1
|
Hatamli K, Eritja R, Giménez E, Benavente F, Gargallo R. Resolution of complex mixtures of duplex and antiparallel triplex DNA structures by capillary electrophoresis and multivariate analysis. Talanta 2025; 288:127616. [PMID: 39933343 DOI: 10.1016/j.talanta.2025.127616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 02/13/2025]
Abstract
Triplex DNA structures, which are formed by the addition of an extra strand to a target B-DNA duplex, have attracted increasing interest due to their analytical and therapeutic applications. These structures are classified into parallel and antiparallel, depending on the orientation of the Triplex-Forming Oligonucleotide (TFO) relative to the B-DNA duplex. Whereas the formation of parallel triplexes is easily detected by monitoring spectral changes in the UV region, the formation of antiparallel triplexes produces small or even no spectral variations, which makes their detection difficult and uncertain. In this study, we propose the use of capillary electrophoresis with ultraviolet absorption spectrophotometric (CE-UV) detection combined with the multivariate curve resolution-alternating least squares (MCR-ALS) chemometric method to analyse mixtures of DNA sequences capable of forming mixtures of B-DNA duplex and triplex antiparallel structures. Rapid and reproducible CE-UV analysis in hydroxypropylcellulose (HPC)-coated capillaries are done in a pH 7.4 buffer containing Mg(II) for the stabilization of the intermolecular species. Spectra measured from 220 to 300 nm along the CE-UV analysis of individual DNA strands and of their mixtures at different ratios are merged into an augmented data matrix. This is later analyzed with MCR-ALS to deconvolute characteristic pure spectra and electropherograms for each one of the CE-UV analysis considered. This procedure has allowed the resolution and detection of DNA species present in mixtures of DNA strands capable of forming duplexes, as well as antiparallel triplex structures.
Collapse
Affiliation(s)
- Kanan Hatamli
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028, Barcelona, Spain; Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Av. Prat de la Riba 171, E-08921, Santa Coloma de Gramenet, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Estela Giménez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028, Barcelona, Spain; Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Av. Prat de la Riba 171, E-08921, Santa Coloma de Gramenet, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028, Barcelona, Spain; Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Av. Prat de la Riba 171, E-08921, Santa Coloma de Gramenet, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028, Barcelona, Spain.
| |
Collapse
|
2
|
Pu Q, Lai X, Peng Y, Wu Q. A controllable DNA: structural features and advanced applications of i-motif. Analyst 2025; 150:1726-1740. [PMID: 40183738 DOI: 10.1039/d4an01549e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The i-motif consists of two parallel-stranded duplexes, stabilized by intercalated semi-protonated cytosine-cytosine (C·C+) pairing. Initially, the i-motif was thought to be unstable under physiological pH, which limited its biological interest. However, recent studies have demonstrated the presence of i-motifs in regulatory regions of the human genome at neutral pH, making their study biologically relevant. In addition, in the field of nanotechnology, the reversible pH-responsive properties of i-motif structures have been utilized to construct functional nanostructures for biomedical diagnostics and therapeutics. In this review, we present an overview of the structural features of i-motifs, the factors affecting their stability, and detection methods. Furthermore, we focus on summarizing recent advances in the application of i-motif-based functional nanostructures at the cellular level. The challenges and future prospects of i-motifs in nanomedicine are also discussed at the end of this paper.
Collapse
Affiliation(s)
- Qiumei Pu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China
| | - Xiangde Lai
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China
| | - Yanan Peng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China.
| | - Qiang Wu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China
| |
Collapse
|
3
|
Garabet A, Prislan I, Poklar Ulrih N, Wells JW, Chalikian TV. Conformational Propensities of a DNA Hairpin with a Stem Sequence from the c-MYC Promoter. Biomolecules 2025; 15:483. [PMID: 40305258 PMCID: PMC12024889 DOI: 10.3390/biom15040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
G-quadruplexes and i-motifs are four-stranded non-canonical structures of DNA. They exist in the cell, where they are implicated in the conformational regulation of cellular events, such as transcription, translation, DNA replication, telomere homeostasis, and genomic instability. Formation of the G-quadruplex and i-motif conformations in the genome is controlled by their competition with the pre-existing duplex. The fate of that competition depends upon the relative stabilities of the competing conformations, leading ultimately to a distribution of double helical, tetrahelical, and coiled conformations that coexist in dynamic equilibrium with each other. We previously developed a CD spectroscopy-based procedure to characterize the distribution of conformations adopted by equimolar mixtures of complementary G- and C-rich DNA strands from the promoter regions of the c-MYC, VEGF, and Bcl-2 oncogenes. In those bimolecular systems, duplex-to-tetraplex and duplex-to-coil transitions are accompanied by strand separation and an associated entropic cost. This situation is distinct from the pseudo-monomolecular nature of conformational transformations within the genome, where strand separation does not occur. To mimic better the situation in the genome, we here extend our studies to a monomolecular DNA construct-a hairpin-in which complementary G- and C-rich strands featuring sequences from the promoter region of the c-MYC oncogene are linked by a dT11 loop. We used our CD-based procedure to quantify the distribution of conformational states sampled by the hairpin at pH 5.0 and 7.0 as a function of temperature and the concentration of KCl. The data were analyzed according to a thermodynamic model based on equilibria between the different conformational states to evaluate the thermodynamic properties of the duplex-to-coil, G-quadruplex-to-coil, and i-motif-to-coil transitions of the hairpin. The results have implications for the modulation of such transitions as a means of therapeutic intervention.
Collapse
Affiliation(s)
- Arees Garabet
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada; (A.G.); (J.W.W.)
| | - Iztok Prislan
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (I.P.); (N.P.U.)
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (I.P.); (N.P.U.)
| | - James W. Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada; (A.G.); (J.W.W.)
| | - Tigran V. Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada; (A.G.); (J.W.W.)
| |
Collapse
|
4
|
Diggins L, Ross D, Bhanot S, Corallo R, Daley R, Patel K, Lewis O, Donahue S, Thaddeus J, Hiers L, Syed C, Eagerton D, Mohanty BK. CD spectra reveal the state of G-quadruplexes and i-motifs in repeated and other DNA sequences. BIOPHYSICAL REPORTS 2025; 5:100187. [PMID: 39608571 PMCID: PMC11699388 DOI: 10.1016/j.bpr.2024.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024]
Abstract
The B-DNA of the genome contains numerous sequences that can form various noncanonical structures including G-quadruplex (G4), formed by two or more stacks of four guanine residues in a plane, and intercalating motif (i-motif [iM]) formed by alternately arranged C-C+ pairs. One of the easy yet sensitive methods to study G4s and iMs is circular dichroism (CD) spectroscopy, which generates characteristic G4 and iM peaks. We have analyzed and compared the effects of various environmental factors including pH, buffer composition, temperature, flanking sequences, complimentary DNA strands, and single-stranded DNA binding protein (SSB) on the CD patterns of G4s and iMs generated by two groups of DNA molecules, one containing tandem repeats of GGGGCC and CCCCGG from the C9ORF72 gene associated with amyotrophic lateral sclerosis and frontotemporal dementia, and the second containing polyG/polyC clusters from oncogene promoter-proximal regions without such tandem repeats. Changes in pH caused drastic changes in CCCCGG-iM and GGGGCC-G4 and the changes were dependent on repeat numbers and G-C basepairing. In contrast, with the DNA sequences from the promoter-proximal regions of oncogenes, iMs disassembled upon pH changes with the peak slowly shifting to lower wavelength but the G4s did not show significant change. Complementary DNA strands and flanking DNA sequences also regulate G4 and iM formation. The SSB disassembled both G4s and iMs formed by almost all sequences suggesting an in vivo role for SSBs in the disassembly of G4s and iMs during DNA replication and other DNA transactions.
Collapse
Affiliation(s)
- Levi Diggins
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Daniel Ross
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Sundeep Bhanot
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Rebecca Corallo
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Rachel Daley
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Krishna Patel
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Olivia Lewis
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Shane Donahue
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Jacob Thaddeus
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Lauren Hiers
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Christopher Syed
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - David Eagerton
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina
| | - Bidyut K Mohanty
- Edward Via College of Osteopathic Medicine, Spartanburg, South Carolina.
| |
Collapse
|
5
|
Alves A, Miranda A, Zanin I, Richter SN, Mergny JL, Cruz C. I-motif formation in the promoter region of the B-MYB proto-oncogene. Int J Biol Macromol 2025; 296:139582. [PMID: 39798757 DOI: 10.1016/j.ijbiomac.2025.139582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Understanding the mechanisms of carcinogenesis is essential to combat cancer. The search for alternative targets for anticancer therapy has gained interest, particularly when focused on upstream pathways. This strategy is particularly relevant when the encoded target proteins are known - or believed - to be "undruggable", as has been reported for the B-MYB oncogene. This gene, which regulates survival and cell cycle regulation, is overexpressed in cancer and correlates with an unfavorable prognosis. In this study, we focused on the identification of the i-motif (iM) structures in the promoter region of B-MYB as a possible anticancer target, with a complete biophysical characterization and in cell formation assessment using iM-CUT&Tag. Additionally, the interaction of the iM structures with a library of small molecules was investigated.
Collapse
Affiliation(s)
- André Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - André Miranda
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Irene Zanin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; Microbiology and Virology Unit, Padua University Hospital, 35121 Padua, Italy
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal.
| |
Collapse
|
6
|
Minasyan AS, Peacey M, Allen T, Nesterova IV. Sequence Context in DNA i-Motifs Can Nurture Very Stable and Persistent Kinetic Traps. Chembiochem 2024; 25:e202400647. [PMID: 39370401 DOI: 10.1002/cbic.202400647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
I-motifs are non-canonical DNA structures with recognized biological significance and a proven utility in material engineering. Consequently, understanding and control of i-motif properties is essential to sustain progress across both disciplines. In this work, we systematically investigate how proximity to the most common form of DNA, a double-stranded duplex, influences the thermodynamic and kinetic properties of adjacent i-motifs. We demonstrate that double-stranded stems in i-motif loops promote kinetic trapping of very stable and persistent partially folded conformations. Further, we investigate pathways toward rational control over a folding topology makeup.
