1
|
Wang Q, Liu K, Cao X, Rong W, Shi W, Yu Q, Deng W, Yu J, Xu X. Plant-derived exosomes extracted from Lycium barbarum L. loaded with isoliquiritigenin to promote spinal cord injury repair based on 3D printed bionic scaffold. Bioeng Transl Med 2024; 9:e10646. [PMID: 39036078 PMCID: PMC11256167 DOI: 10.1002/btm2.10646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/30/2023] [Accepted: 01/12/2024] [Indexed: 07/23/2024] Open
Abstract
Plant-derived exosomes (PEs) possess an array of therapeutic properties, including antitumor, antiviral, and anti-inflammatory capabilities. They are also implicated in defensive responses to pathogenic attacks. Spinal cord injuries (SCIs) regeneration represents a global medical challenge, with appropriate research concentration on three pivotal domains: neural regeneration promotion, inflammation inhibition, and innovation and application of regenerative scaffolds. Unfortunately, the utilization of PE in SCI therapy remains unexplored. Herein, we isolated PE from the traditional Chinese medicinal herb, Lycium barbarum L. and discovered their inflammatory inhibition and neuronal differentiation promotion capabilities. Compared with exosomes derived from ectomesenchymal stem cells (EMSCs), PE demonstrated a substantial enhancement in neural differentiation. We encapsulated isoliquiritigenin (ISL)-loaded plant-derived exosomes (ISL@PE) from L. barbarum L. within a 3D-printed bionic scaffold. The intricate construct modulated the inflammatory response following SCI, facilitating the restoration of damaged axons and culminating in ameliorated neurological function. This pioneering investigation proposes a novel potential route for insoluble drug delivery via plant exosomes, as well as SCI repair. The institutional animal care and use committee number is UJS-IACUC-2020121602.
Collapse
Affiliation(s)
- Qilong Wang
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Kai Liu
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Xia Cao
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Wanjin Rong
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Wenwan Shi
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Qintong Yu
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Wenwen Deng
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Jiangnan Yu
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| | - Ximing Xu
- Department of PharmaceuticsSchool of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu UniversityZhenjiangPeople's Republic of China
- Medicinal Function Development of New Food ResourcesJiangsu Provincial Research CenterZhenjiangPeople's Republic of China
| |
Collapse
|
2
|
Yoo J, Shin JC, Lim KB, Kim SH, Kim HS, Kim SH, Baek D, Jo S, Kim J, Baek A, Cho SR. Exposure to an enriched environment modulates the synaptic vesicle cycle in a mouse spinal cord injury model. Sci Rep 2024; 14:11946. [PMID: 38789574 PMCID: PMC11126684 DOI: 10.1038/s41598-024-62112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Spinal cord injury (SCI) leads to motor and sensory impairment below the site of injury, thereby necessitating rehabilitation. An enriched environment (EE) increases social interaction and locomotor activity in a mouse model, similar to human rehabilitation. However, the impact of EE on presynaptic plasticity in gene expression levels remains unclear. Hence, this study aimed to investigate the therapeutic potential of EE in an SCI mouse model. Mice with spinal cord contusion were divided into two groups: those housed in standard cages (control) and those in EE conditions (EE). Each group was housed separately for either 2- or 8-weeks post-injury, after which RNA sequencing was performed and compared to a sham group (receiving only a dorsal laminectomy). The synaptic vesicle cycle (SVC) pathway and related genes showed significant downregulation after SCI at both time points. Subsequently, we investigated whether exposure to EE for 2- and 8-weeks post-SCI could modulate the SVC pathway and its related genes. Notably, exposure to EE for 8 weeks resulted in a marked reversal effect of SVC-related gene expression, along with stimulation of axon regeneration and mitigation of locomotor activity loss. Thus, prolonged exposure to EE increased presynaptic activity, fostering axon regeneration and functional improvement by modulating the SVC in the SCI mouse model. These findings suggest that EE exposure proves effective in inducing activity-dependent plasticity, offering a promising therapeutic approach akin to rehabilitation training in patients with SCI.
