1
|
Guo F, Li J, Ma P, Liu M, Wu J, Qu H, Zheng Y, Wang M, Marashi SS, Zhang Z, Zhang S, Fu G, Li P. A magnetic bead-based dual-aptamer sandwich assay for quantitative detection of ciprofloxacin using CRISPR/Cas12a. Mol Cell Probes 2025; 79:101998. [PMID: 39662607 DOI: 10.1016/j.mcp.2024.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Ciprofloxacin (CIP) is a broad-spectrum fluoroquinolone antibiotic, and its excessive residues in food and water sources pose potential risks to human health. Therefore, there is a need for a rapid and convenient method for its accurate quantification. The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas12a system has gained extensive application in signal detection and amplification due to the trans-cleavage activity of Cas12a. In this study, we devised a novel magnetic bead-based dual sandwich aptamer coupled with a CRISPR/Cas12a system for the precise quantification of CIP in milk, river water, and honey. Through the incorporation of a magnetic bead-based dual aptamer sandwich approach, the concentration of CIP in the samples was pre-enriched. Additionally, by optimizing the Fluorescence-Quencher (F-Q) probe concentration, detection aptamer (APTd) concentration, and assay duration, the limit of blank (LOB) of the system was determined as 362 nM, while the limit of detection (LOD) was determined as 403 nM. This enabled the accurate quantification of CIP within the linear range of 0.5 μM to 0.2 mM with high specificity. Moreover, the performance of this detection method was comparable to that of high-performance liquid chromatography (HPLC) in river water, milk, and honey samples.
Collapse
Affiliation(s)
- Fangyue Guo
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; School of Basic Medical Sciences Innovation and Entrepreneurship Base for College Students, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Department of the First Clinical Medicine, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Jianghao Li
- R & D Center, Autobio Diagnostics Co., Ltd, Zhengzhou, Henan, 450016, PR China
| | - Peizhi Ma
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; School of Basic Medical Sciences Innovation and Entrepreneurship Base for College Students, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Department of the First Clinical Medicine, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Mengying Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; School of Basic Medical Sciences Innovation and Entrepreneurship Base for College Students, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jing Wu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; School of Basic Medical Sciences Innovation and Entrepreneurship Base for College Students, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Department of the First Clinical Medicine, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
| | - Hai Qu
- R & D Center, Autobio Diagnostics Co., Ltd, Zhengzhou, Henan, 450016, PR China
| | - Yehuan Zheng
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xian, 710061, PR China
| | - Mengying Wang
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, PR China
| | - Seyed Sepehr Marashi
- College of International Education, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Zhijian Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Shanfeng Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; School of Basic Medical Sciences Innovation and Entrepreneurship Base for College Students, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Guangyu Fu
- R & D Center, Autobio Diagnostics Co., Ltd, Zhengzhou, Henan, 450016, PR China.
| | - Pei Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; School of Basic Medical Sciences Innovation and Entrepreneurship Base for College Students, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
2
|
Quintanilla-Villanueva GE, Maldonado J, Luna-Moreno D, Rodríguez-Delgado JM, Villarreal-Chiu JF, Rodríguez-Delgado MM. Progress in Plasmonic Sensors as Monitoring Tools for Aquaculture Quality Control. BIOSENSORS 2023; 13:90. [PMID: 36671925 PMCID: PMC9856096 DOI: 10.3390/bios13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 05/06/2023]
Abstract
Aquaculture is an expanding economic sector that nourishes the world's growing population due to its nutritional significance over the years as a source of high-quality proteins. However, it has faced severe challenges due to significant cases of environmental pollution, pathogen outbreaks, and the lack of traceability that guarantees the quality assurance of its products. Such context has prompted many researchers to work on the development of novel, affordable, and reliable technologies, many based on nanophotonic sensing methodologies. These emerging technologies, such as surface plasmon resonance (SPR), localised SPR (LSPR), and fibre-optic SPR (FO-SPR) systems, overcome many of the drawbacks of conventional analytical tools in terms of portability, reagent and solvent use, and the simplicity of sample pre-treatments, which would benefit a more sustainable and profitable aquaculture. To highlight the current progress made in these technologies that would allow them to be transferred for implementation in the field, along with the lag with respect to the most cutting-edge plasmonic sensing, this review provides a variety of information on recent advances in these emerging methodologies that can be used to comprehensively monitor the various operations involving the different commercial stages of farmed aquaculture. For example, to detect environmental hazards, track fish health through biochemical indicators, and monitor disease and biosecurity of fish meat products. Furthermore, it highlights the critical issues associated with these technologies, how to integrate them into farming facilities, and the challenges and prospects of developing plasmonic-based sensors for aquaculture.