Collapse
Affiliation(s)
- Alexander S Minasyan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Merlin Peacey
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Te'Kara Allen
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Irina V Nesterova
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
7
|
Obara P, Wolski P, Pańczyk T. Insights into the Molecular Structure, Stability, and Biological Significance of Non-Canonical DNA Forms, with a Focus on G-Quadruplexes and i-Motifs. Molecules 2024; 29:4683. [PMID: 39407611 PMCID: PMC11477922 DOI: 10.3390/molecules29194683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This article provides a comprehensive examination of non-canonical DNA structures, particularly focusing on G-quadruplexes (G4s) and i-motifs. G-quadruplexes, four-stranded structures formed by guanine-rich sequences, are stabilized by Hoogsteen hydrogen bonds and monovalent cations like potassium. These structures exhibit diverse topologies and are implicated in critical genomic regions such as telomeres and promoter regions of oncogenes, playing significant roles in gene expression regulation, genome stability, and cellular aging. I-motifs, formed by cytosine-rich sequences under acidic conditions and stabilized by hemiprotonated cytosine-cytosine (C:C+) base pairs, also contribute to gene regulation despite being less prevalent than G4s. This review highlights the factors influencing the stability and dynamics of these structures, including sequence composition, ionic conditions, and environmental pH. Molecular dynamics simulations and high-resolution structural techniques have been pivotal in advancing our understanding of their folding and unfolding mechanisms. Additionally, the article discusses the therapeutic potential of small molecules designed to selectively bind and stabilize G4s and i-motifs, with promising implications for cancer treatment. Furthermore, the structural properties of these DNA forms are explored for applications in nanotechnology and molecular devices. Despite significant progress, challenges remain in observing these structures in vivo and fully elucidating their biological functions. The review underscores the importance of continued research to uncover new insights into the genomic roles of G4s and i-motifs and their potential applications in medicine and technology. This ongoing research promises exciting developments in both basic science and applied fields, emphasizing the relevance and future prospects of these intriguing DNA structures.
Collapse
Affiliation(s)
| | | | - Tomasz Pańczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland; (P.O.); (P.W.)
| |
Collapse
|
8
|
Mir B, Serrano-Chacón I, Medina P, Macaluso V, Terrazas M, Gandioso A, Garavís M, Orozco M, Escaja N, González C. Site-specific incorporation of a fluorescent nucleobase analog enhances i-motif stability and allows monitoring of i-motif folding inside cells. Nucleic Acids Res 2024; 52:3375-3389. [PMID: 38366792 PMCID: PMC11014255 DOI: 10.1093/nar/gkae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
The i-motif is an intriguing non-canonical DNA structure, whose role in the cell is still controversial. Development of methods to study i-motif formation under physiological conditions in living cells is necessary to study its potential biological functions. The cytosine analog 1,3-diaza-2-oxophenoxazine (tCO) is a fluorescent nucleobase able to form either hemiprotonated base pairs with cytosine residues, or neutral base pairs with guanines. We show here that when tCO is incorporated in the proximity of a G:C:G:C minor groove tetrad, it induces a strong thermal and pH stabilization, resulting in i-motifs with Tm of 39ºC at neutral pH. The structural determination by NMR methods reveals that the enhanced stability is due to a large stacking interaction between the guanines of the tetrad with the tCO nucleobase, which forms a tCO:C+ in the folded structure at unusually-high pHs, leading to an increased quenching in its fluorescence at neutral conditions. This quenching is much lower when tCO is base-paired to guanines and totally disappears when the oligonucleotide is unfolded. By taking profit of this property, we have been able to monitor i-motif folding in cells.
Collapse
Affiliation(s)
- Bartomeu Mir
- Instituto de Química Física ‘Blas Cabrera’. CSIC. Serrano 119. 28006 Madrid. Spain
- Inorganic and Organic Chemistry Department. Organic Chemistry Section and IBUB. University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona. Spain
| | - Israel Serrano-Chacón
- Instituto de Química Física ‘Blas Cabrera’. CSIC. Serrano 119. 28006 Madrid. Spain
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
| | - Pedro Medina
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
- Departament de Bioquímica i Biomedicina. Facultat de Biologia. Universitat de Barcelona. 08028 Barcelona. Spain
| | - Veronica Macaluso
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
| | - Montserrat Terrazas
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
- Inorganic and Organic Chemistry Department. Organic Chemistry Section and IBUB. University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona. Spain
| | - Albert Gandioso
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
| | - Miguel Garavís
- Instituto de Química Física ‘Blas Cabrera’. CSIC. Serrano 119. 28006 Madrid. Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
- Departament de Bioquímica i Biomedicina. Facultat de Biologia. Universitat de Barcelona. 08028 Barcelona. Spain
| | - Núria Escaja
- Inorganic and Organic Chemistry Department. Organic Chemistry Section and IBUB. University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona. Spain
| | - Carlos González
- Instituto de Química Física ‘Blas Cabrera’. CSIC. Serrano 119. 28006 Madrid. Spain
| |
Collapse
|
9
|
Martinez-Fernandez L, Improta R. The photophysics of protonated cytidine and hemiprotonated cytidine base pair: A computational study. Photochem Photobiol 2024; 100:314-322. [PMID: 37409732 DOI: 10.1111/php.13832] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
We here study the effect that a lowering of the pH has on the excited state processes of cytidine and a cytidine/cytidine pair in solution, by integrating time-dependent density functional theory and CASSCF/CASPT2 calculations, and including solvent by a mixed discrete/continuum model. Our calculations reproduce the effect of protonation at N3 on the steady-state infrared and absorption spectra of a protonated cytidine (CH+ ), and predict that an easily accessible non-radiative deactivation route exists for the spectroscopic state, explaining its sub-ps lifetime. Indeed, an extremely small energy barrier separates the minimum of the lowest energy bright state from a crossing region with the ground electronic state, reached by out-of-plane motion of the hydrogen substituents of the CC double bond, the so-called ethylenic conical intersection typical of cytidine and other pyrimidine bases. This deactivation route is operative for the two bases forming an hemiprotonated cytidine base pair, [CH·C]+ , the building blocks of I-motif secondary structures, whereas interbase processes play a minor role. N3 protonation disfavors instead the nπ* transitions, associated with the long-living components of cytidine photoactivated dynamics.
Collapse
Affiliation(s)
- Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemical Sciences (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Madrid, Spain
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Naples, Italy
| |
Collapse
|
10
|
Badalyan M, Vardanyan IV, Haroutiunian SG, Dalyan YB. Structural Transitions in Complementary G-Rich and C-Rich Strands and Their Mixture at Various pH Conditions. ACS OMEGA 2023; 8:47051-47056. [PMID: 38107945 PMCID: PMC10719991 DOI: 10.1021/acsomega.3c06934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
We used circular dichroism spectroscopy, UV spectrophotometry, and differential scanning calorimetry to investigate pH-dependent structural transitions in an equimolar mixture of complementary G-rich d[5'-A(GGGTTA)3GGG-3'] (TelG) and C-rich d[3'-T(CCCAAT)3CCC-5'] (TelC) human telomeric DNA strands. Our studies were conducted at neutral (pH 7.0) and slightly acidic (pH 5.5 and 6.5) pH. We analyzed the melting thermodynamics of TelG and TelC and their equimolar mixture. Our analysis revealed that the preferred conformation of an equimolar mixture of TelG and TelC is the duplex. At pH 5.5, however, in addition to the duplex state, we observed a significant population of the i-motif state formed by TelC. Our results are consistent with the picture in which an increase in pH from 5.5 to 7.0 has little effect on the melting enthalpy of an isolated G-quadruplex while causing a strong reduction in the melting enthalpy of an isolated i-motif (the latter diminishes to 0 at pH 7.0). These effects summarily lead to a decrease in the contribution of the i-motif to the melting enthalpy of the mixture and, hence, an increase in the apparent melting enthalpy and overall stability of the duplex state.
Collapse
Affiliation(s)
- Milena
Kh. Badalyan
- Department of Molecular Physics, Yerevan State University, Yerevan 0025, Armenia
| | - Ishkhan V. Vardanyan
- Department of Molecular Physics, Yerevan State University, Yerevan 0025, Armenia
| | | | - Yeva B. Dalyan
- Department of Molecular Physics, Yerevan State University, Yerevan 0025, Armenia
| |
Collapse
|
11
|
Bchara L, Eritja R, Gargallo R, Benavente F. Rapid and Highly Efficient Separation of i-Motif DNA Species by CE-UV and Multivariate Curve Resolution. Anal Chem 2023; 95:15189-15198. [PMID: 37782260 PMCID: PMC10585953 DOI: 10.1021/acs.analchem.3c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
The i-motif is a class of nonstandard DNA structure with potential biological implications. A novel capillary electrophoresis with an ultraviolet absorption spectrophotometric detection (CE-UV) method has been developed for the rapid analysis of the i-motif folding equilibrium as a function of pH and temperature. The electrophoretic analyses are performed in reverse polarity of the separation voltage with 32 cm long fused silica capillaries permanently coated with hydroxypropyl cellulose (HPC), after an appropriate conditioning procedure was used to achieve good repeatability. However, the electrophoretic separation between the folded and unfolded conformers of the studied cytosine-rich i-motif sequences (i.e., TT, Py39WT, and nmy01) is compromised, especially for Py39WT and nmy01, which result in completely overlapped peaks. Therefore, deconvolution with multivariate curve resolution-alternating least-squares (MCR-ALS) has been required for the efficient separation of the folded and unfolded species found at different concentration levels at pH 6.5 and between 12 and 40 °C, taking advantage of the small dissimilarities in the electrophoretic mobilities and UV spectra levels. MCR-ALS has also provided quantitative information that has been used to estimate melting temperatures (Tm), which are similar to those determined by UV and circular dichroism (CD) spectroscopies. The obtained results demonstrate that CE-UV assisted by MCR-ALS may become a very useful tool to get novel insight into the folding of i-motifs and other complex DNA structures.