Collapse
Affiliation(s)
- Jeehyun Yoo
- Department of Rehabilitation Medicine, Ilsan Paik Hospital, Inje University, Gyeonggi-do, South Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Cheol Shin
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Kil-Byung Lim
- Department of Rehabilitation Medicine, Ilsan Paik Hospital, Inje University, Gyeonggi-do, South Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Seok Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Hoon Kim
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Dawoon Baek
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Seongmoon Jo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Jinyoung Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, South Korea
| | - Ahreum Baek
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea.
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, South Korea.
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
3
|
Modi AD, Parekh A, Patel ZH. Methods for evaluating gait associated dynamic balance and coordination in rodents. Behav Brain Res 2024; 456:114695. [PMID: 37783346 DOI: 10.1016/j.bbr.2023.114695] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/04/2023]
Abstract
Balance is the dynamic and unconscious control of the body's centre of mass to maintain postural equilibrium. Regulated by the vestibular system, head movement and acceleration are processed by the brain to adjust joints. Several conditions result in a loss of balance, including Alzheimer's Disease, Parkinson's Disease, Menière's Disease and cervical spondylosis, all of which are caused by damage to certain parts of the vestibular pathways. Studies about the impairment of the vestibular system are challenging to carry out in human trials due to smaller study sizes limiting applications of the results and a lacking understanding of the human balance control mechanism. In contrast, more controlled research can be performed in animal studies which have fewer confounding factors than human models and allow specific conditions that affect balance to be replicated. Balance control can be studied using rodent balance-related behavioural tests after spinal or brain lesions, such as the Basso, Beattie and Bresnahan (BBB) Locomotor Scale, Foot Fault Scoring System, Ledged Beam Test, Beam Walking Test, and Ladder Beam Test, which are discussed in this review article along with their advantages and disadvantages. These tests can be performed in preclinical rodent models of femoral nerve injury, stroke, spinal cord injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Akshat D Modi
- Department of Biological Sciences, University of Toronto, Scarborough, Ontario M1C 1A4, Canada; Department of Genetics and Development, Krembil Research Institute, Toronto, Ontario M5T 0S8, Canada.
| | - Anavi Parekh
- Department of Neuroscience, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Zeenal H Patel
- Department of Biological Sciences, University of Toronto, Scarborough, Ontario M1C 1A4, Canada; Department of Biochemistry, University of Toronto, Scarborough, Ontario M1C 1A4, Canada
| |
Collapse
|
4
|
Coyoy-Salgado A, Orozco-Barrios C, Sánchez-Torres S, Olayo MG, Cruz GJ, Morales-Corona J, Olayo R, Diaz-Ruiz A, Ríos C, Alvarez-Mejia L, Mondragón-Lozano R, Morales-Guadarrama A, Alonso-García AL, Fabela-Sánchez O, Salgado-Ceballos H. Gene expression and locomotor recovery in adult rats with spinal cord injury and plasma-synthesized polypyrrole/iodine application combined with a mixed rehabilitation scheme. Front Neurol 2023; 14:1124245. [PMID: 37288064 PMCID: PMC10243140 DOI: 10.3389/fneur.2023.1124245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/14/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Spinal cord injury (SCI) can cause paralysis, for which effective therapeutic strategies have not been developed yet. The only accepted strategy for patients is rehabilitation (RB), although this does not allow complete recovery of lost functions, which makes it necessary to combine it with strategies such as plasma-synthesized polypyrrole/iodine (PPy/I), a biopolymer with different physicochemical properties than PPy synthesized by conventional methods. After SCI in rats, PPy/I promotes functional recovery. Therefore, the purpose of this study was to increase the beneficial effects of both strategies and identify which genes activate PPy/I when applied alone or in combination with a mixed scheme of RB by swimming and enriched environment (SW/EE) in rats with SCI. Methods Microarray analysis was performed to identify mechanisms of action underlying the effects of PPy/I and PPy/I+SW/EE on motor function recovery as evaluated by the BBB scale. Results Results showed robust upregulation by PPy/I in genes related to the developmental process, biogenesis, synapse, and synaptic vesicle trafficking. In addition, PPy/I+SW/EE increased the expression of genes related to proliferation, biogenesis, cell development, morphogenesis, cell differentiation, neurogenesis, neuron development, and synapse formation processes. Immunofluorescence analysis showed the expression of β-III tubulin in all groups, a decreased expression of caspase-3 in the PPy/I group and GFAP in the PPy/I+SW/EE group (p < 0.05). Better preservation of nerve tissue was observed in PPy/I and PPy/SW/EE groups (p < 0.05). In the BBB scale, the control group scored 1.72 ± 0.41, animals with PPy/I treatment scored 4.23 ± 0.33, and those with PPy/I+SW/EE scored 9.13 ± 0.43 1 month after follow-up. Conclusion Thus, PPy/I+SW/EE could represent a therapeutic alternative for motor function recovery after SCI.