Collapse
Affiliation(s)
- Gabriela Elizabeth Quintanilla-Villanueva
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Mexico
| | - Jesús Maldonado
- Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Donato Luna-Moreno
- Centro de Investigaciones en Óptica AC, Div. de Fotónica, Loma del Bosque 115, Col. Lomas del Campestre, León 37150, Mexico
| | - José Manuel Rodríguez-Delgado
- Tecnológico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada Sur No. 2501, Col. Tecnológico, Monterrey 64849, Mexico
| | - Juan Francisco Villarreal-Chiu
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Mexico
| | - Melissa Marlene Rodríguez-Delgado
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Mexico
| |
Collapse
|
3
|
Ayankojo AG, Reut J, Nguyen VBC, Boroznjak R, Syritski V. Advances in Detection of Antibiotic Pollutants in Aqueous Media Using Molecular Imprinting Technique-A Review. BIOSENSORS 2022; 12:bios12070441. [PMID: 35884244 PMCID: PMC9312920 DOI: 10.3390/bios12070441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 05/08/2023]
Abstract
Antibiotics constitute one of the emerging categories of persistent organic pollutants, characterised by their expansion of resistant pathogens. Antibiotic pollutants create a major public health challenge, with already identifiable detrimental effects on human and animal health. A fundamental aspect of controlling and preventing the spread of pollutants is the continuous screening and monitoring of environmental samples. Molecular imprinting is a state-of-the-art technique for designing robust biomimetic receptors called molecularly imprinted polymers (MIPs), which mimic natural biomolecules in target-selective recognition. When integrated with an appropriate sensor transducer, MIP demonstrates a potential for the needed environmental monitoring, thus justifying the observed rise in interest in this field of research. This review examines scientific interventions within the last decade on the determination of antibiotic water pollutants using MIP receptors interfaced with label-free sensing platforms, with an expanded focus on optical, piezoelectric, and electrochemical systems. Following these, the review evaluates the analytical performance of outstanding MIP-based sensors for environmentally significant antibiotics, while highlighting the importance of computational chemistry in functional monomer selection and the strategies for signal amplification and performance improvement. Lastly, the review points out the future trends in antibiotic MIP research, as it transits from a proof of concept to the much demanded commercially available entity.