Collapse
Affiliation(s)
- Laila Bchara
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Ramon Eritja
- Institute
for Advanced Chemistry of Catalonia (IQAC−CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Raimundo Gargallo
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Fernando Benavente
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
- Institute
for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
12
|
Improta R. Shedding Light on the Photophysics and Photochemistry of I-Motifs Using Quantum Mechanical Calculations. Int J Mol Sci 2023; 24:12614. [PMID: 37628797 PMCID: PMC10454157 DOI: 10.3390/ijms241612614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
I-motifs are non-canonical DNA structures formed by intercalated hemiprotonated (CH·C)+ pairs, i.e., formed by a cytosine (C) and a protonated cytosine (CH+), which are currently drawing great attention due to their biological relevance and promising nanotechnological properties. It is important to characterize the processes occurring in I-motifs following irradiation by UV light because they can lead to harmful consequences for genetic code and because optical spectroscopies are the most-used tools to characterize I-motifs. By using time-dependent DFT calculations, we here provide the first comprehensive picture of the photoactivated behavior of the (CH·C)+ core of I-motifs, from absorption to emission, while also considering the possible photochemical reactions. We reproduce and assign their spectral signatures, i.e., infrared, absorption, fluorescence and circular dichroism spectra, disentangling the underlying chemical-physical effects. We show that the main photophysical paths involve C and CH+ bases on adjacent steps and, using this basis, interpret the available time-resolved spectra. We propose that a photodimerization reaction can occur on an excited state with strong C→CH+ charge transfer character and examine some of the possible photoproducts. Based on the results reported, some future perspectives for the study of I-motifs are discussed.
Collapse
Affiliation(s)
- Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via De Amicis 95, I-80145 Napoli, Italy
| |
Collapse
|
13
|
Petrunina NA, Shtork AS, Lukina MM, Tsvetkov VB, Khodarovich YM, Feofanov AV, Moysenovich AM, Maksimov EG, Shipunova VO, Zatsepin TS, Bogomazova AN, Shender VO, Aralov AV, Lagarkova MA, Varizhuk AM. Ratiometric i-Motif-Based Sensor for Precise Long-Term Monitoring of pH Micro Alterations in the Nucleoplasm and Interchromatin Granules. ACS Sens 2023; 8:619-629. [PMID: 36662613 DOI: 10.1021/acssensors.2c01813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
DNA-intercalated motifs (iMs) are facile scaffolds for the design of various pH-responsive nanomachines, including biocompatible pH sensors. First, DNA pH sensors relied on complex intermolecular scaffolds. Here, we used a simple unimolecular dual-labeled iM scaffold and minimized it by replacing the redundant loop nucleosides with abasic or alkyl linkers. These modifications improved the thermal stability of the iM and increased the rates of its pH-induced conformational transitions. The best effects were obtained upon the replacement of all three native loops with short and flexible linkers, such as the propyl one. The resulting sensor showed a pH transition value equal to 6.9 ± 0.1 and responded rapidly to minor acidification (tau1/2 <1 s for 7.2 → 6.6 pH jump). We demonstrated the applicability of this sensor for pH measurements in the nuclei of human lung adenocarcinoma cells (pH = 7.4 ± 0.2) and immortalized embryonic kidney cells (pH = 7.0 ± 0.2). The sensor stained diffusely the nucleoplasm and piled up in interchromatin granules. These findings highlight the prospects of iMs in the studies of normal and pathological pH-dependent processes in the nucleus, including the formation of biomolecular condensates.
Collapse
Affiliation(s)
- Nataliia A Petrunina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow119435, Russia
| | - Alina S Shtork
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow119435, Russia
| | - Maria M Lukina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow119435, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow119435, Russia
| | - Vladimir B Tsvetkov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow119435, Russia.,Institute of Biodesign and Complex System Modeling, I.M. Sechenov First Moscow State Medical University, Moscow119991, Russia.,A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky Prospect Str. 29, Moscow119991, Russia
| | - Yuri M Khodarovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow117997, Russia.,The Peoples' Friendship University of Russia, 117198Moscow, Russia
| | - Alexey V Feofanov
- Biological Faculty, Lomonosov Moscow State University, Moscow119992, Russia.,Institute of Gene Biology RAS, Russian Academy of Sciences, Moscow119334, Russia
| | | | - Eugene G Maksimov
- Biological Faculty, Lomonosov Moscow State University, Moscow119992, Russia
| | - Victoria O Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow117997, Russia
| | - Timofei S Zatsepin
- Department of Chemistry, Lomonosov Moscow State University, Moscow119992, Russia
| | - Alexandra N Bogomazova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow119435, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow119435, Russia
| | - Victoria O Shender
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow119435, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow119435, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow117997, Russia
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow117997, Russia
| | - Maria A Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow119435, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow119435, Russia
| | - Anna M Varizhuk
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow119435, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow119435, Russia.,G4_Interact, USERN, University of Pavia, 27100Pavia, Italy
| |
Collapse
|
14
|
Serrano-Chacón I, Mir B, Cupellini L, Colizzi F, Orozco M, Escaja N, González C. pH-Dependent Capping Interactions Induce Large-Scale Structural Transitions in i-Motifs. J Am Chem Soc 2023; 145:3696-3705. [PMID: 36745195 PMCID: PMC9936585 DOI: 10.1021/jacs.2c13043] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 02/07/2023]
Abstract
We study here a DNA oligonucleotide having the ability to form two different i-motif structures whose relative stability depends on pH and temperature. The major species at neutral pH is stabilized by two C:C+ base pairs capped by two minor groove G:C:G:C tetrads. The high pH and thermal stability of this structure are mainly due to the favorable effect of the minor groove tetrads on their adjacent positively charged C:C+ base pairs. At pH 5, we observe a more elongated i-motif structure consisting of four C:C+ base pairs capped by two G:T:G:T tetrads. Molecular dynamics calculations show that the conformational transition between the two structures is driven by the protonation state of key cytosines. In spite of large conformational differences, the transition between the acidic and neutral structures can occur without unfolding of the i-motif. These results represent the first case of a conformational switch between two different i-motif structures and illustrate the dramatic pH-dependent plasticity of this fascinating DNA motif.
Collapse
Affiliation(s)
- Israel Serrano-Chacón
- Instituto
de Química Física ”Rocasolano”, CSIC, Serrano 119, 28006Madrid, Spain
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
| | - Bartomeu Mir
- Instituto
de Química Física ”Rocasolano”, CSIC, Serrano 119, 28006Madrid, Spain
- Inorganic
and Organic Chemistry Department, Organic Chemistry Section, and IBUB, University of Barcelona, Martí i Franquès 1-11, 08028Barcelona, Spain
| | - Lorenzo Cupellini
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
| | - Francesco Colizzi
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
| | - Modesto Orozco
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028Barcelona, Spain
- Departament
de Bioquímica i Biomedicina. Facultat de Biologia, Universitat de Barcelona, 08028Barcelona, Spain
| | - Núria Escaja
- Inorganic
and Organic Chemistry Department, Organic Chemistry Section, and IBUB, University of Barcelona, Martí i Franquès 1-11, 08028Barcelona, Spain
- BIOESTRAN
Associated Unit UB-CSIC, 08028Barcelona, Spain
| | - Carlos González
- Instituto
de Química Física ”Rocasolano”, CSIC, Serrano 119, 28006Madrid, Spain
- BIOESTRAN
Associated Unit UB-CSIC, 08028Barcelona, Spain
| |
Collapse
|
15
|
Li L, Liu S, Zhang C, Guo Z, Shao S, Deng X, Liu Q. Recent Advances in DNA-Based Cell Surface Engineering for Biological Applications. Chemistry 2022; 28:e202202070. [PMID: 35977912 DOI: 10.1002/chem.202202070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Indexed: 12/14/2022]
Abstract
Due to its excellent programmability and biocompatibility, DNA molecule has unique advantages in cell surface engineering. Recent progresses provide a reliable and feasible way to engineer cell surfaces with diverse DNA molecules and DNA nanostructures. The abundant form of DNA nanostructures has greatly expanded the toolbox of DNA-based cell surface engineering and gave rise to a variety of novel and fascinating applications. In this review, we summarize recent advances in DNA-based cell surface engineering and its biological applications. We first introduce some widely used methods of immobilizing DNA molecules on cell surfaces and their application features. Then we discuss the approaches of employing DNA nanostructures and dynamic DNA nanotechnology as elements for creating functional cell surfaces. Finally, we review the extensive biological applications of DNA-based cell surface engineering and discuss the challenges and prospects of DNA-based cell surface engineering.