Collapse
Affiliation(s)
- Angélica Coyoy-Salgado
- Researchers for Mexico CONACyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
| | - Carlos Orozco-Barrios
- Researchers for Mexico CONACyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
| | - Stephanie Sánchez-Torres
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | - María Guadalupe Olayo
- Instituto Nacional de Investigaciones Nucleares, Department of Physics, Axapusco, Mexico
| | - Guillermo Jesus Cruz
- Instituto Nacional de Investigaciones Nucleares, Department of Physics, Axapusco, Mexico
| | - Juan Morales-Corona
- Department of Physics, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Roberto Olayo
- Department of Physics, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | - Araceli Diaz-Ruiz
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., Department of Neurochemistry, Mexico City, Mexico
| | - Camilo Ríos
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez S.S.A., Department of Neurochemistry, Mexico City, Mexico
| | - Laura Alvarez-Mejia
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| | - Rodrigo Mondragón-Lozano
- Researchers for Mexico CONACyT-Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
| | - Axayacatl Morales-Guadarrama
- Electrical Engineering Department, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
- National Center for Research in Imaging and Medical Instrumentation, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico
| | | | - Omar Fabela-Sánchez
- Researchers for Mexico CONACyT-Centro de Investigación en Química Aplicada, Department of Chemistry Macromolecules and Nanomaterials, Saltillo, Mexico
| | - Hermelinda Salgado-Ceballos
- Research Center of the Proyecto CAMINA A.C., Mexico City, Mexico
- Instituto Mexicano del Seguro Social, Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center Siglo XXI, Mexico City, Mexico
| |
Collapse
|
5
|
Bayır UÖ, Aksu R, Öz Gergin Ö, Onder GO, Sencar L, Günay E, Yay AH, Karaman İ, Bicer C, Polat S. The effect of pulsed radiofrequency application on nerve healing after sciatic nerve anastomosis in rats. Ultrastruct Pathol 2022; 46:313-322. [PMID: 35866415 DOI: 10.1080/01913123.2022.2066237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The Effect of Pulsed Radiofrequency Application on Nerve Healing After Sciatic Nerve Anastomosis in Rats. In this study, we aimed to evaluate the histomorphological and functional effect of Pulsed Radiofrequency (PRF) application on regeneration after experimental nerve damage in rats. Forty Sprague-Dawley male rats were used in the study. Sciatic nerve incision was applied to all rats and then anastomosis was performed. Twenty rats were separated as the control group, and the remaining 20 rats underwent PRF every day at 42oC, for 120 seconds. The groups were divided into two further subgroups to be sacrificed on the 15th and 30th days. Tissue samples were obtained from all groups at 24 hours and 72 hours after the injury. Sections of sciatic nerve samples were stained with hematoxylin-eosin for light microscopic investigation and prepared for evaluation of ultrastructural changes with transmission electron microscopy. In the evaluation of axon numbers and diameters were seen that the 30th-day RF group had an increase compared to the control group. In the electron microscopic examination, it was observed that myelinated and unmyelinated nerve fiber sheaths had borders that are more regular in the RF group, the nucleus structures of schwann cells were better preserved, mitochondrial damage was less, and the extensions of fibroblast and collagen fibers were smoother than the control group. The findings suggested that PRF application has a positive contribution histologically on nerve healing in the early period after full-layer incision nerve injury anastomosis surgery.