Collapse
|
4
|
Emerging optical and electrochemical biosensing approaches for detection of ciprofloxacin residues in food and environment samples: A comprehensive overview. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Chaabani A, Ben Jabrallah T, Belhadj Tahar N. Electrochemical Oxidation of Ciprofloxacin on COOH-Functionalized Multi-Walled Carbon Nanotube–Coated Vitreous Carbon Electrode. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00725-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Point-of-care detection assay based on biomarker-imprinted polymer for different cancers: a state-of-the-art review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Hashemi SA, Bahrani S, Mousavi SM, Omidifar N, Behbahan NGG, Arjmand M, Ramakrishna S, Lankarani KB, Moghadami M, Firoozsani M. Graphene-Based Femtogram-Level Sensitive Molecularly Imprinted Polymer of SARS-CoV-2. ADVANCED MATERIALS INTERFACES 2021; 8:2101466. [PMID: 34900518 PMCID: PMC8646612 DOI: 10.1002/admi.202101466] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/10/2021] [Indexed: 02/05/2023]
Abstract
Rapid distribution of viral-induced diseases and weaknesses of common diagnostic platforms for accurate and sensitive identification of infected people raises an urgent demand for the design and fabrication of biosensors capable of early detection of viral biomarkers with high specificity. Accordingly, molecularly imprinted polymers (MIPs) as artificial antibodies prove to be an ideal preliminary detection platform for specific identification of target templates, with superior sensitivity and detection limit (DL). MIPs detect the target template with the "lock and key" mechanism, the same as natural monoclonal antibodies, and present ideal stability at ambient temperature, which improves their practicality for real applications. Herein, a 2D MIP platform consisting of decorated graphene oxide with the interconnected complex of polypyrrole-boronic acid is developed that can detect the trace of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen in aquatic biological samples with ultrahigh sensitivity/specificity with DL of 0.326 and 11.32 fg mL-1 using voltammetric and amperometric assays, respectively. Additionally, the developed MIP shows remarkable stability, selectivity, and accuracy toward detecting the target template, which paves the way for developing ultraspecific and prompt screening diagnostic configurations capable of detecting the antigen in 1 min or 20 s using voltammetric or amperometric techniques.
Collapse
Affiliation(s)
- Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites LaboratorySchool of EngineeringUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Sonia Bahrani
- Health Policy Research CenterHealth InstituteShiraz University of Medical SciencesShiraz71348‐45794Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical EngineeringNational Taiwan University of Science and TechnologyTaipei City310635Taiwan
| | - Navid Omidifar
- Clinical Education Research CenterShiraz University of Medical SciencesShiraz71348‐14336Iran
- Department of PathologySchool of MedicineShiraz University of Medical SciencesShiraz71348‐14336Iran
| | - Nader Ghaleh Golab Behbahan
- Department of Poultry DiseaseRazi Vaccine and Serum Research InstituteShiraz BranchAgricultural Research, Education and Extension Organization (AREEO)Shiraz7188843568Iran
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites LaboratorySchool of EngineeringUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Seeram Ramakrishna
- Department of Mechanical EngineeringCenter for Nanofibers and NanotechnologyNational University of SingaporeSingapore117576Singapore
| | - Kamran Bagheri Lankarani
- Health Policy Research CenterHealth InstituteShiraz University of Medical SciencesShiraz71348‐45794Iran
| | - Mohsen Moghadami
- Health Policy Research CenterHealth InstituteShiraz University of Medical SciencesShiraz71348‐45794Iran
| | - Mohammad Firoozsani
- Member of Board of TrusteesZand Institute of Higher EducationShiraz7188773489Iran
| |
Collapse
|
8
|
Shinko EI, Farafonova OV, Shanin IA, Eremin SA, Ermolaeva TN. Determination of the Fluoroquinolones Levofloxacin and Ciprofloxacin by a Piezoelectric Immunosensor Modified with Multiwalled Carbon Nanotubes (MWCNTs). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1991364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Evgenia I. Shinko
- Department of Chemistry, Lipetsk State Technical University, Lipetsk, Russia
| | - Olga V. Farafonova
- Department of Chemistry, Lipetsk State Technical University, Lipetsk, Russia
| | - Il'ja A. Shanin
- Department of chemical enzymology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Sergei A. Eremin
- Department of chemical enzymology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
9
|
Aylaz G, Andaç M, Denizli A, Duman M. Recognition of human hemoglobin with macromolecularly imprinted polymeric nanoparticles using non-covalent interactions. J Mol Recognit 2021; 34:e2935. [PMID: 34472144 DOI: 10.1002/jmr.2935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 11/07/2022]
Abstract
Hemoglobin (Hb) is the most abundant protein in the blood. It is vital for the living as oxygen carriers. Some of the very pure Hb-containing biological fluids are currently under clinical trial. However, the removal and purification of Hb from the blood are quite difficult, especially when it is at a low concentration level. In this study, the molecularly imprinted polymeric nanoparticles (MIPNs) were prepared using N-methacryloyl-histidine methyl ester (MAH) by mini-emulsion polymerization technique for specific binding of human hemoglobin (HHb). MIPNs in monosize form have a size of 152 ± 4 nm. They also have a high binding capacity (32.33 mg/g) of HHb. MIPNs retain 84% of the re-binding capacity for HHb after 10 cycles. The nanoparticles have 16 and 5 times higher binding capacity of HHb, respectively, in the presence of bovine serum albumin and lysozyme. Thanks to their high binding capacity and selectivity, MIPNs will allow them to be detected selectively for different target molecules. According to molecular docking, the main binding forces depend on hydrogen bonds and Van der Waals forces in the interaction within 5 Å around MAH molecule are observed through the amino acid residues of HHb at β1 and β2 subunit. The statistical mechanical analysis of docking showed that the free energy (ΔG) is -2732.14 kcal/mol, which indicates the interaction between MAH and HHb is energetically favorable at 298.15°K.