Collapse
Affiliation(s)
- Lexun Li
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Shuang Liu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Chunjuan Zhang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Zhenzhen Guo
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Shuxuan Shao
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Xiaodan Deng
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| |
Collapse
|
16
|
Oblak D, Hadži S, Podlipnik Č, Lah J. Binding-Induced Diversity of a Human Telomeric G-Quadruplex Stability Phase Space. Pharmaceuticals (Basel) 2022; 15:ph15091150. [PMID: 36145371 PMCID: PMC9501445 DOI: 10.3390/ph15091150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022] Open
Abstract
The structural polymorphism of G-quadruplex nucleic acids is an important factor in their recognition by proteins and small-molecule ligands. However, it is not clear why the binding of several ligands alters G-quadruplex topology. We addressed this question by following the (un)folding and binding of the human telomeric fragment 5′-(GGGTTA)3GGGT-3′ (22GT) by calorimetry (DSC, ITC) and spectroscopy (CD). A thermodynamic analysis of the obtained data led to a detailed description of the topological phase space of stability (phase diagram) of 22GT and shows how it changes in the presence of a specific bisquinolinium ligand (360A). Various 1:1 and 2:1 ligand–quadruplex complexes were observed. With increasing temperature, the 1:1 complexes transformed into 2:1 complexes, which is attributed to the preferential binding of the ligand to the folding intermediates. Overall, the dissection of the thermodynamic parameters in combination with molecular modelling clarified the driving forces of the topological quadruplex transformations in a wide range of ligand concentrations and temperatures.
Collapse
|
17
|
Mondal M, Gao YQ. Microscopic Insight into pH-Dependent Conformational Dynamics and Noncanonical Base Pairing in Telomeric i-Motif DNA. J Phys Chem Lett 2022; 13:5109-5115. [PMID: 35657602 DOI: 10.1021/acs.jpclett.2c00640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gene regulatory functions of noncanonical i-motif DNA are associated with dynamic i-motif formation in the cellular environment and pH variation. With atomistic simulations, we show the dramatic influence of solvent pH on the conformational dynamics of biologically relevant telomeric i-motif DNA coupled with protonation of cytosine bases in different conformations. We rationalized the pH-dependent dynamics and conformational variability of the i-motif in terms of base pairing and specific loop motions. The human telomeric i-motif is found to acquire various metastable folded conformations at pH values near the pKa of cytosine with the formation of a noncanonical C:C W:W trans base pair along with the hemiprotonated C:C+ pairs in the i-motif core. pH-dependent dynamics and the local solvent structure of i-motif DNA imply that the presence of a cosolvent or molecular crowding can promote i-motif formation in vivo by changing the conformational fluctuations and hydration state of the structure.
Collapse
Affiliation(s)
- Manas Mondal
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518107 Shenzhen, China
| | - Yi Qin Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518107 Shenzhen, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, 100871 Beijing, China
- Beijing Advanced Innovation Center for Genomics, Peking University, 100871 Beijing, China
| |
Collapse
|
18
|
|
19
|
Gao B, Zheng YT, Su AM, Sun B, Xi XG, Hou XM. Remodeling the conformational dynamics of I-motif DNA by helicases in ATP-independent mode at acidic environment. iScience 2022; 25:103575. [PMID: 34988409 PMCID: PMC8704484 DOI: 10.1016/j.isci.2021.103575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/09/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023] Open
Abstract
I-motifs are noncanonical four-stranded DNA structures formed by C-rich sequences at acidic environment with critical biofunctions. The particular pH sensitivity has inspired the development of i-motifs as pH sensors and DNA motors in nanotechnology. However, the folding and regulation mechanisms of i-motifs remain elusive. Here, using single-molecule FRET, we first show that i-motifs are more dynamic than G4s. Impressively, i-motifs display a high diversity of six folding species with slow interconversion. Further results indicate that i-motifs can be linearized by Replication protein A. More importantly, we identified a number of helicases with high specificity to i-motifs at low pH. All these helicases directly act on and efficiently resolve i-motifs into intermediates independent of ATP, although they poorly unwind G4 or duplex at low pH. Owing to the extreme sensitivity to helicases and no need for ATP, i-motif may be applied as a probe for helicase sensing both in vitro and in vivo.
Collapse
Affiliation(s)
- Bo Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Ya-Ting Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Ai-Min Su
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
- LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Gif-sur-Yvette, France
| | - Xi-Miao Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Corresponding author
| |
Collapse
|
20
|
Itaya R, Idei W, Nakamura T, Nishihara T, Kurihara R, Okamoto A, Tanabe K. Changes of C≡C Triple Bond Vibration that Disclosed Non-Canonical Cytosine Protonation in i-Motif-Forming Oligodeoxynucleotides. ACS OMEGA 2021; 6:31595-31604. [PMID: 34869984 PMCID: PMC8637604 DOI: 10.1021/acsomega.1c04074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/05/2021] [Indexed: 05/09/2023]
Abstract
Non-canonical protonation at cytosine (C) in DNA is related to a formation of second order DNA structures such as i-motif, which has a role in gene regulation. Although the detailed structural information is indispensable for comprehension of their functions in cells, the protonation status of C in complicated environments is still elusive. To provide a reporter system of non-canonical protonation, we focused on the molecular vibration that could be monitored using the Raman spectroscopy. We prepared a cytosine derivative (PC) with an acetylene unit as a Raman tag, and found that the Raman signal of acetylene in PC in oligodeoxynucleotides (ODNs) changed due to protonation at the cytosine ring which shortened an acetylene bond. The signal change in i-motif-forming ODNs was also observed in crowded environments with polyethylene glycol, evidencing protonation in i-motif DNA in complicated environments. This system would be one of tracking tools for protonation in DNA structures.
Collapse
Affiliation(s)
- Ryota Itaya
- Department
of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Wakana Idei
- Department
of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Takashi Nakamura
- Faculty
of Bioscience, Nagahama Institute of Bio-Science
and Technology, 1266
Tamura-cho, Nagahama 526-0829, Japan
| | - Tatsuya Nishihara
- Department
of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Ryohsuke Kurihara
- School
of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Akimitsu Okamoto
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Kazuhito Tanabe
- Department
of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
- . Phone: +81-42-759-6229. Fax: +81-42-759-6493
| |
Collapse
|
21
|
Jarošová P, Hannig P, Kolková K, Mazzini S, Táborská E, Gargallo R, Borgonovo G, Artali R, Táborský P. Alkaloid Escholidine and Its Interaction with DNA Structures. BIOLOGY 2021; 10:1225. [PMID: 34943140 PMCID: PMC8698932 DOI: 10.3390/biology10121225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022]
Abstract
Berberine, the most known quaternary protoberberine alkaloid (QPA), has been reported to inhibit the SIK3 protein connected with breast cancer. Berberine also appears to reduce the bcl-2 and XIAP expression-proteins responsible for the inhibition of apoptosis. As some problems in the therapy with berberine arose, we studied the DNA binding properties of escholidine, another QPA alkaloid. CD, fluorescence, and NMR examined models of i-motif and G-quadruplex sequences present in the n-myc gene and the c-kit gene. We provide evidence that escholidine does not induce stabilization of the i-motif sequences, while the interaction with G-quadruplex structures appears to be more significant.
Collapse
Affiliation(s)
- Petra Jarošová
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (P.J.); (P.H.); (K.K.)
| | - Pavel Hannig
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (P.J.); (P.H.); (K.K.)
| | - Kateřina Kolková
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (P.J.); (P.H.); (K.K.)
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.M.); (G.B.)
| | - Eva Táborská
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1, E-08028 Barcelona, Spain;
| | - Gigliola Borgonovo
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy; (S.M.); (G.B.)
| | | | - Petr Táborský
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (P.J.); (P.H.); (K.K.)
| |
Collapse
|
22
|
Chalikian TV, Macgregor RB. Volumetric Properties of Four-Stranded DNA Structures. BIOLOGY 2021; 10:813. [PMID: 34440045 PMCID: PMC8389613 DOI: 10.3390/biology10080813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/27/2022]
Abstract
Four-stranded non-canonical DNA structures including G-quadruplexes and i-motifs have been found in the genome and are thought to be involved in regulation of biological function. These structures have been implicated in telomere biology, genomic instability, and regulation of transcription and translation events. To gain an understanding of the molecular determinants underlying the biological role of four-stranded DNA structures, their biophysical properties have been extensively studied. The limited libraries on volume, expansibility, and compressibility accumulated to date have begun to provide insights into the molecular origins of helix-to-coil and helix-to-helix conformational transitions involving four-stranded DNA structures. In this article, we review the recent progress in volumetric investigations of G-quadruplexes and i-motifs, emphasizing how such data can be used to characterize intra-and intermolecular interactions, including solvation. We describe how volumetric data can be interpreted at the molecular level to yield a better understanding of the role that solute-solvent interactions play in modulating the stability and recognition events of nucleic acids. Taken together, volumetric studies facilitate unveiling the molecular determinants of biological events involving biopolymers, including G-quadruplexes and i-motifs, by providing one more piece to the thermodynamic puzzle describing the energetics of cellular processes in vitro and, by extension, in vivo.
Collapse
Affiliation(s)
- Tigran V. Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada;
| | | |
Collapse
|
23
|
Amato J, D'Aria F, Marzano S, Iaccarino N, Randazzo A, Giancola C, Pagano B. On the thermodynamics of folding of an i-motif DNA in solution under favorable conditions. Phys Chem Chem Phys 2021; 23:15030-15037. [PMID: 34151914 DOI: 10.1039/d1cp01779a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Under slightly acidic conditions, cytosine-rich DNA sequences can form non-canonical secondary structures called i-motifs, which occur as four stretches of cytosine repeats form hemi-protonated C·C+ base pairs. The growing interest in the i-motif structures as important components in functional DNA-based nanotechnology or as potential targets of anticancer drugs, increases the need for a deep understanding of the energetics of their structural transitions. Here, a combination of spectroscopic and calorimetric techniques is used to unravel the thermodynamics of folding of an i-motif DNA under favorable conditions. The results give new insights into the energetic aspects of i-motifs and show that thermodynamic and thermal stability are related but not identical properties of such DNA structures.