Collapse
Affiliation(s)
- Uğur Ö Bayır
- Department of Anesthesiology and Reanimation, Yozgat State Hospital, Yozgat, Turkey
| | - Recep Aksu
- Department of Anesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Özlem Öz Gergin
- Department of Anesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Leman Sencar
- Department of Histology and Embryology, Cukurova University, Medical Faculty, Adana, Turkey
| | - Eray Günay
- Department of Orthopaedic Surgery and Traumatology, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Arzu H Yay
- Department of Histology and Embryology, Medical Faculty, Erciyes University, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - İbrahim Karaman
- Department of Orthopaedic Surgery and Traumatology, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Cihangir Bicer
- Department of Anesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Sait Polat
- Department of Histology and Embryology, Cukurova University, Medical Faculty, Adana, Turkey
| |
Collapse
|
6
|
Harikrishnan V, Palekkodan H, Fasaludeen A, Krishnan LK, Abelson KS. Refinement of the spinal cord injury rat model and validation of its applicability as a model for memory loss and chronic pain. Heliyon 2021; 7:e07500. [PMID: 34286145 PMCID: PMC8278431 DOI: 10.1016/j.heliyon.2021.e07500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/16/2021] [Accepted: 07/03/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Laminectomy produces trauma in spinal cord injury (SCI) animal models resulting in impinging artefacts and welfare issues. Mechanizing laminectomy using a dental burr assisted (DBA) technique to reduce the impact of conventionally performed laminectomy on animal welfare without any alterations in the outcome of the model was previously demonstrated. However, further validation was necessary to establish it as an alternative in developing SCI rats as a model of chronic pain and memory loss. NOVEL METHOD DBA technique was employed to perform laminectomy at T10-T11 vertebrae in rats undergoing contusion SCI as a model of chronic pain and memory loss. In a 56-day study, 24 female Wistar rats (Crl: WI) were assigned randomly to four equal groups: conventionally laminectomised, DBA laminectomised, conventionally laminectomised with SCI and DBA laminectomised with SCI. RESULTS The study revealed DBA technique to cause less surgical bleeding (p = 0.001), lower Rat Grimace Scale (p = 0.0006); resulted in better body weight changes (p = 0.0002 on Day 7 and p = 0.0108 on Day 28) and dark phase activity (p = .0.0014 on Day 1; p = 0.0422 on Day 56). Different techniques did not differ in Basso Beattie Bresnahan score, novel object recognition, mechanical allodynia, number of surviving neurons and the area of vacuolation- indicating that the new method doesn't affect the validity of the model. COMPARISON WITH EXISTING METHODS In comparison with the conventional technique, motorised laminectomy can be a valid tool that evokes lesser pain and ensures higher well-being in rats modelled for chronic pain and memory loss. CONCLUSIONS The intended outcome from the model is not influenced by techniques whereas the DBA-technique is a refined alternative to the conventional method in achieving better welfare in SCI studies.
Collapse
Affiliation(s)
- V.S. Harikrishnan
- Division of Laboratory Animal Science, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hamza Palekkodan
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Pookot, Wayanad, Kerala, India
| | - Ansar Fasaludeen
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Pookot, Wayanad, Kerala, India
| | - Lissy K. Krishnan
- Division of Thrombosis Research, Department of Applied Biology, Bio Medical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Klas S.P. Abelson
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Fouad K, Ng C, Basso DM. Behavioral testing in animal models of spinal cord injury. Exp Neurol 2020; 333:113410. [PMID: 32735871 PMCID: PMC8325780 DOI: 10.1016/j.expneurol.2020.113410] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023]
Abstract
This review is based on a lecture presented at the Craig H. Neilsen Foundation sponsored Spinal Cord Injury Training Program at Ohio State University. We discuss the advantages and challenges of injury models in rodents and theory relation to various behavioral outcome measures. We offer strategies and advice on experimental design, behavioral testing, and on the challenges, one will encounter with animal testing. This review is designed to guide those entering the field of spinal cord injury and/or involved with in vivo animal testing.
