1
|
Moussa L, Usunier B, Demarquay C, Benderitter M, Tamarat R, Sémont A, Mathieu N. Bowel Radiation Injury: Complexity of the Pathophysiology and Promises of Cell and Tissue Engineering. Cell Transplant 2018; 25:1723-1746. [PMID: 27197023 DOI: 10.3727/096368916x691664] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ionizing radiation is effective to treat malignant pelvic cancers, but the toxicity to surrounding healthy tissue remains a substantial limitation. Early and late side effects not only limit the escalation of the radiation dose to the tumor but may also be life-threatening in some patients. Numerous preclinical studies determined specific mechanisms induced after irradiation in different compartments of the intestine. This review outlines the complexity of the pathogenesis, highlighting the roles of the epithelial barrier in the vascular network, and the inflammatory microenvironment, which together lead to chronic fibrosis. Despite the large number of pharmacological molecules available, the studies presented in this review provide encouraging proof of concept regarding the use of mesenchymal stromal cell (MSC) therapy to treat radiation-induced intestinal damage. The therapeutic efficacy of MSCs has been demonstrated in animal models and in patients, but an enormous number of cells and multiple injections are needed due to their poor engraftment capacity. Moreover, it has been observed that although MSCs have pleiotropic effects, some intestinal compartments are less restored after a high dose of irradiation. Future research should seek to optimize the efficacy of the injected cells, particularly with regard to extending their life span in the irradiated tissue. Moreover, improving the host microenvironment, combining MSCs with other specific regenerative cells, or introducing new tissue engineering strategies could be tested as methods to treat the severe side effects of pelvic radiotherapy.
Collapse
Affiliation(s)
- Lara Moussa
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Benoît Usunier
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Christelle Demarquay
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Radia Tamarat
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Alexandra Sémont
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Noëlle Mathieu
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| |
Collapse
|
2
|
Inflammation and immunity in radiation damage to the gut mucosa. BIOMED RESEARCH INTERNATIONAL 2013; 2013:123241. [PMID: 23586015 PMCID: PMC3614034 DOI: 10.1155/2013/123241] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/18/2013] [Indexed: 12/20/2022]
Abstract
Erythema was observed on the skin of the first patients treated with radiation therapy. It is in particular to reduce this erythema, one feature of tissue inflammation, that prescribed dose to the tumor site started to be fractionated. It is now well known that radiation exposure of normal tissues generates a sustained and apparently uncontrolled inflammatory process. Radiation-induced inflammation is always observed, often described, sometimes partly explained, but still today far from being completely understood. The thing with the gut and especially the gut mucosa is that it is at the frontier between the external milieu and the organism, is in contact with a plethora of commensal and foreign antigens, possesses a dense-associated lymphoid tissue, and is particularly radiation sensitive because of a high mucosal turnover rate. All these characteristics make the gut mucosa a strong responsive organ in terms of radiation-induced immunoinflammation. This paper will focus on what has been observed in the normal gut and what remains to be done concerning the immunoinflammatory response following localized radiation exposure.
Collapse
|
3
|
Mouiseddine M, François S, Souidi M, Chapel A. Intravenous human mesenchymal stem cells transplantation in NOD/SCID mice preserve liver integrity of irradiation damage. Methods Mol Biol 2012; 826:179-88. [PMID: 22167649 DOI: 10.1007/978-1-61779-468-1_15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This work was initiated in an effort to evaluate the potential therapeutic contribution of the infusion of mesenchymal stem cells (MSC) for the correction of liver injuries. We subjected NOD-SCID mice to a 10.5-Gy abdominal irradiation and we tested the biological and histological markers of liver injury in the absence and after infusion of expanded human MSC. Irradiation alone induced a significant elevation of the ALT and AST. Apoptosis in the endothelial layer of vessels was observed. When MSC were infused in mice, a significant decrease of transaminases was measured, and a total disappearance of apoptotic cells. MSC were not found in liver. To explain the protection of liver without MSC engraftment, we hypothesize an indirect action of MSC on the liver via the intestinal tract. Pelvic or total body irradiation induces intestinal absorption defects leading to an alteration of the enterohepatic recirculation of bile acids. This alteration induces an increase in Deoxy Cholic Acid (DCA) which is hepatoxic. In this study, we confirm these results. DCA concentration increased approximately twofold after irradiation but stayed to the baseline level after MSC injection. We propose from our observations that, following irradiation, MSC infusion indirectly corrected liver dysfunction by preventing gut damage. This explanation would be consistent with the absence of MSC engraftment in liver. These results evidenced that MSC treatment of a target organ may have an effect on distant tissues. This observation comes in support to the interest for the use of MSC for cellular therapy in multiple pathologies proposed in the recent years.
