800308] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/22/2018] [Indexed: 02/03/2023]
Abstract
Repair of peripheral nerve injuries depends upon complex biology stemming from the manifold and challenging injury-healing processes of the peripheral nervous system. While surgical treatment options are available, they tend to be characterized by poor clinical outcomes for the injured patients. This is particularly apparent in the clinical management of a nerve gap whereby nerve autograft remains the best clinical option despite numerous limitations; in addition, effective repair becomes progressively more difficult with larger gaps. Nerve conduit strategies based on tissue engineering approaches and the use of silk as scaffolding material have attracted much attention in recent years to overcome these limitations and meet the clinical demand of large gap nerve repair. This review examines the scientific advances made with silk-based conduits for peripheral nerve repair. The focus is on enhancing bioactivity of the conduits in terms of physical guidance cues, inner wall and lumen modification, and imbuing novel conductive functionalities.
Collapse
Affiliation(s)
- Adrián Magaz
- Bio‐Active Materials GroupSchool of MaterialsMSS TowerThe University of Manchester Manchester M13 9PL UK
- Institute of Materials Research and Engineering (IMRE)Agency for Science Technology and Research (A*STAR) 2 Fusionopolis, Way, Innovis #08‐03 Singapore 138634 Singapore
| | - Alessandro Faroni
- Blond McIndoe LaboratoriesDivision of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesFaculty of Biology, Medicine and HealthThe University of ManchesterManchester Academic Health Science Centre Manchester M13 9PL UK
| | - Julie E. Gough
- School of MaterialsThe University of Manchester Manchester M13 9PL UK
| | - Adam J. Reid
- Blond McIndoe LaboratoriesDivision of Cell Matrix Biology and Regenerative MedicineSchool of Biological SciencesFaculty of Biology, Medicine and HealthThe University of ManchesterManchester Academic Health Science Centre Manchester M13 9PL UK
- Department of Plastic Surgery and BurnsWythenshawe HospitalManchester University NHS Foundation TrustManchester Academic Health Science Centre Manchester M23 9LT UK
| | - Xu Li
- Institute of Materials Research and Engineering (IMRE)Agency for Science Technology and Research (A*STAR) 2 Fusionopolis, Way, Innovis #08‐03 Singapore 138634 Singapore
| | - Jonny J. Blaker
- Bio‐Active Materials GroupSchool of MaterialsMSS TowerThe University of Manchester Manchester M13 9PL UK
- School of MaterialsThe University of Manchester Manchester M13 9PL UK
| |
Collapse
|
15
|
Tsui JH, Ostrovsky-Snider NA, Yama DMP, Donohue JD, Choi JS, Chavanachat R, Larson JD, Murphy AR, Kim DH. Conductive Silk-Polypyrrole Composite Scaffolds with Bioinspired Nanotopographic Cues for Cardiac Tissue Engineering. J Mater Chem B 2018; 6:7185-7196. [PMID: 31448124 PMCID: PMC6708520 DOI: 10.1039/c8tb01116h] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report on the development of bioinspired cardiac scaffolds made from electroconductive acid-modified silk fibroin-poly(pyrrole) (AMSF+PPy) substrates patterned with nanoscale ridges and grooves reminiscent of native myocardial extracellular matrix (ECM) topography to enhance the structural and functional properties of cultured human pluripotent stem cells (hPSC)-derived cardiomyocytes. Nanopattern fidelity was maintained throughout the fabrication and functionalization processes, and no loss in conductive behavior occurred due to the presence of the nanotopographical features. AMSF+PPy substrates were biocompatible and stable, maintaining high cell viability over a 21-day culture period while displaying no signs of PPy delamination. The presence of anisotropic topographical cues led to increased cellular organization and sarcomere development, and electroconductive cues promoted a significant improvement in the expression and polarization of connexin 43 (Cx43), a critical regulator of cell-cell electrical coupling. The combination of biomimetic topography and electroconductivity also increased the expression of genes that encode key proteins involved in regulating the contractile and electrophysiological function of mature human cardiac tissue.
Collapse
Affiliation(s)
- Jonathan H. Tsui
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - David M. P. Yama
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jordan D. Donohue
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Jong Seob Choi
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Jesse D. Larson
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Amanda R. Murphy
- Department of Chemistry, Western Washington University, Bellingham, WA, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
16
|
Shah SAA, Firlak M, Berrow SR, Halcovitch NR, Baldock SJ, Yousafzai BM, Hathout RM, Hardy JG. Electrochemically Enhanced Drug Delivery Using Polypyrrole Films. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1123. [PMID: 29966387 PMCID: PMC6073109 DOI: 10.3390/ma11071123] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/17/2018] [Accepted: 06/26/2018] [Indexed: 02/04/2023]
Abstract
The delivery of drugs in a controllable fashion is a topic of intense research activity in both academia and industry because of its impact in healthcare. Implantable electronic interfaces for the body have great potential for positive economic, health, and societal impacts; however, the implantation of such interfaces results in inflammatory responses due to a mechanical mismatch between the inorganic substrate and soft tissue, and also results in the potential for microbial infection during complex surgical procedures. Here, we report the use of conducting polypyrrole (PPY)-based coatings loaded with clinically relevant drugs (either an anti-inflammatory, dexamethasone phosphate (DMP), or an antibiotic, meropenem (MER)). The films were characterized and were shown to enhance the delivery of the drugs upon the application of an electrochemical stimulus in vitro, by circa (ca.) 10⁻30% relative to the passive release from non-stimulated samples. Interestingly, the loading and release of the drugs was correlated with the physical descriptors of the drugs. In the long term, such materials have the potential for application to the surfaces of medical devices to diminish adverse reactions to their implantation in vivo.