Collapse
Affiliation(s)
- K Fouad
- University of Alberta, Faculty of Rehabilitation Medicine, Dept of Physical Therapy, 3-48 Corbett Hall, Edmonton T6G 2G4, Canada; University of Alberta, Neuroscience and Mental Health Institute, 2-132 Li Ka Shing, Edmonton T6G 2E1, Canada.
| | - C Ng
- University of Alberta, Neuroscience and Mental Health Institute, 2-132 Li Ka Shing, Edmonton T6G 2E1, Canada
| | - D M Basso
- Ohio State University, College of Medicine, School of Health and Rehabilitation Sciences, 106A Atwell Hall, 453 W. 10th Ave, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Sánchez-Torres S, Díaz-Ruíz A, Ríos C, Olayo MG, Cruz GJ, Olayo R, Morales J, Mondragón-Lozano R, Fabela-Sánchez O, Orozco-Barrios C, Coyoy-Salgado A, Orozco-Suárez S, González-Ruiz C, Álvarez-Mejía L, Morales-Guadarrama A, Buzoianu-Anguiano V, Damián-Matsumura P, Salgado-Ceballos H. Recovery of motor function after traumatic spinal cord injury by using plasma-synthesized polypyrrole/iodine application in combination with a mixed rehabilitation scheme. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:58. [PMID: 32607849 DOI: 10.1007/s10856-020-06395-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Traumatic spinal cord injury (TSCI) can cause paralysis and permanent disability. Rehabilitation (RB) is currently the only accepted treatment, although its beneficial effect is limited. The development of biomaterials has provided therapeutic possibilities for TSCI, where our research group previously showed that the plasma-synthesized polypyrrole/iodine (PPy/I), a biopolymer with different physicochemical characteristics than those of the PPy synthesized by conventional methods, promotes recovery of motor function after TSCI. The present study evaluated if the plasma-synthesized PPy/I applied in combination with RB could increase its beneficial effects and the mechanisms involved. Adult rats with TSCI were divided into no treatment (control); biopolymer (PPy/I); mixed RB by swimming and enriched environment (SW/EE); and combined treatment (PPy/I + SW/EE) groups. Eight weeks after TSCI, the general health of the animals that received any of the treatments was better than the control animals. Functional recovery evaluated by two scales was better and was achieved in less time with the PPy/I + SW/EE combination. All treatments significantly increased βIII-tubulin (nerve plasticity) expression, but only PPy/I increased GAP-43 (nerve regeneration) and MBP (myelination) expression when were analyzed by immunohistochemistry. The expression of GFAP (glial scar) decreased in treated groups when determined by histochemistry, while morphometric analysis showed that tissue was better preserved when PPy/I and PPy/I + SW/EE were administered. The application of PPy/I + SW/EE, promotes the preservation of nervous tissue, and the expression of molecules related to plasticity as βIII-tubulin, reduces the glial scar, improves general health and allows the recovery of motor function after TSCI. The implant of the biomaterial polypyrrole/iodine (PPy/I) synthesized by plasma (an unconventional synthesis method), in combination with a mixed rehabilitation scheme with swimming and enriched environment applied after a traumatic spinal cord injury, promotes expression of GAP-43 and βIII-tubulin (molecules related to plasticity and nerve regeneration) and reduces the expression of GFAP (molecule related to the formation of the glial scar). Both effects together allow the formation of nerve fibers, the reconnection of the spinal cord in the area of injury and the recovery of lost motor function. The figure shows the colocalization (yellow) of βIII-tubilin (red) and GAP-43 (green) in fibers crossing the epicenter of the injury (arrowheads) that reconnect the rostral and caudal ends of the injured spinal cord and allowed recovery of motor function.