Collapse
|
4
|
Roche M, Neti PVSV, Kemp FW, Agrawal A, Attanasio A, Douard V, Muduli A, Azzam EI, Norkus E, Brimacombe M, Howell RW, Ferraris RP. Radiation-induced reductions in transporter mRNA levels parallel reductions in intestinal sugar transport. Am J Physiol Regul Integr Comp Physiol 2009; 298:R173-82. [PMID: 19907007 DOI: 10.1152/ajpregu.00612.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
More than a century ago, ionizing radiation was observed to damage the radiosensitive small intestine. Although a large number of studies has since shown that radiation reduces rates of intestinal digestion and absorption of nutrients, no study has determined whether radiation affects mRNA expression and dietary regulation of nutrient transporters. Since radiation generates free radicals and disrupts DNA replication, we tested the hypotheses that at doses known to reduce sugar absorption, radiation decreases the mRNA abundance of sugar transporters SGLT1 and GLUT5, prevents substrate regulation of sugar transporter expression, and causes reductions in sugar absorption that can be prevented by consumption of the antioxidant vitamin A, previously shown by us to radioprotect the testes. Mice were acutely irradiated with (137)Cs gamma rays at doses of 0, 7, 8.5, or 10 Gy over the whole body. Mice were fed with vitamin A-supplemented diet (100x the control diet) for 5 days prior to irradiation after which the diet was continued until death. Intestinal sugar transport was studied at days 2, 5, 8, and 14 postirradiation. By day 8, d-glucose uptake decreased by approximately 10-20% and d-fructose uptake by 25-85%. With increasing radiation dose, the quantity of heterogeneous nuclear RNA increased for both transporters, whereas mRNA levels decreased, paralleling reductions in transport. Enterocytes of mice fed the vitamin A supplement had > or = 6-fold retinol concentrations than those of mice fed control diets, confirming considerable intestinal vitamin A uptake. However, vitamin A supplementation had no effect on clinical or transport parameters and afforded no protection against radiation-induced changes in intestinal sugar transport. Radiation markedly reduced GLUT5 activity and mRNA abundance, but high-d-fructose diets enhanced GLUT5 activity and mRNA expression in both unirradiated and irradiated mice. In conclusion, the effect of radiation may be posttranscriptional, and radiation-damaged intestines can still respond to dietary stimuli.
Collapse
Affiliation(s)
- Marjolaine Roche
- Department of Pharmacology and Physiology, New Jersey Medical School, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
All-trans-Retinoic Acid Attenuates Radiation-Induced Intestinal Fibrosis in Mice. J Surg Res 2008; 150:53-9. [DOI: 10.1016/j.jss.2007.12.762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/15/2007] [Accepted: 12/06/2007] [Indexed: 11/20/2022]
|
6
|
Milliat F, François A, Tamarat R, Benderitter M. [Role of endothelium in radiation-induced normal tissue damages]. Ann Cardiol Angeiol (Paris) 2008; 57:139-148. [PMID: 18579118 DOI: 10.1016/j.ancard.2008.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 02/28/2008] [Indexed: 05/26/2023]
Abstract
More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells, without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. Early and late side-effects not only limit radiation dose escalation, but might also affect the patient's quality of life. Vascular injury is one of the most common effects of radiotherapy on normal tissues. Radiation-induced fibrogenesis is characterized by an orchestrated pathological wound-healing response in which the radiation-induced endothelium dysfunction plays a critical role. Irradiated endothelial cells acquire a proinflammatory, procoagulant and prothrombotic phenotype. The knowledge of molecular mechanisms involved in endothelium dysfunction following radiation is needed to identify therapeutic targets and develop strategies to prevent and /or reduce side-effects of radiation therapy.
