1
|
Putralis R, Korotkaja K, Kaukulis M, Rudevica Z, Jansons J, Nilova O, Rucins M, Krasnova L, Domracheva I, Plotniece M, Pajuste K, Sobolev A, Rumnieks F, Bekere L, Zajakina A, Plotniece A, Duburs G. Styrylpyridinium Derivatives for Fluorescent Cell Imaging. Pharmaceuticals (Basel) 2023; 16:1245. [PMID: 37765053 PMCID: PMC10535741 DOI: 10.3390/ph16091245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
A set of styrylpyridinium (SP) compounds was synthesised in order to study their spectroscopic and cell labelling properties. The compounds comprised different electron donating parts (julolidine, p-dimethylaminophenyl, p-methoxyphenyl, 3,4,5-trimethoxyphenyl), conjugated linkers (vinyl, divinyl), and an electron-withdrawing N-alkylpyridinium part. Geminal or bis-compounds incorporating two styrylpyridinium (bis-SP) moieties at the 1,3-trimethylene unit were synthesised. Compounds comprising a divinyl linker and powerful electron-donating julolidine donor parts possessed intensive fluorescence in the near-infrared region (maximum at ~760 nm). The compounds had rather high cytotoxicity towards the cancerous cell lines HT-1080 and MH-22A; at the same time, basal cytotoxicity towards the NIH3T3 fibroblast cell line ranged from toxic to harmful. SP compound 6e had IC50 values of 1.0 ± 0.03 µg/mL to the cell line HT-1080 and 0.4 µg/mL to MH-22A; however, the basal toxicity LD50 was 477 mg/kg (harmful). The compounds showed large Stokes' shifts, including 195 nm for 6a,b, 240 nm for 6e, and 325 and 352 nm for 6d and 6c, respectively. The highest photoluminescence quantum yield (PLQY) values were observed for 6a,b, which were 15.1 and 12.2%, respectively. The PLQY values for the SP derivatives 6d,e (those with a julolidinyl moiety) were 0.5 and 0.7%, respectively. Cell staining with compound 6e revealed a strong fluorescent signal localised in the cell cytoplasm, whereas the cell nuclei were not stained. SP compound 6e possessed self-assembling properties and formed liposomes with an average diameter of 118 nm. The obtained novel data on near-infrared fluorescent probes could be useful for the development of biocompatible dyes for biomedical applications.
Collapse
Affiliation(s)
- Reinis Putralis
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, LV-1007 Riga, Latvia;
| | - Ksenija Korotkaja
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (K.K.); (Z.R.); (J.J.); (O.N.); (F.R.); (A.Z.)
| | - Martins Kaukulis
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia
| | - Zhanna Rudevica
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (K.K.); (Z.R.); (J.J.); (O.N.); (F.R.); (A.Z.)
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (K.K.); (Z.R.); (J.J.); (O.N.); (F.R.); (A.Z.)
| | - Olga Nilova
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (K.K.); (Z.R.); (J.J.); (O.N.); (F.R.); (A.Z.)
| | - Martins Rucins
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| | - Laura Krasnova
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| | - Ilona Domracheva
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| | - Mara Plotniece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, LV-1007 Riga, Latvia;
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| | - Felikss Rumnieks
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (K.K.); (Z.R.); (J.J.); (O.N.); (F.R.); (A.Z.)
| | - Laura Bekere
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| | - Anna Zajakina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (K.K.); (Z.R.); (J.J.); (O.N.); (F.R.); (A.Z.)
| | - Aiva Plotniece
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, LV-1007 Riga, Latvia;
| | - Gunars Duburs
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (R.P.); (M.K.); (M.R.); (L.K.); (I.D.); (K.P.); (A.S.); (L.B.)
| |
Collapse
|
2
|
Kluska M, Jabłońska J, Prukała W. Analytics, Properties and Applications of Biologically Active Stilbene Derivatives. Molecules 2023; 28:molecules28114482. [PMID: 37298957 DOI: 10.3390/molecules28114482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Stilbene and its derivatives belong to the group of biologically active compounds. Some derivatives occur naturally in various plant species, while others are obtained by synthesis. Resveratrol is one of the best-known stilbene derivatives. Many stilbene derivatives exhibit antimicrobial, antifungal or anticancer properties. A thorough understanding of the properties of this group of biologically active compounds, and the development of their analytics from various matrices, will allow for a wider range of applications. This information is particularly important in the era of increasing incidence of various diseases hitherto unknown, including COVID-19, which is still present in our population. The purpose of this study was to summarize information on the qualitative and quantitative analysis of stilbene derivatives, their biological activity, potential applications as preservatives, antiseptics and disinfectants, and stability analysis in various matrices. Optimal conditions for the analysis of the stilbene derivatives in question were developed using the isotachophoresis technique.