Collapse
Affiliation(s)
- Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| |
Collapse
|
24
|
Liu L, Scott L, Tariq N, Kume T, Dubins DN, Macgregor RB, Chalikian TV. Volumetric Interplay between the Conformational States Adopted by Guanine-Rich DNA from the c-MYC Promoter. J Phys Chem B 2021; 125:7406-7416. [PMID: 34185535 DOI: 10.1021/acs.jpcb.1c04075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The kinetic and thermodynamic stabilities of G-quadruplex structures have been extensively studied. In contrast, systematic investigations of the volumetric properties of G-quadruplexes determining their pressure stability are still relatively scarce. The G-rich strand from the promoter region of the c-MYC oncogene (G-strand) is known to adopt a range of conformational states including the duplex, G-quadruplex, and coil states depending on the presence of the complementary C-rich strand (C-strand) and solution conditions. In this work, we report changes in volume, ΔV, and adiabatic compressibility, ΔKS, accompanying interconversions of G-strand between the G-quadruplex, duplex, and coil conformations in the presence and absence of C-strand. We rationalize these volumetric characteristics in terms of the hydration and intrinsic properties of the DNA in each of the sampled conformational states. We further use our volumetric results in conjunction with the reported data on changes in expansibility, ΔE, and heat capacity, ΔCP, associated with G-quadruplex-to-coil transitions to construct the pressure-temperature phase diagram describing the stability of the G-quadruplex. The phase diagram is elliptic in shape, resembling the classical elliptic phase diagram of a globular protein, and is distinct from the phase diagram for duplex DNA. The observed similarity of the pressure-temperature phase diagrams of G-quadruplexes and globular proteins stems from their shared structural and hydration features that, in turn, result in the similarity of their volumetric properties. To the best of our knowledge, this is the first pressure-temperature stability diagram reported for a G-quadruplex.
Collapse
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Lily Scott
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Nabeel Tariq
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Takuma Kume
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - David N Dubins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
25
|
Minasyan AS, Chakravarthy S, Vardelly S, Joseph M, Nesterov EE, Nesterova IV. Rational design of guiding elements to control folding topology in i-motifs with multiple quadruplexes. NANOSCALE 2021; 13:8875-8883. [PMID: 33949568 PMCID: PMC8210535 DOI: 10.1039/d1nr00611h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nucleic acids are versatile scaffolds that accommodate a wide range of precisely defined operational characteristics. Rational design of sensing, molecular computing, nanotechnology, and other nucleic acid devices requires precise control over folding conformations in these macromolecules. Here, we report a new approach that empowers well-defined conformational transitions in DNA molecular devices. Specifically, we develop tools for precise folding of multiple DNA quadruplexes (i-motifs) within the same oligonucleotide strand. To accomplish this task, we modify a DNA strand with kinetic control elements (hairpins and double stranded stems) that fold on a much faster timescale and consequently guide quadruplexes toward the targeted folding topology. To demonstrate that such guiding elements indeed facilitate formation of the targeted folding topology, we thoroughly characterize the folding/unfolding transitions through a combination of thermodynamic techniques, size exclusion chromatography (SEC) and small-angle X-ray scattering (SAXS). Furthermore, we extend SAXS capabilities to produce a direct insight on the shape and dimensions of the folded quadruplexes by computing their electron density maps from solution scattering data.
Collapse
Affiliation(s)
- Alexander S Minasyan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | | | - Suchitra Vardelly
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | - Mark Joseph
- Department of Natural Science, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Evgueni E Nesterov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | - Irina V Nesterova
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
26
|
Cheng M, Qiu D, Tamon L, Ištvánková E, Víšková P, Amrane S, Guédin A, Chen J, Lacroix L, Ju H, Trantírek L, Sahakyan AB, Zhou J, Mergny J. Thermal and pH Stabilities of i‐DNA: Confronting in vitro Experiments with Models and In‐Cell NMR Data. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Liezel Tamon
- MRC WIMM Centre for Computational Biology MRC Weatherall Institute of Molecular Medicine Radcliffe Department of Medicine University of Oxford Oxford OX3 9DS UK
| | - Eva Ištvánková
- Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
| | - Pavlína Víšková
- Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
| | - Samir Amrane
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Aurore Guédin
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Laurent Lacroix
- IBENS Ecole Normale Supérieure CNRS INSERM PSL Research University 75005 Paris France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Lukáš Trantírek
- Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
| | - Aleksandr B. Sahakyan
- MRC WIMM Centre for Computational Biology MRC Weatherall Institute of Molecular Medicine Radcliffe Department of Medicine University of Oxford Oxford OX3 9DS UK
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jean‐Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
- Laboratoire d'Optique et Biosciences Ecole Polytechnique CNRS INSERM Institut Polytechnique de Paris 91128 Palaiseau France
| |
Collapse
|
27
|
Cheng M, Qiu D, Tamon L, Ištvánková E, Víšková P, Amrane S, Guédin A, Chen J, Lacroix L, Ju H, Trantírek L, Sahakyan AB, Zhou J, Mergny JL. Thermal and pH Stabilities of i-DNA: Confronting in vitro Experiments with Models and In-Cell NMR Data. Angew Chem Int Ed Engl 2021; 60:10286-10294. [PMID: 33605024 DOI: 10.1002/anie.202016801] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/22/2022]
Abstract
Recent studies indicate that i-DNA, a four-stranded cytosine-rich DNA also known as the i-motif, is actually formed in vivo; however, a systematic study on sequence effects on stability has been missing. Herein, an unprecedented number of different sequences (271) bearing four runs of 3-6 cytosines with different spacer lengths has been tested. While i-DNA stability is nearly independent on total spacer length, the central spacer plays a special role on stability. Stability also depends on the length of the C-tracts at both acidic and neutral pHs. This study provides a global picture on i-DNA stability thanks to the large size of the introduced data set; it reveals unexpected features and allows to conclude that determinants of i-DNA stability do not mirror those of G-quadruplexes. Our results illustrate the structural roles of loops and C-tracts on i-DNA stability, confirm its formation in cells, and allow establishing rules to predict its stability.
Collapse
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Liezel Tamon
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Eva Ištvánková
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Pavlína Víšková
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Samir Amrane
- ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France
| | - Aurore Guédin
- ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Laurent Lacroix
- IBENS, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Aleksandr B Sahakyan
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| |
Collapse
|
28
|
Megalathan A, Wijesinghe KM, Ranson L, Dhakal S. Single-Molecule Analysis of Nanocircle-Embedded I-Motifs under Crowding. J Phys Chem B 2021; 125:2193-2201. [PMID: 33629846 DOI: 10.1021/acs.jpcb.0c09640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytosine (C)-rich regions of single-stranded DNA or RNA can fold into a tetraplex structure called i-motifs, which are typically stable under acidic pHs due to the need for protons to stabilize C-C interactions. While new studies have shown evidence for the formation of i-motifs at neutral and even physiological pH, it is not clear whether i-motifs can stably form in cells where DNA experiences topological constraint and crowding. Similarly, several studies have shown that a molecularly crowded environment promotes the formation of i-motifs at physiological pH; however, whether the intracellular crowding counteracts the topological destabilization of i-motifs is yet to be investigated. In this manuscript, using fluorescence resonance energy transfer (FRET)-based single-molecule analyses of human telomeric (hTel) i-motifs embedded in nanocircles as a proof-of-concept platform, we investigated the overall effects of crowding and topological constraint on the i-motif behavior. The smFRET analysis of the nanoassembly showed that the i-motif remains folded at pH 5.5 but unfolds at higher pHs. However, in the presence of a crowder (30% PEG 6000), i-motifs are formed at physiological pH overcoming the topological constraint imposed by the DNA nanocircles. Analysis of FRET-time traces show that the hTel sequence primarily assumes the folded state at pH ≤7.0 under crowding, but it undergoes slow conformational transitions between the folded and unfolded states at physiological pH. Our demonstration that the i-motif can form under cell-mimic crowding and topologically constrained environments may provide new insights into the potential biological roles of i-motifs and also into the design and development of i-motif-based biosensors, therapy, and other nanotechnological applications.
Collapse
Affiliation(s)
- Anoja Megalathan
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kalani M Wijesinghe
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Leslie Ranson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
29
|
Gargallo R, Aviñó A, Eritja R, Jarosova P, Mazzini S, Scaglioni L, Taborsky P. Study of alkaloid berberine and its interaction with the human telomeric i-motif DNA structure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119185. [PMID: 33234477 DOI: 10.1016/j.saa.2020.119185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
The alkaloid berberine presents many biological activities related to its potential to bind DNA structures, such as duplex or G-quadruplex. Recently, it has been proposed that berberine may interact with i-motif structures formed from the folding of cytosine-rich sequences. In the present work, the interaction of this alkaloid with the i-motif formed by the human telomere cytosine-rich sequence, as well as with several positive and negative controls, has been studied. Molecular fluorescence and circular dichroism spectroscopies, as well as nuclear magnetic resonance spectrometry and competitive dialysis, have been used with this purpose. The results shown here reveal that the interaction of berberine with this i-motif is weak, mostly electrostatics in nature and takes place with bases not involved in C·C+ base pairs. Moreover, this ligand is not selective for i-motif structures, as binds equally to both, folded structure, and unfolded strand, without producing any stabilization of the i-motif. As a conclusion, the development of analytical methods based on the interaction of fluorescent ligands, such as berberine, with i-motif structures should consider the thermodynamic aspects related with the interaction, as well as the selectivity of the proposed ligands with different DNA structures, including unfolded strands.