Collapse
Affiliation(s)
- F Milliat
- Laboratoire de radiopathologie, institut de radioprotection et de sûreté nucléaire (IRSN), B.P. 17, 92262 Fontenay-aux-Roses, France.
| | | | | | | |
Collapse
|
7
|
Torres S, Thim L, Milliat F, Vozenin-Brotons MC, Olsen UB, Ahnfelt-Rønne I, Bourhis J, Benderitter M, François A. Glucagon-like peptide-2 improves both acute and late experimental radiation enteritis in the rat. Int J Radiat Oncol Biol Phys 2008; 69:1563-71. [PMID: 18035212 DOI: 10.1016/j.ijrobp.2007.08.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 07/20/2007] [Accepted: 08/22/2007] [Indexed: 01/15/2023]
Abstract
PURPOSE Acute and/or chronic radiation enteritis can develop after radiotherapy for pelvic cancers. Experimental and clinical observations have provided evidence of a role played by acute mucosal disruption in the appearance of late effects. The therapeutic potential of acute administration of glucagon-like peptide-2 (GLP-2) against acute and chronic intestinal injury was investigated in this study. METHODS AND MATERIALS Intestinal segments were surgically exteriorized and exposed to 16.7 or 19 Gy X-rays. The rats were treated once daily with vehicle or a protease-resistant GLP-2 derivative for 14 days before irradiation, with or without 7 days of GLP-2 after treatment. Macroscopic and microscopic observations were made 2 and 15 weeks after radiation exposure. RESULTS In the control animals, GLP-2 induced an increase in intestinal mucosal mass, along with an increase in villus height and crypt depth. GLP-2 administration before and after irradiation completely prevented the acute radiation-induced mucosal ulcerations observed after exposure to 16.7 Gy. GLP-2 treatment strikingly reduced the late radiation damage observed after 19 Gy irradiation. Microscopic observations revealed an improved organization of the intestinal wall and an efficient wound healing process, especially in the smooth muscle layers. CONCLUSION GLP-2 has a clear therapeutic potential against both acute and chronic radiation enteritis. This therapeutic effect is mediated through an increased mucosal mass before tissue injury and the stimulation of still unknown mechanisms of tissue response to radiation damage. Although these preliminary results still need to be confirmed, GLP-2 might be a way to limit patient discomfort during radiotherapy and reduce the risk of consequential late effects.
Collapse
Affiliation(s)
- Sandra Torres
- Radiosensibilité des Tumeurs et des Tissus Sains, UPRES EA-2710, Institut de Radioprotection et de Sûreté Nucléaire/Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Van der Meeren A, Monti P, Vandamme M, Squiban C, Wysocki J, Griffiths N. Abdominal radiation exposure elicits inflammatory responses and abscopal effects in the lungs of mice. Radiat Res 2005; 163:144-52. [PMID: 15658889 DOI: 10.1667/rr3293] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An inflammatory reaction is a classical feature of radiation exposure and appears to be a key event in the development of the acute radiation syndrome. We have investigated the radiation-induced inflammatory response in C57BL6/J mice after total abdominal or total-body irradiation at a dose of 15 Gy. Our goal was to determine the radiation-induced inflammatory response of the gut and to study the consequences of abdominal irradiation for the intestine and for the lungs as a distant organ. A comparison with total-body irradiation was used to take into account the hematopoietic response in the inflammatory process. For both irradiation regimens, systemic and intestinal responses were evaluated. A systemic inflammatory reaction was found after abdominal and total-body irradiation, concomitant with increased cytokine and chemokine production in the jejunum of irradiated mice. In the lungs, the radiation-induced changes in the production of cytokines and chemokines and in the expression of adhesion molecules after both abdominal and total-body irradiation indicate a possible abscopal effect of radiation in our model. The effects observed in the lungs after irradiation of the abdomino-pelvic region may be caused by circulating inflammatory mediators consequent to the gut inflammatory response.