Collapse
Affiliation(s)
- Gülgün Aylaz
- Institute of Science, Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara, Turkey
| | - Müge Andaç
- Faculty of Engineering, Environmental Engineering Department, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Faculty of Science, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Memed Duman
- Institute of Science, Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara, Turkey
| |
Collapse
|
10
|
Thach UD, Nguyen Thi HH, Pham TD, Mai HD, Nhu-Trang TT. Synergetic Effect of Dual Functional Monomers in Molecularly Imprinted Polymer Preparation for Selective Solid Phase Extraction of Ciprofloxacin. Polymers (Basel) 2021; 13:2788. [PMID: 34451328 PMCID: PMC8398442 DOI: 10.3390/polym13162788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ciprofloxacin (CIP), an important broad-spectrum fluoroquinolone antibiotic, was often used as a template molecule for the preparation of imprinted materials. In this study, methacrylic acid and 2-vinylpyridine were employed for the first time as dual functional monomers for synthesizing ciprofloxacin imprinted polymers. METHODS The chemical and physicochemical properties of synthesized polymers were characterized using Fourier transform-infrared spectroscopy, thermogravimetric analysis-differential scanning calorimetry, scanning electron microscopy, and nitrogen adsorption-desorption isotherm. The adsorption properties of ciprofloxacin onto synthesized polymers were determined by batch experiments. The extraction performances were studied using the solid phase extraction and HPLC-UV method. RESULTS The molecularly imprinted polymer synthesized with dual functional monomers showed a higher adsorption capacity and selectivity toward the template molecule. The adsorbed amounts of ciprofloxacin onto the imprinted and non-imprinted polymer were 2.40 and 1.45 mg g-1, respectively. Furthermore, the imprinted polymers were employed as a selective adsorbent for the solid phase extraction of ciprofloxacin in aqueous solutions with the recovery of 105% and relative standard deviation of 7.9%. This work provides an alternative approach for designing a new adsorbent with high adsorption capacity and good extraction performance for highly polar template molecules.
Collapse
Affiliation(s)
- Ut Dong Thach
- Department of Polymer Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi 100000, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Hong Hanh Nguyen Thi
- Faculty of Chemistry, University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam; (H.H.N.T.); (T.D.P.); (H.D.M.)
| | - Tuan Dung Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam; (H.H.N.T.); (T.D.P.); (H.D.M.)
| | - Hong Dao Mai
- Faculty of Chemistry, University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam; (H.H.N.T.); (T.D.P.); (H.D.M.)