Collapse
Affiliation(s)
- R Gargallo
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1, E-08028 Barcelona, Spain.
| | - A Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - R Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - P Jarosova
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - S Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - L Scaglioni
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - P Taborsky
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| |
Collapse
|
30
|
de la Hoz A, Navarro A, Aviñó A, Eritja R, Gargallo R. Studies on the interactions of Ag(i) with DNA and their implication on the DNA-templated synthesis of silver nanoclusters and on the interaction with complementary DNA and RNA sequences. RSC Adv 2021; 11:9029-9042. [PMID: 35423401 PMCID: PMC8695332 DOI: 10.1039/d1ra00194a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
Silver nanoclusters (AgNCs) prepared by the reduction of silver ions in the presence of DNA oligonucleotides have attracted great interest as potential diagnostic tools for their tunable and high fluorescent properties. In this work, three DNA sequences that consist of a 12-nucleotide long probe sequence at the 5′-end linked to the complementary sequence to three miRNAs are studied. First, the interaction of these sequences with Ag(i) was characterized by means of circular dichroism spectroscopy. By applying multivariate methods to the analysis of spectroscopic data, two complexes with different Ag(i) : DNA ratios were resolved. Secondly, the impact of several experimental variables, such as temperature, borohydride concentration and reaction time, on the formation of AgNCs templated by these three sequences was studied. Finally, the fluorescence properties of the duplexes formed by DNA probes with complementary DNA or miRNA sequences were studied. The results presented here highlight the role of the secondary structure adopted by the DNA probe on the fluorescence properties of DNA-stabilized AgNCs which, in turn, affect the development of methods for miRNA detection. Variables affecting the fluorescent properties of DNA-stabilized silver nanoclusters are studied. The secondary structure of the AgNC-stabilizing DNA sequence dramatically affects the analytical signal behind the hybridization reaction.![]()
Collapse
Affiliation(s)
- Alejandra de la Hoz
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona Marti i Franquès 1 E-08028 Barcelona Spain
| | - Alba Navarro
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona Marti i Franquès 1 E-08028 Barcelona Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN Jordi Girona 18-26 E-08034 Barcelona Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN Jordi Girona 18-26 E-08034 Barcelona Spain
| | - Raimundo Gargallo
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona Marti i Franquès 1 E-08028 Barcelona Spain
| |
Collapse
|
31
|
Sengupta P, Bose D, Chatterjee S. The Molecular Tête-à-Tête between G-Quadruplexes and the i-motif in the Human Genome. Chembiochem 2021; 22:1517-1537. [PMID: 33355980 DOI: 10.1002/cbic.202000703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/16/2020] [Indexed: 12/22/2022]
Abstract
G-Quadruplex (GQ) and i-motif structures are the paradigmatic examples of nonclassical tetrastranded nucleic acids having multifarious biological functions and widespread applications in therapeutics and material science. Recently, tetraplexes emerged as promising anticancer targets due to their structural robustness, gene-regulatory roles, and predominant distribution at specific loci of oncogenes. However, it is arguable whether the i-motif evolves in the complementary single-stranded region after GQ formation in its opposite strand and vice versa. In this review, we address the prerequisites and significance of the simultaneous and/or mutually exclusive formation of GQ and i-motif structures at complementary and sequential positions in duplexes in the cellular milieu. We discussed how their dynamic interplay Sets up cellular homeostasis and exacerbates carcinogenesis. The review gives insights into the spatiotemporal formation of GQ and i-motifs that could be harnessed to design different types of reporter systems and diagnostic platforms for potential bioanalytical and therapeutic intervention.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Debopriya Bose
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| |
Collapse
|
32
|
Nishio M, Tsukakoshi K, Ikebukuro K. G-quadruplex: Flexible conformational changes by cations, pH, crowding and its applications to biosensing. Biosens Bioelectron 2021; 178:113030. [PMID: 33524709 DOI: 10.1016/j.bios.2021.113030] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
G-quadruplex (G4) is a non-canonical structure that is formed in G-rich sequences of nucleic acids. G4s play important roles in vivo, such as telomere maintenance, transcription, and DNA replication. There are three typical topologies of G4: parallel, anti-parallel, and hybrid. In general, metal cations, such as potassium and sodium, stabilize G4s through coordination in the G-quartet. While G4s have some functions in vivo, there are many reports of developed applications that use G4s. As various conformations of G4s could form from one sequence depending on varying conditions, many researchers have developed G4-based sensors. Furthermore, G4 is a great scaffold of aptamers since many aptamers folded into G4s have also been reported. However, there are some challenges about its practical use due to the difference between practical sample conditions and experimental ones. G4 conformations are dramatically altered by the surrounding conditions, such as metal cations, pH, and crowding. Many studies have been conducted to characterize G4 conformations under various conditions, not only to use G4s in practical applications but also to reveal its function in vivo. In this review, we summarize recent studies that have investigated the effects of surrounding conditions (e.g., metal cations, pH, and crowding) on G4 conformations and the application of G4s mainly in biosensor fields, and in others.
Collapse
Affiliation(s)
- Maui Nishio
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
33
|
Luo Y, Granzhan A, Verga D, Mergny JL. FRET-MC: A fluorescence melting competition assay for studying G4 structures in vitro. Biopolymers 2020; 112:e23415. [PMID: 33368198 DOI: 10.1002/bip.23415] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022]
Abstract
G-quadruplexes (G4) play crucial roles in biology, analytical chemistry and nanotechnology. The stability of G4 structures is impacted by the number of G-quartets, the length and positions of loops, flanking motifs, as well as additional structural elements such as bulges, capping base pairs, or triads. Algorithms such as G4Hunter or Quadparser may predict if a given sequence is G4-prone by calculating a quadruplex propensity score; however, experimental validation is still required. We previously demonstrated that this validation is not always straightforward, and that a combination of techniques is often required to unambiguously establish whether a sequence forms a G-quadruplex or not. In this article, we adapted the well-known FRET-melting assay to characterize G4 in batch, where the sequence to be tested is added, as an unlabeled competitor, to a system composed of a dual-labeled probe (F21T) and a specific quadruplex ligand. PhenDC3 was preferred over TMPyP4 because of its better selectivity for G-quadruplexes. In this so-called FRET-MC (melting competition) assay, G4-forming competitors lead to a marked decrease of the ligand-induced stabilization effect (∆Tm ), while non-specific competitors (e.g., single- or double-stranded sequences) have little effect. Sixty-five known sequences with different typical secondary structures were used to validate the assay, which was subsequently employed to assess eight novel sequences that were not previously characterized.
Collapse
Affiliation(s)
- Yu Luo
- Université Paris Saclay, CNRS UMR9187, INSERM U1196, Institut Curie, Orsay, France.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, Palaiseau, France
| | - Anton Granzhan
- Université Paris Saclay, CNRS UMR9187, INSERM U1196, Institut Curie, Orsay, France
| | - Daniela Verga
- Université Paris Saclay, CNRS UMR9187, INSERM U1196, Institut Curie, Orsay, France
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
34
|
Chalikian TV, Liu L, Macgregor RB. Duplex-tetraplex equilibria in guanine- and cytosine-rich DNA. Biophys Chem 2020; 267:106473. [PMID: 33031980 DOI: 10.1016/j.bpc.2020.106473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Noncanonical four-stranded DNA structures, including G-quadruplexes and i-motifs, have been discovered in the cell and are implicated in a variety of genomic regulatory functions. The tendency of a specific guanine- and cytosine-rich region of genomic DNA to adopt a four-stranded conformation depends on its ability to overcome the constraints of duplex base-pairing by undergoing consecutive duplex-to-coil and coil-to-tetraplex transitions. The latter ability is determined by the balance between the free energies of participating ordered and disordered structures. In this review, we present an overview of the literature on the stability of G-quadruplex and i-motif structures and discuss the extent of duplex-tetraplex competition as a function of the sequence context of the DNA and environmental conditions including temperature, pH, salt, molecular crowding, and the presence of G-quadruplex-binding ligands. We outline how the results of in vitro studies can be expanded to understanding duplex-tetraplex equilibria in vivo.
Collapse
Affiliation(s)
- Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| | - Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
35
|
Miao D, Yu Y, Chen Y, Liu Y, Su G. Facile Construction of i-Motif DNA-Conjugated Gold Nanostars as Near-Infrared and pH Dual-Responsive Targeted Drug Delivery Systems for Combined Cancer Therapy. Mol Pharm 2020; 17:1127-1138. [PMID: 32092274 DOI: 10.1021/acs.molpharmaceut.9b01159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stimuli-responsive DNA-based nanostructures have emerged as promising vehicles for intelligent drug delivery. In this study, i-motif DNA-conjugated gold nanostars (GNSs) were fabricated in a facile manner as stimuli-responsive drug delivery systems (denoted as A-GNS/DNA/DOX) for the treatment of cancer via combined chemo-photothermal therapy. The i-motif DNA is sensitive to the environmental pH and can switch from a single-stranded structure to a C-tetrad (i-motif) structure as the environmental pH decreases from neutral (∼7.4) to acidic (<6.0). The loaded drug can then be released along with the conformational changes. To enhance cellular uptake and improve cancer cell selectivity, the aptamer AS1411, which recognizes nucleolins, was employed as a targeting moiety. The A-GNS/DNA/DOX nanocomposites were found to be highly capable of photothermal conversion and exhibited photostability under near-infrared (NIR) irradiation, and the pH and NIR irradiation effectively triggered the drug-release behaviors. In addition, the A-GNS/DNA/DOX nanocomposites exhibited good biocompatibility. The targeting recognition enabled the A-GNS/DNA/DOX to exhibit higher cellular uptake and therapeutic efficiency than the GNS/DNA/DOX. Notably, under NIR irradiation, a synergistic effect between chemotherapy and photothermal therapy can be achieved with the proposed delivery system, which exhibits much higher therapeutic efficiency both in monolayer cancer cells and tumor spheroids as compared with a single therapeutic method. This study highlights the potential of GNS/DNA nanoassemblies for intelligent anticancer drug delivery and combined cancer therapy.