Collapse
Affiliation(s)
- Sayed Ashfaq Ali Shah
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
- Department of Chemistry, Government Post Graduate College No. 1, Abbottabad 22010, Pakistan.
| | - Melike Firlak
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | | | | | - Sara Jane Baldock
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | | | - Rania M Hathout
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
- Bioinformatics Program, Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt.
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.
| | - John George Hardy
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
- Materials Science Institute, Lancaster University, Lancaster, LA1 4YB, UK.
| |
Collapse
|
17
|
Abstract
Electrically conducting polymers such as polyaniline, polypyrrole, polythiophene, and their derivatives (mainly aniline oligomer and poly(3,4-ethylenedioxythiophene)) with good biocompatibility find wide applications in biomedical fields including bioactuators, biosensors, neural implants, drug delivery systems, and tissue engineering scaffolds. This review focuses on these conductive polymers for tissue engineering applications. Conductive polymers exhibit promising conductivity as bioactive scaffolds for tissue regeneration, and their conductive nature allows cells or tissue cultured on them to be stimulated by electrical signals. However, their mechanical brittleness and poor processability restrict their application. Therefore, conductive polymeric composites based on conductive polymers and biocompatible biodegradable polymers (natural or synthetic) were developed. The major objective of this review is to summarize the conductive biomaterials used in tissue engineering including conductive composite films, conductive nanofibers, conductive hydrogels, and conductive composite scaffolds fabricated by various methods such as electrospinning, coating, or deposition by in situ polymerization. Furthermore, recent progress in tissue engineering applications using these conductive biomaterials including bone tissue engineering, muscle tissue engineering, nerve tissue engineering, cardiac tissue engineering, and wound healing application are discussed in detail.
Collapse
Affiliation(s)
- Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049, China
| | - Peter X. Ma
- Department of Biologic and Materials Sciences, University of Michigan, 1011, North University Ave., Room 2209, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Wu Y, Wang L, Hu T, Ma PX, Guo B. Conductive micropatterned polyurethane films as tissue engineering scaffolds for Schwann cells and PC12 cells. J Colloid Interface Sci 2018; 518:252-262. [DOI: 10.1016/j.jcis.2018.02.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
|
19
|
Antensteiner M, Khorrami M, Fallahianbijan F, Borhan A, Abidian MR. Conducting Polymer Microcups for Organic Bioelectronics and Drug Delivery Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201702576. [PMID: 28833611 PMCID: PMC5798879 DOI: 10.1002/adma.201702576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/08/2017] [Indexed: 05/13/2023]
Abstract
An ideal neural device enables long-term, sensitive, and selective communication with the nervous system. To accomplish this task, the material interface should mimic the biophysical and the biochemical properties of neural tissue. By contrast, microfabricated neural probes utilize hard metallic conductors, which hinder their long-term performance because these materials are not intrinsically similar to soft neural tissue. This study reports a method for the fabrication of monodisperse conducting polymer microcups. It is demonstrated that the physical surface properties of conducting polymer microcups can be precisely modulated to control electrical properties and drug-loading/release characteristics.
Collapse
Affiliation(s)
- Martin Antensteiner
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Room 2027, Houston, TX, 77204, USA
| | - Milad Khorrami
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Room 2027, Houston, TX, 77204, USA
| | - Fatemeh Fallahianbijan
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ali Borhan
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Room 2027, Houston, TX, 77204, USA
| |
Collapse
|
20
|
Dermutz H, Thompson-Steckel G, Forró C, de Lange V, Dorwling-Carter L, Vörös J, Demkó L. Paper-based patterned 3D neural cultures as a tool to study network activity on multielectrode arrays. RSC Adv 2017. [DOI: 10.1039/c7ra00971b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High-throughput platform targeting activity patterns of 3D neural cultures with arbitrary topology, by combining network-wide intracellular and local extracellular signals.
Collapse
Affiliation(s)
- Harald Dermutz
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Greta Thompson-Steckel
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Victoria de Lange
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Livie Dorwling-Carter
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - László Demkó
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| |
Collapse
|