| | - Tran-Thi Nhu-Trang
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University (NTTU), Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
11
|
Liu L, Gao Y, Liu J, Li Y, Yin Z, Zhang Y, Pi F, Sun X. Sensitive Techniques for POCT Sensing on the Residues of Pesticides and Veterinary Drugs in Food. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:206-214. [PMID: 33129206 DOI: 10.1007/s00128-020-03035-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
For the immense requirement on agriculture and animal husbandry, application of pesticides and veterinary drugs had become a normal state in the farming and ranching areas. However, to intently pursue the yields, large quantities of residues of pesticides and veterinary drugs have caused serious harm to both the environment and the food industry. To control and solve such an issue, a variety of novel techniques were developed in recent years. In this review, the development and features about point-of-care-testing (POCT) detection on the residues of pesticides and veterinary drugs, such as, electrochemistry (EC), enzyme-linked immunosorbent assay (ELISA) and nano-techniques, were systematically introduced. For each topic, we first interpreted the strategies and detailed account of such technical contributions on detection and assessment of the residues. Finally, the advantages and perspectives about mentioned techniques for ultrasensitive assessment and sensing on pesticides and veterinary drugs were summarized.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yueying Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jinghan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Ying Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Ziye Yin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yuanyuan Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
12
|
Wang W, Wang R, Liao M, Kidd MT, Li Y. Rapid detection of enrofloxacin using a localized surface plasmon resonance sensor based on polydopamine molecular imprinted recognition polymer. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00913-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Tarannum N, Khatoon S, Dzantiev BB. Perspective and application of molecular imprinting approach for antibiotic detection in food and environmental samples: A critical review. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107381] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Kuhn J, Aylaz G, Sari E, Marco M, Yiu HHP, Duman M. Selective binding of antibiotics using magnetic molecular imprint polymer (MMIP) networks prepared from vinyl-functionalized magnetic nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121709. [PMID: 31812475 DOI: 10.1016/j.jhazmat.2019.121709] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 05/12/2023]
Abstract
Adverse effects of pharmaceutical emerging contaminants (PECs), including antibiotics, in water supplies has been a global concern in recent years as they threaten fresh water security and lead to serious health problems to human, wildlife and the environment. However, detection of these contaminants in water sources, as well as food products, is difficult due to their low concentration. Here, we prepared a new family of magnetic molecular imprinted polymer (MMIP) networks for binding antibiotics via a microemulsion polymerization technique using vinyl silane modified Fe3O4 magnetic nanoparticles. The cross-linked polymer backbone successfully integrated with 20-30 nm magnetic nanoparticles and generated a novel porous polymeric network structure. These networks showed a high binding capacity for both templates, erythromycin and ciprofloxacin at 70 and 32 mg/g. Both MMIPs were also recyclable, retaining 75 % and 68 % of the binding capacity after 4 cycles. These MMIPs have showed a clear preference for binding the template molecules, with a binding capacity 4- to 7-fold higher than the other antibiotics in the same matrix. These results demonstrate our MMIP networks, which offered high binding capacity and selectivity as well as recyclability, can be used for both removal and monitoring hazardous antibiotic pollutants in different sources/samples and food products.
Collapse
Affiliation(s)
- Joel Kuhn
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Gülgün Aylaz
- Nanotechnology and Nanomedicine Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Esma Sari
- Vocational School of Health Services, Medical Laboratory Techniques, Yüksek İhtisas University, Ankara, Turkey
| | - Mariano Marco
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Humphrey H P Yiu
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Memed Duman
- Nanotechnology and Nanomedicine Division, Institute of Science, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
15
|
Monitoring of drug resistance towards reducing the toxicity of pharmaceutical compounds: Past, present and future. J Pharm Biomed Anal 2020; 186:113265. [PMID: 32283481 DOI: 10.1016/j.jpba.2020.113265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Drug resistance is worldwide health care crisis which decrease drug efficacy and developing toxicities. Effective resistance detection techniques could alleviate treatment cost and mortality associated with this crisis. In this review, the conventional and modern analysis methods for monitoring of drug resistance are presented. Also, various types of emerging rapid and sensitive techniques including electrochemical, electrical, optical and nano-based methods for the screening of drug resistance were discussed. Applications of various methods for the sensitive and rapid detection of drug resistance are investigated. The review outlines existing key issues in the determination which must be overcome before any of these techniques becomes a feasible method for the rapid detection of drug resistance. In this review, the roles of nanomaterials on development of novel methods for the monitoring of drug resistance were presented. Also, limitations and challenges of conventional and modern methods were discussed.