Collapse
Affiliation(s)
- Dandan Miao
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yong Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| |
Collapse
|
36
|
Shi L, Cao F, Zhang L, Tian Y. I-motif Formed at Physiological pH Triggered by Spatial Confinement of Nanochannels: An Electrochemical Platform for pH Monitoring in Brain Microdialysates. Anal Chem 2020; 92:4535-4540. [PMID: 32052626 DOI: 10.1021/acs.analchem.9b05732] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The development of switches responding to specific pH changes was particularly useful in wide application fields. Owing to flexible switches simulated by pH, i-motif DNAs are widely used as a pH sensor. But its character of structure transition strongly dependent on acidic pH severely hampers the application of i-motif DNA in physiological media. Herein, we report the stable i-motif structure formed at a physiological pH triggered by spatial confinement of silica nanochannels. Three classic DNA chains containing 21-mer i-motif domain base-pairs and a single-stranded multiply (T)n spacer, 5'-COOH-(T)n-CCCTAACCCTAACCCTAACCC-3', were employed to evaluate the enhanced stability of i-motif structure. Compared to their free states in a dilute solution, the transition pH of all i-motif DNAs decorated in nanochannels remarkably shifts toward a neutral pH. Moreover, the transition midpoint can be tuned sensitively over the physiologically relevant pH range through slightly varying the length of T base spacer. Density functional theory (DFT) calculations validate that the increased proton density in a nanochannel triggers the formation of an i-motif structure under a neutral pH. Finally, this i-motif DNA based nanochannels electrode was successfully employed to monitor pH in brain microdialysates followed by cerebral ischemia. The present approach is not limited by fundamental investigation for DNA conformation but may extend toward the manipulation of i-motif based structures for artificial molecular machines and signaling systems.
Collapse
Affiliation(s)
- Lu Shi
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Feifei Cao
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Limin Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
37
|
Liu L, Ma C, Wells JW, Chalikian TV. Conformational Preferences of DNA Strands from the Promoter Region of the c-MYC Oncogene. J Phys Chem B 2020; 124:751-762. [PMID: 31923361 DOI: 10.1021/acs.jpcb.9b10518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We characterized the conformational preferences of DNA in an equimolar mixture of complementary G-rich and C-rich strands from the promoter region of the c-MYC oncogene. Our CD-based approach presupposes that the CD spectrum of such a mixture is the spectral sum of the constituent duplex, G-quadruplex, i-motif, and coiled conformations. Spectra were acquired over a range of temperatures at different pHs and concentrations of KCl. Each spectrum was unmixed in terms of the predetermined spectra of the constituent conformational states to obtain the corresponding weighting factors for their fractional contributions to the total population of DNA. The temperature dependences of those contributions then were analyzed in concert according to a model based on a thermodynamic representation of the underlying equilibria. Fitted estimates of the melting enthalpy and temperature obtained for the duplex, G-quadruplex, and i-motif imply that the driving force behind dissociation of the duplex and the concomitant formation of tetrahelical structures is the folding of the G-strand into the G-quadruplex. The liberated C-strand adopts the i-motif conformation at acidic pH and exists in the coiled state at neutral pH. The i-motif alone cannot induce dissociation of the duplex even at pH 5.0, at which it is most stable. Under the physiological conditions of neutral pH, elevated potassium, and room temperature, the duplex and G-quadruplex conformations coexist with the C-strand in the coiled state. Taken together, our results suggest a novel, thermodynamically controlled mechanism for the regulation of gene expression.
Collapse
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - Congshan Ma
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - James W Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| |
Collapse
|
38
|
Chaudhary S, Kaushik M, Ahmed S, Kukreti S. Exploring potential of i-motif DNA formed in the promoter region of GRIN1 gene for nanotechnological applications. RESULTS IN CHEMISTRY 2020. [DOI: 10.1016/j.rechem.2020.100086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
39
|
Megalathan A, Cox BD, Wilkerson PD, Kaur A, Sapkota K, Reiner JE, Dhakal S. Single-molecule analysis of i-motif within self-assembled DNA duplexes and nanocircles. Nucleic Acids Res 2019; 47:7199-7212. [PMID: 31287873 PMCID: PMC6698746 DOI: 10.1093/nar/gkz565] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/13/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022] Open
Abstract
The cytosine (C)-rich sequences that can fold into tetraplex structures known as i-motif are prevalent in genomic DNA. Recent studies of i-motif-forming sequences have shown increasing evidence of their roles in gene regulation. However, most of these studies have been performed in short single-stranded oligonucleotides, far from the intracellular environment. In cells, i-motif-forming sequences are flanked by DNA duplexes and packed in the genome. Therefore, exploring the conformational dynamics and kinetics of i-motif under such topologically constrained environments is highly relevant in predicting their biological roles. Using single-molecule fluorescence analysis of self-assembled DNA duplexes and nanocircles, we show that the topological environments play a key role on i-motif stability and dynamics. While the human telomere sequence (C3TAA)3C3 assumes i-motif structure at pH 5.5 regardless of topological constraint, it undergoes conformational dynamics among unfolded, partially folded and fully folded states at pH 6.5. The lifetimes of i-motif and the partially folded state at pH 6.5 were determined to be 6 ± 2 and 31 ± 11 s, respectively. Consistent with the partially folded state observed in fluorescence analysis, interrogation of current versus time traces obtained from nanopore analysis at pH 6.5 shows long-lived shallow blockades with a mean lifetime of 25 ± 6 s. Such lifetimes are sufficient for the i-motif and partially folded states to interact with proteins to modulate cellular processes.
Collapse
Affiliation(s)
- Anoja Megalathan
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284, USA
| | - Bobby D Cox
- Department of Physics, Virginia Commonwealth University, 701 West Grace Street, Richmond, VA 23284, USA
| | - Peter D Wilkerson
- Department of Physics, Virginia Commonwealth University, 701 West Grace Street, Richmond, VA 23284, USA
| | - Anisa Kaur
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284, USA
| | - Kumar Sapkota
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284, USA
| | - Joseph E Reiner
- Department of Physics, Virginia Commonwealth University, 701 West Grace Street, Richmond, VA 23284, USA
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284, USA
| |
Collapse
|
40
|
Abou Assi H, Garavís M, González C, Damha MJ. i-Motif DNA: structural features and significance to cell biology. Nucleic Acids Res 2019; 46:8038-8056. [PMID: 30124962 PMCID: PMC6144788 DOI: 10.1093/nar/gky735] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022] Open
Abstract
The i-motif represents a paradigmatic example of the wide structural versatility of nucleic acids. In remarkable contrast to duplex DNA, i-motifs are four-stranded DNA structures held together by hemi- protonated and intercalated cytosine base pairs (C:C+). First observed 25 years ago, and considered by many as a mere structural oddity, interest in and discussion on the biological role of i-motifs have grown dramatically in recent years. In this review we focus on structural aspects of i-motif formation, the factors leading to its stabilization and recent studies describing the possible role of i-motifs in fundamental biological processes.
Collapse
Affiliation(s)
- Hala Abou Assi
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Miguel Garavís
- Instituto de Química Física 'Rocasolano', CSIC, C/Serrano 119, 28006 Madrid, Spain
| | - Carlos González
- Instituto de Química Física 'Rocasolano', CSIC, C/Serrano 119, 28006 Madrid, Spain
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
41
|
Tsvetkov VB, Zatsepin TS, Turaev AV, Farzan VM, Pozmogova GE, Aralov AV, Varizhuk AM. DNA i-Motifs With Guanidino- i-Clamp Residues: The Counterplay Between Kinetics and Thermodynamics and Implications for the Design of pH Sensors. Comput Struct Biotechnol J 2019; 17:527-536. [PMID: 31049164 PMCID: PMC6479070 DOI: 10.1016/j.csbj.2019.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 11/12/2022] Open
Abstract
I-motif structures, adopted by cytosine-rich DNA strands, have attracted considerable interest as possible regulatory elements in genomes. Applied science exploits the advantages of i-motif stabilization under acidic conditions: i-motif-based pH sensors and other biocompatible nanodevices are being developed. Two key characteristics of i-motifs as core elements of nanodevices, i.e., their stability under physiological conditions and folding/unfolding rates, still need to be improved. We have previously reported a phenoxazine derivative (i-clamp) that enhances the thermal stability of the i-motif and shifts the pH transition point closer to physiological values. Here, we performed i-clamp guanidinylation to further explore the prospects of clamp-like modifications in i-motif fine-tuning. Based on molecular modeling data, we concluded that clamp guanidinylation facilitated interstrand interactions in an i-motif core and ultimately stabilized the i-motif structure. We tested the effects of guanidino-i-clamp insertions on the thermal stabilities of genomic and model i-motifs. We also investigated the folding/unfolding kinetics of native and modified i-motifs under moderate, physiologically relevant pH alterations. We demonstrated fast folding/unfolding of native genomic and model i-motifs in response to pH stimuli. This finding supports the concept of i-motifs as possible genomic regulatory elements and encourages the future design of rapid-response pH probes based on such structures. Incorporation of guanidino-i-clamp residues at/near the 5′-terminus of i-motifs dramatically decreased the apparent unfolding rates and increased the thermal stabilities of the structures. This counterplay between the effects of modifications on i-motif stability and their effects on kinetics should be taken into account in the design of pH sensors.