Collapse
Affiliation(s)
- Stephanie Sánchez-Torres
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Av. Cuauhtémoc 330, Col. Doctores, México City, CP, 06720, México
- Doctorate in Biological and Health Sciences, Universidad Autónoma Metropolitana, Iztapalapa, Mexico City, CP, 09340, Mexico
- Proyecto Camina A.C. Research Center, Mexico City, CP, 14050, Mexico
| | - Araceli Díaz-Ruíz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez S.S.A, Mexico city, CP, 14269, Mexico
| | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez S.S.A, Mexico city, CP, 14269, Mexico
| | - María G Olayo
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares. Carretera Mexico-Toluca, km 36.5, Ocoyoacac, State of Mexico, CP, 52750, Mexico
| | - Guillermo J Cruz
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares. Carretera Mexico-Toluca, km 36.5, Ocoyoacac, State of Mexico, CP, 52750, Mexico
| | - Roberto Olayo
- Departamento de Física, Universidad Autónoma Metropolitana, Mexico City, CP, 09340, Mexico
| | - Juan Morales
- Departamento de Física, Universidad Autónoma Metropolitana, Mexico City, CP, 09340, Mexico
| | - Rodrigo Mondragón-Lozano
- Proyecto Camina A.C. Research Center, Mexico City, CP, 14050, Mexico
- CONACyT-Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Mexico City, Mexico
| | - Omar Fabela-Sánchez
- Proyecto Camina A.C. Research Center, Mexico City, CP, 14050, Mexico
- Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana, San Rafael Atlixco 186, 09340, Iztapalapa, CDMX, México
- Catedrático CONACyT-Centro de Investigación en Química Aplicada, Enrique Reyna H. No. 140, San José de los Cerritos, Saltillo, Coahuila, 25294, México
| | - Carlos Orozco-Barrios
- Proyecto Camina A.C. Research Center, Mexico City, CP, 14050, Mexico
- CONACyT-Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Mexico City, Mexico
| | - Angélica Coyoy-Salgado
- Proyecto Camina A.C. Research Center, Mexico City, CP, 14050, Mexico
- CONACyT-Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Av. Cuauhtémoc 330, Col. Doctores, México City, CP, 06720, México
| | - Cristian González-Ruiz
- Proyecto Camina A.C. Research Center, Mexico City, CP, 14050, Mexico
- Escuela Superior de Medicina-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Laura Álvarez-Mejía
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Av. Cuauhtémoc 330, Col. Doctores, México City, CP, 06720, México
- Proyecto Camina A.C. Research Center, Mexico City, CP, 14050, Mexico
- Departamento de Física, Instituto Nacional de Investigaciones Nucleares. Carretera Mexico-Toluca, km 36.5, Ocoyoacac, State of Mexico, CP, 52750, Mexico
| | | | - Vinnitsa Buzoianu-Anguiano
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Av. Cuauhtémoc 330, Col. Doctores, México City, CP, 06720, México
| | - Pablo Damián-Matsumura
- Doctorate in Biological and Health Sciences, Universidad Autónoma Metropolitana, Iztapalapa, Mexico City, CP, 09340, Mexico
| | - Hermelinda Salgado-Ceballos
- Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Av. Cuauhtémoc 330, Col. Doctores, México City, CP, 06720, México.