Collapse
|
16
|
Xie Z, Chen Y, Zhang L, Hu X. Magnetic molecularly imprinted polymer combined with high performance liquid chromatography for selective extraction and determination of the metabolic content of quercetin in rat plasma. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:53-71. [DOI: 10.1080/09205063.2019.1675224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zenghui Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Yanli Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Lanyun Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People’s Republic of China
| | - Xujia Hu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People’s Republic of China
| |
Collapse
|
17
|
Li Z, Cui Z, Tang Y, Liu X, Zhang X, Liu B, Wang X, Draz MS, Gao X. Fluorometric determination of ciprofloxacin using molecularly imprinted polymer and polystyrene microparticles doped with europium(III)(DBM) 3phen. Mikrochim Acta 2019; 186:334. [PMID: 31065820 DOI: 10.1007/s00604-019-3448-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/14/2019] [Indexed: 12/15/2022]
Abstract
The authors describe a microparticle-based system for the detection of the fluoroquinolone antibiotic ciprofloxacin. The method is using the tris(dibenzoylmethane)(1,10-phenanthroline)europium(III) luminophore in polystyrene microparticles along with a molecularly imprinted polymer (MIP) for ciprofloxacin. If ciprofloxacin is captured by the MIP, it quenches the fluorescence of the luminophores. Fluorescence drops linearly in the 0.5-100 μg L-1 ciprofloxacin concentration range, and the detection limit is 92 ng L-1. The method was applied to the analysis of fish samples to assess the analytical performance of the probe. Recoveries ranged from 85.4 to 86.6%, and relative standard deviations between 2.1 and 3.9% (for n = 5). Graphical abstract Schematic presentation of a microparticle-based probe using the tris(dibenzoylmethane)(1,10-phenanthroline)europium(III) luminophore in polystyrene particles along with a molecularly imprinted polymer for ciprofloxacin. After removal of template, carboxylic groups left in the probe can bind to ciprofloxacin through hydrogen bonds.
Collapse
Affiliation(s)
- Zhuanying Li
- College of Food Science & Project Engineering, Bohai University, Jinzhou, 121013, China
| | - Zhimeng Cui
- College of Food Science & Project Engineering, Bohai University, Jinzhou, 121013, China
| | - Yiwei Tang
- College of Food Science & Project Engineering, Bohai University, Jinzhou, 121013, China. .,College of Food Science and Technology, Agricultural University of Hebei, Baoding, 071001, China.
| | - Xiuying Liu
- College of Food Science & Project Engineering, Bohai University, Jinzhou, 121013, China
| | - Xuemei Zhang
- College of Forestry, Agricultural University of Hebei, Baoding, 071001, China
| | - Bingxiang Liu
- College of Forestry, Agricultural University of Hebei, Baoding, 071001, China
| | - Xianghong Wang
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, 071001, China
| | - Mohamed Shehata Draz
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02139, USA.
| | - Xue Gao
- College of Food Science & Project Engineering, Bohai University, Jinzhou, 121013, China.