Collapse
Affiliation(s)
- Vladimir B Tsvetkov
- Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia.,I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia.,Research Institute of Influenza, Professora Popova str., 15/17, Sankt-Peterburg 197376, Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, 143026 Moscow, Russia.,Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory Str. 1-3, 119992 Moscow, Russia
| | - Anton V Turaev
- Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia.,Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny 141700, Russia
| | - Valentina M Farzan
- Skolkovo Institute of Science and Technology, Skolkovo, 143026 Moscow, Russia
| | - Galina E Pozmogova
- Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia.,Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect, 33, build. 2, Moscow 119071, Russia
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, Moscow 117997, Russia
| | - Anna M Varizhuk
- Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| |
Collapse
|
42
|
Ida J, Chan SK, Glökler J, Lim YY, Choong YS, Lim TS. G-Quadruplexes as An Alternative Recognition Element in Disease-Related Target Sensing. Molecules 2019; 24:E1079. [PMID: 30893817 PMCID: PMC6471233 DOI: 10.3390/molecules24061079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/05/2022] Open
Abstract
G-quadruplexes are made up of guanine-rich RNA and DNA sequences capable of forming noncanonical nucleic acid secondary structures. The base-specific sterical configuration of G-quadruplexes allows the stacked G-tetrads to bind certain planar molecules like hemin (iron (III)-protoporphyrin IX) to regulate enzymatic-like functions such as peroxidase-mimicking activity, hence the use of the term DNAzyme/RNAzyme. This ability has been widely touted as a suitable substitute to conventional enzymatic reporter systems in diagnostics. This review will provide a brief overview of the G-quadruplex architecture as well as the many forms of reporter systems ranging from absorbance to luminescence readouts in various platforms. Furthermore, some challenges and improvements that have been introduced to improve the application of G-quadruplex in diagnostics will be highlighted. As the field of diagnostics has evolved to apply different detection systems, the need for alternative reporter systems such as G-quadruplexes is also paramount.
Collapse
Affiliation(s)
- Jeunice Ida
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Jörn Glökler
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany.
| | - Yee Ying Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
43
|
pH-driven conformational switch between non-canonical DNA structures in a C-rich domain of EGFR promoter. Sci Rep 2019; 9:1210. [PMID: 30718769 PMCID: PMC6362134 DOI: 10.1038/s41598-018-37968-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/17/2018] [Indexed: 01/10/2023] Open
Abstract
EGFR is an oncogene that encodes for a trans-membrane tyrosine kinase receptor. Its mis-regulation is associated to several human cancers that, consistently, can be treated by selective tyrosine kinase inhibitors. The proximal promoter of EGFR contains a G-rich domain located at 272 bases upstream the transcription start site. We previously proved it folds into two main interchanging G-quadruplex structures, one of parallel and one of hybrid topology. Here we present the first evidences supporting the ability of the complementary C-rich strand (EGFR-272_C) to assume an intramolecular i-Motif (iM) structure that, according to the experimental conditions (pH, presence of co-solvent and salts), can coexist with a different arrangement we referred to as a hairpin. The herein identified iM efficiently competes with the canonical pairing of the two complementary strands, indicating it as a potential novel target for anticancer therapies. A preliminary screening for potential binders identified some phenanthroline derivatives as able to target EGFR-272_C at multiple binding sites when it is folded into an iM.
Collapse
|
44
|
Debnath M, Fatma K, Dash J. Chemical Regulation of DNA i‐Motifs for Nanobiotechnology and Therapeutics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Manish Debnath
- School of Chemical SciencesIndian Association for the Cultivation of Science Jadavpur Kolkata- 700032 India
| | - Khushnood Fatma
- School of Chemical SciencesIndian Association for the Cultivation of Science Jadavpur Kolkata- 700032 India
| | - Jyotirmayee Dash
- School of Chemical SciencesIndian Association for the Cultivation of Science Jadavpur Kolkata- 700032 India
| |
Collapse
|
45
|
Debnath M, Fatma K, Dash J. Chemical Regulation of DNA i-Motifs for Nanobiotechnology and Therapeutics. Angew Chem Int Ed Engl 2019; 58:2942-2957. [PMID: 30600876 DOI: 10.1002/anie.201813288] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/27/2018] [Indexed: 12/20/2022]
Abstract
DNA sequences rich in cytosine have the propensity, under acidic pH, to fold into four-stranded intercalated DNA structures called i-motifs. Recent studies have provided significant breakthroughs that demonstrate how chemists can manipulate these structures for nanobiotechnology and therapeutics. The first section of this Minireview discusses the development of advanced functional nanostructures by synthetic conjugation of i-motifs with organic scaffolds and metal nanoparticles and their role in therapeutics. The second section highlights the therapeutic targeting of i-motifs with chemical scaffolds and their significance in biology. For this, first we shed light on the long-lasting debate regarding the stability of i-motifs under physiological conditions. Next, we present a comparative analysis of recently reported small molecules for specifically targeting i-motifs over other abundant DNA structures and modulating their function in cellular systems. These advances provide new insights into i-motif-targeted regulation of gene expression, telomere maintenance, and therapeutic applications.
Collapse
Affiliation(s)
- Manish Debnath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| | - Khushnood Fatma
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| |
Collapse
|
46
|
Abstract
DNA has played an early and powerful role in the development of bottom-up nanotechnologies, not least because of DNA's precise, predictable, and controllable properties of assembly on the nanometer scale. Watson-Crick complementarity has been used to build complex 2D and 3D architectures and design a number of nanometer-scale systems for molecular computing, transport, motors, and biosensing applications. Most of such devices are built with classical B-DNA helices and involve classical A-T/U and G-C base pairs. However, in addition to the above components underlying the iconic double helix, a number of alternative pairing schemes of nucleobases are known. This review focuses on two of these noncanonical classes of DNA helices: G-quadruplexes and the i-motif. The unique properties of these two classes of DNA helix have been utilized toward some remarkable constructions and applications: G-wires; nanostructures such as DNA origami; reconfigurable structures and nanodevices; the formation and utilization of hemin-utilizing DNAzymes, capable of generating varied outputs from biosensing nanostructures; composite nanostructures made up of DNA as well as inorganic materials; and the construction of nanocarriers that show promise for the therapeutics of diseases.
Collapse
Affiliation(s)
- Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China.,ARNA Laboratory , Université de Bordeaux, Inserm U 1212, CNRS UMR5320, IECB , Pessac 33600 , France.,Institute of Biophysics of the CAS , v.v.i., Královopolská 135 , 612 65 Brno , Czech Republic
| | - Dipankar Sen
- Department of Molecular Biology & Biochemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada.,Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
47
|
Wolski P, Nieszporek K, Panczyk T. G-Quadruplex and I-Motif Structures within the Telomeric DNA Duplex. A Molecular Dynamics Analysis of Protonation States as Factors Affecting Their Stability. J Phys Chem B 2018; 123:468-479. [DOI: 10.1021/acs.jpcb.8b11547] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pawel Wolski
- Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland
| | - Krzysztof Nieszporek
- Department of Chemistry, Maria Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 3, 20031 Lublin, Poland
| | - Tomasz Panczyk
- Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland
| |
Collapse
|
48
|
Molecular dynamics analysis of stabilities of the telomeric Watson-Crick duplex and the associated i-motif as a function of pH and temperature. Biophys Chem 2018; 237:22-30. [DOI: 10.1016/j.bpc.2018.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 11/19/2022]
|
49
|
Tsvetkov VB, Zatsepin TS, Belyaev ES, Kostyukevich YI, Shpakovski GV, Podgorsky VV, Pozmogova GE, Varizhuk AM, Aralov AV. i-Clamp phenoxazine for the fine tuning of DNA i-motif stability. Nucleic Acids Res 2018; 46:2751-2764. [PMID: 29474573 PMCID: PMC5888743 DOI: 10.1093/nar/gky121] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Non-canonical DNA structures are widely used for regulation of gene expression, in DNA nanotechnology and for the development of new DNA-based sensors. I-motifs (iMs) are two intercalated parallel duplexes that are held together by hemiprotonated C-C base pairs. Previously, iMs were used as an accurate sensor for intracellular pH measurements. However, iM stability is moderate, which in turn limits its in vivo applications. Here, we report the rational design of a new substituted phenoxazine 2'-deoxynucleotide (i-clamp) for iM stabilization. This residue contains a C8-aminopropyl tether that interacts with the phosphate group within the neighboring chain without compromising base pairing. We studied the influence of i-clamp on pH-dependent stability for intra- and intermolecular iM structures and found the optimal positions for modification. Two i-clamps on opposite strands provide thermal stabilization up to 10-11°C at a pH of 5.8. Thus, we developed a new modification that shows significant iM-stabilizing effect both at strongly and mildly acidic pH and increases iM transition pH values. i-Clamp can be used for tuning iM-based pH probes or assembling extra stable iM structures for various applications.
Collapse
Affiliation(s)
- Vladimir B Tsvetkov
- Biophysics Department, Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia
- Department of Molecular Virology, FSBI Research Institute of Influenza, Ministry of Health of Russian Federation, prof. Popov str. 15/17, Saint-Petersburg, 197376, Russia
- Polyelectrolytes and Biomedical Polymers Laboratory, A.V. Topchiev Institute of Petrochemical Synthesis, RAS, Leninsky prospect str. 29, Moscow 119991, Russia
| | - Timofei S Zatsepin
- Center for Translational Biomedicine, Skolkovo Institute of Science and Technology, 3 Nobel street, Skolkovo, Moscow 143026, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory str. 1–3, Moscow 119992, Russia
| | - Evgeny S Belyaev
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Science, Leninsky prospect str. 31, Moscow 119071 Russia
| | - Yury I Kostyukevich
- Center for Translational Biomedicine, Skolkovo Institute of Science and Technology, 3 Nobel street, Skolkovo, Moscow 143026, Russia
| | - George V Shpakovski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, Moscow 117997, Russia
| | - Victor V Podgorsky
- Biophysics Department, Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia
| | - Galina E Pozmogova
- Biophysics Department, Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia
| | - Anna M Varizhuk
- Biophysics Department, Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, Moscow 117997, Russia
| |
Collapse
|
50
|
He S, Richert C. A Three‐State System Based on Branched DNA Hybrids. Chemistry 2018; 24:4562-4572. [DOI: 10.1002/chem.201705941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Shiliang He
- Institut für Organische ChemieUniversität Stuttgart 70569 Stuttgart Germany
| | - Clemens Richert
- Institut für Organische ChemieUniversität Stuttgart 70569 Stuttgart Germany
| |
Collapse
|