Collapse
Affiliation(s)
- A Van der Meeren
- Institut de Radioprotection et de Sûreté Nucléaire, Direction de la Radioprotection de l'Homme, Service de Radiobiologie et d'Epidémiologie, IRSN, F-92262 Fontenay-aux-Roses cedex, France
| | | | | | | | | | | |
Collapse
|
9
|
Dusenbery KE, Bellairs EE, Potish RA, Twiggs LB, Boente MP. Twenty-five year outcome of sequential abdominal radiotherapy and melphalan:implications for future management of epithelial carcinoma of the ovary. Gynecol Oncol 2005; 96:307-13. [PMID: 15661213 DOI: 10.1016/j.ygyno.2004.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The purpose of the present study is evaluation of the long-term efficacy of sequential abdominopelvic radiotherapy and melphalan in the management of ovarian carcinoma. METHODS From 1970 to 1976, 94 women with stages I-III epithelial ovarian carcinoma enrolled in a prospective nonrandomized clinical trial were prescribed 20 Gy to the upper abdomen and 50 Gy to the pelvis followed by courses of melphalan (1 mg/kg/course). Primary endpoints were survival, recurrence, and toxicity. RESULTS There were 19 stage I, 25 stage II, and 50 stage III patients. For all stages, overall survival was 42% at 5 years, 30% at 10 years, and 17% at 25 years. Median follow-up of the survivors was 24 years. Disease-free survival was 48% at 5 years and remained at 45% from 10 to 25 years. All but two recurrences occurred within the first 27 months. No recurrence or treatment-related death occurred after 8 years. No recurrence was salvaged. All but one initial recurrence was within the peritoneal cavity. Of the 31 patients undergoing a second-look surgical procedure, 84% were free of tumor. Only 8% of patients recurred after a negative second look. Stage and the presence of palpable postoperative disease were significant prognostic factors. Disease-free survivals were 95% from 5 to 25 years for stage I, 70% at 5 years and 60% at 25 years for stage II, and 20% from 5 to 25 years for stage III (P < 0.0001). Although no patient with postoperative palpable tumor was cured, 25% lived beyond 2 years. Stage III patients without postoperative palpable tumor achieved a 47% 25-year disease-free survival. Acute toxicity was acceptable, and 98% of patients completed radiation therapy. Chronic toxicity included a 12% small bowel obstruction rate and a 3% fatal second malignancy/hematological toxicity rate (two cases of acute myelocytic leukemia, one case of thrombocytopenia). CONCLUSIONS The long-term disease-free survival obtained with abdominopelvic radiotherapy followed by single alkylating agent chemotherapy has not been exceeded by three subsequent decades of multiagent chemotherapy trials. Abdominal radiotherapy may be useful to consolidate complete responses following therapy multiagent chemotherapy, particularly with the upper abdominal dose escalation provided by intensity modulated radiation therapy and possibly in conjunction with chemotherapy.
Collapse
Affiliation(s)
- Kathryn E Dusenbery
- Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
10
|
François A, Milliat F, Vozenin-Brotons MC. Bowel injury associated with pelvic radiotherapy. Radiat Phys Chem Oxf Engl 1993 2005. [DOI: 10.1016/j.radphyschem.2004.04.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Matsuu M, Shichijo K, Ikeda Y, Ito M, Naito S, Okaichi K, Nakashima M, Nakayama T, Sekine I. Sympathetic Hyperfunction Causes Increased Sensitivity of the Autonomic Nervous System to Whole-Body X Irradiation. Radiat Res 2005; 163:137-43. [PMID: 15658888 DOI: 10.1667/rr3294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although the etiology of radiation sickness is still unknown, disturbance of the autonomic nervous system is suggested to be a factor. This study was designed to compare the radiosensitivity of spontaneously hypertensive rats possessing sympathetic hyperfunction and control Wistar-Kyoto rats, and to analyze the effects of radiation on the autonomic nervous system in both strains. After a 7.5-Gy dose of whole-body X irradiation, the blood pressure decreased significantly at 8 h and 2 days in the spontaneously hypertensive rats, but not in the Wistar-Kyoto rats. Epinephrine levels in the adrenal gland of spontaneously hypertensive rats decreased at 4, 8 and 24 h, unlike the Wistar-Kyoto rats. Radiation evoked a stronger increase in norepinephrine in the jejunum and colon of spontaneously hypertensive rats than in Wistar-Kyoto rats. Acetylcholine levels in the jejunum of spontaneously hypertensive rats decreased, in contrast to the increase in Wistar-Kyoto rats within 24 h after irradiation. The survival rate of spontaneously hypertensive rats was lower than that of Wistar-Kyoto rats and weight loss, appetite loss and morphological changes in the jejunum were greater in spontaneously hypertensive rats than in Wistar-Kyoto rats after irradiation. These results indicated that X irradiation caused greater activities in autonomic nervous function and severe radiation injury in spontaneously hypertensive rats. Sympathetic hyperfunction may be associated with a higher sensitivity to radiation, including radiation injury and radiation sickness.
Collapse
Affiliation(s)
- Mutsumi Matsuu
- Department of Molecular Pathology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|