| |
Collapse
|
18
|
Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A. Molecularly Imprinted Polymer Based Sensors for Medical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1279. [PMID: 30871280 PMCID: PMC6472044 DOI: 10.3390/s19061279] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 02/08/2023]
Abstract
Sensors have been extensively used owing to multiple advantages, including exceptional sensing performance, user-friendly operation, fast response, high sensitivity and specificity, portability, and real-time analysis. In recent years, efforts in sensor realm have expanded promptly, and it has already presented a broad range of applications in the fields of medical, pharmaceutical and environmental applications, food safety, and homeland security. In particular, molecularly imprinted polymer based sensors have created a fascinating horizon for surface modification techniques by forming specific recognition cavities for template molecules in the polymeric matrix. This method ensures a broad range of versatility to imprint a variety of biomolecules with different size, three dimensional structure, physical and chemical features. In contrast to complex and time-consuming laboratory surface modification methods, molecular imprinting offers a rapid, sensitive, inexpensive, easy-to-use, and highly selective approaches for sensing, and especially for the applications of diagnosis, screening, and theranostics. Due to its physical and chemical robustness, high stability, low-cost, and reusability features, molecularly imprinted polymer based sensors have become very attractive modalities for such applications with a sensitivity of minute structural changes in the structure of biomolecules. This review aims at discussing the principle of molecular imprinting method, the integration of molecularly imprinted polymers with sensing tools, the recent advances and strategies in molecular imprinting methodologies, their applications in medical, and future outlook on this concept.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Semra Akgönüllü
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Handan Yavuz
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Serhat Ünal
- Department of Infectious Disease and Clinical Microbiology, Hacettepe University, Ankara 06230, Turkey.
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| |
Collapse
|
19
|
Nevídalová H, Michalcová L, Glatz Z. Capillary electrophoresis-based approaches for the study of affinity interactions combined with various sensitive and nontraditional detection techniques. Electrophoresis 2019; 40:625-642. [PMID: 30600537 DOI: 10.1002/elps.201800367] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Abstract
Nearly all processes in living organisms are controlled and regulated by the synergy of many biomolecule interactions involving proteins, peptides, nucleic acids, nucleotides, saccharides, and small molecular weight ligands. There is growing interest in understanding them, not only for the purposes of interactomics as an essential part of system biology, but also in their further elucidation in disease pathology, diagnostics, and treatment. The necessity of detailed investigation of these interactions leads to the requirement of laboratory methods characterized by high efficiency and sensitivity. As a result, many instrumental approaches differing in their fundamental principles have been developed, including those based on capillary electrophoresis. Although capillary electrophoresis offers numerous advantages for such studies, it still has one serious limitation, its poor concentration sensitivity with the most commonly used detection method-ultraviolet-visible spectrometry. However, coupling capillary electrophoresis with a more sensitive detector fulfils the above-mentioned requirement. In this review, capillary electrophoresis combined with fluorescence, mass spectrometry, and several nontraditional detection techniques in affinity interaction studies are summarized and discussed, together with the possibility of conducting these measurements in microchip format.
Collapse
Affiliation(s)
- Hana Nevídalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Michalcová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
20
|
Ahmad OS, Bedwell TS, Esen C, Garcia-Cruz A, Piletsky SA. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends Biotechnol 2018; 37:294-309. [PMID: 30241923 DOI: 10.1016/j.tibtech.2018.08.009] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/25/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022]
Abstract
Molecular imprinting is the process of template-induced formation of specific recognition sites in a polymer. Synthetic receptors prepared using molecular imprinting possess a unique combination of properties such as robustness, high affinity, specificity, and low-cost production, which makes them attractive alternatives to natural receptors. Improvements in polymer science and nanotechnology have contributed to enhanced performance of molecularly imprinted polymer (MIP) sensors. Encouragingly, recent years have seen an increase in high-quality publications describing MIP sensors for the determination of biomolecules, drugs of abuse, and explosives, driving toward applications of this technology in medical and forensic diagnostics. This review aims to provide a focused overview of the latest achievements made in MIP-based sensor technology, with emphasis on research toward real-life applications.
Collapse
Affiliation(s)
- Omar S Ahmad
- Department of Chemistry, College of Education for Pure Science, University of Mosul, Mosul, Iraq; Department of Chemistry, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK.
| | - Thomas S Bedwell
- Department of Chemistry, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK
| | - Cem Esen
- Department of Chemistry, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK; Department of Chemistry, Faculty of Arts and Sciences, Aydın Adnan Menderes University, Aydın 09010, Turkey
| | - Alvaro Garcia-Cruz
- Department of Chemistry, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK
| | - Sergey A Piletsky
- Department of Chemistry, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|