Collapse
Affiliation(s)
- Mariusz Kluska
- Faculty of Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Joanna Jabłońska
- Faculty of Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Wiesław Prukała
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Vaitkienė S, Kuliešienė N, Sakalauskaitė S, Bekere L, Krasnova L, Vigante B, Duburs G, Daugelavičius R. Antifungal activity of styrylpyridinium compounds against Candida albicans. Chem Biol Drug Des 2020; 97:253-265. [PMID: 32772494 DOI: 10.1111/cbdd.13777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/24/2020] [Accepted: 07/25/2020] [Indexed: 02/01/2023]
Abstract
We synthesized a set of 13 new and earlier described styrylpyridinium compounds (N-alkyl styrylpyridinium salts with bromide or tosylate anions) in order to evaluate antifungal activity against C. albicans cells, to assay the possible synergism with fluconazole, and to estimate cytotoxicity to mammalian cells. All compounds were synthesized according to a well-known two-step procedure involving alkylation of γ-picoline with appropriate alkyl bromide and further condensation with substituted benzaldehyde. Compounds with long N-alkyl chains (C18 H37 -C20 H41 ) had no antifungal activity against the cells of all tested C. albicans strains. Other styrylpyridinium compounds were able to inhibit yeast growth at the concentrations of 0.06-16 μg/ml. At fungicidal concentrations, the compound with the CN- group was least toxic to mammalian cells, showed the most effective synergism with fluconazole, and only slightly inhibited the respiration of C. albicans. The compound with the 4'-diethylamino group exhibited the strongest fungicidal properties and effectively blocked the respiration of C. albicans cells. However, toxicity to mammalian cells was also high. Summarizing, the results of our study indicate that styrylpyridinium compounds are promising candidates in the development of new antifungal drugs.
Collapse
Affiliation(s)
- Simona Vaitkienė
- Department of Biochemistry, Vytautas Magnus University, Kaunas, Lithuania
| | - Neringa Kuliešienė
- Department of Biochemistry, Vytautas Magnus University, Kaunas, Lithuania
| | | | - Laura Bekere
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | | | - Gunars Duburs
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | |
Collapse
|
4
|
Jabłońska J, Kluska M, Erchak N. The challenge of separating and determining biologically active electrostatically stabilized silanates using the high-performance liquid chromatography technique. J Sep Sci 2020; 43:3399-3407. [PMID: 32567759 DOI: 10.1002/jssc.202000453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022]
Abstract
We present the results of research on the optimal conditions for the separation and determination of newly obtained hypercoordinated compounds, which belong to the group of electrostatically stabilized silanates. The research involved five stationary and four mobile phases. The best selectivity was obtained using the graphite phase and the mobile phase consisting of acetonitrile/water (80/20). The maximum selectivity of the determined electrostatically stabilized silanates was 1.13 and 1.06 for (1), (2), (3); 1.10 and 1.15 for (4), (5), (6); and 1.12 and 1.15 for (7), (8), (9). The octadecyl phase (which is recommended as standard) did not yield satisfactory results.
Collapse
Affiliation(s)
- Joanna Jabłońska
- Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Mariusz Kluska
- Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | | |
Collapse
|
5
|
Kluska M, Jabłońska J, Erchak N. Analytics and Application of Biologically Active Pentacoordinate Electrostatically Stabilized Silanates. Crit Rev Anal Chem 2019; 51:1-7. [PMID: 31526141 DOI: 10.1080/10408347.2019.1666249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The objective of this study was to synthesize information on the analytics, using two separation techniques, and the application of electrostatically stabilized silanate derivatives. They are biologically active, water-soluble, hydrolytically stable and biodegradable. Some of these compounds are used as plant growth regulators, while others, with higher molecular mass and lower electrophoretic mobility, are used in the form of terminating electrolytes in isotachophoresis, which is regarded as one of the green chemistry techniques. Two compounds were successfully used in the form of terminating electrolyte solutions, i.e. 4,4'-bis{1-(perhydroazepiniomethyl)[spirobi(1-sila-2,5-dioxacyclopentane-3-on)]at}, and 4,4'-bis{1-[(N,N-dimethyl)aminiomethyl]spirobi(1-sila-2,5-dioxacyclopentane-3-on)at} to isolate organic ionic substances with high molecular mass, e.g. derivatives of quinoline, stilbene and electrostatically stabilized silanates (ES-silanates). Establishing the best conditions for the analysis of these derivatives extends the possibilities of conducting research on their biological activity and miscellaneous applications. Furthermore, the terminating electrolytes used in the form of solutions of electrostatically stabilized silanates allow the analysis of both cationic and anionic forms.
Collapse
Affiliation(s)
- Mariusz Kluska
- Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Joanna Jabłońska
- Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | | |
Collapse
|