- Proyecto Camina A.C. Research Center, Mexico City, CP, 14050, Mexico.
| |
Collapse
|
9
|
Neuroprotective effect of novel celecoxib derivatives against spinal cord injury via attenuation of COX-2, oxidative stress, apoptosisand inflammation. Bioorg Chem 2020; 101:104044. [PMID: 32629287 DOI: 10.1016/j.bioorg.2020.104044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/25/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
A novel series of celecoxib derivatives were synthesized and evaluated for cyclooxygenase (COX-1/COX-2) inhibitory activities for benefit in spinal cord injury (SCI). The title compounds were synthesized by conventional methods in good yields and subsequently tested for inhibitory activity against COX-1/COX-2. The most potent COX-2 inhibitor among the tested derivatives was further assayed for protective effect against experimental SCI of Sprague-Dawley rats. The designed compounds showed considerable inhibition of COX-2 as compared to COX-1 revealing compound 7m as most potent inhibitor of COX-2 isoenzyme (IC50 = 0.04 µM). The expression of mitochondrial apoptotic genes (Bcl-2 and Bax) together with COX-2 and iNOS was restored near to normal as evidenced by western blot analysis in SCI rats. Taken altogether, compound 7m was identified as most potent inhibitor of COX-2. It also showed protective action against SCI via attenuation of COX-2, oxidative stress and apoptosis and inflammation in Male Sprague-Dawley rats.
Collapse
|
10
|
Wei Z, Meng X, El Fatimy R, Sun B, Mai D, Zhang J, Arora R, Zeng A, Xu P, Qu S, Krichevsky AM, Selkoe DJ, Li S. Environmental enrichment prevents Aβ oligomer-induced synaptic dysfunction through mirna-132 and hdac3 signaling pathways. Neurobiol Dis 2020; 134:104617. [PMID: 31669733 PMCID: PMC7243177 DOI: 10.1016/j.nbd.2019.104617] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
As the most common cause of progressive cognitive decline in humans, Alzheimer's disease (AD) has been intensively studied, but the mechanisms underlying its profound synaptic dysfunction remain unclear. Here we confirm that exposing wild-type mice to an enriched environment (EE) facilitates signaling in the hippocampus that promotes long-term potentiation (LTP). Exposing the hippocampus of mice kept in standard housing to soluble Aβ oligomers impairs LTP, but EE can fully prevent this. Mechanistically, the key molecular features of the EE benefit are an upregulation of miRNA-132 and an inhibition of histone deacetylase (HDAC) signaling. Specifically, soluble Aβ oligomers decreased miR-132 expression and increased HDAC3 levels in cultured primary neurons. Further, we provide evidence that HDAC3 is a direct target of miR-132. Overexpressing miR-132 or injecting an HDAC3 inhibitor into mice in standard housing mimics the benefits of EE in enhancing hippocampal LTP and preventing hippocampal impairment by Aβ oligomers in vivo. We conclude that EE enhances hippocampal synaptic plasticity by upregulating miRNA-132 and reducing HDAC3 signaling in a way that counteracts the synaptotoxicity of human Aβ oligomers. Our findings provide a rationale for prolonged exposure to cognitive novelty and/or epigenetic modulation to lessen the progressive effects of Aβ accumulation during human brain aging.
Collapse
Affiliation(s)
- Zhiyun Wei
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America; Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xingjun Meng
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Rachid El Fatimy
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America
| | - Bowen Sun
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America
| | - Dongmei Mai
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Junfang Zhang
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America; Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Ningbo, HMS Initiative for RNA Medicine, Zhejiang, China
| | - Ramil Arora
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America
| | - Ailiang Zeng
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shaogang Qu
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan 528300, Guangdong, China
| | - Anna M Krichevsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, United States of America.
| |
Collapse
|
11
|
Therapeutic efficacy of environmental enrichment for substance use disorders. Pharmacol Biochem Behav 2019; 188:172829. [PMID: 31778722 DOI: 10.1016/j.pbb.2019.172829] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
Abstract
Addiction to drug and alcohol is regarded as a major health problem worldwide for which available treatments show limited effectiveness. The biggest challenge remains to enhance the capacities of interventions to reduce craving, prevent relapse and promote long-term recovery. New strategies to meet these challenges are being explored. Findings from preclinical work suggest that environmental enrichment (EE) holds therapeutic potential for the treatment of substance use disorders, as demonstrated in a number of animal models of drug abuse. The EE intervention introduced after drug exposure leads to attenuation of compulsive drug taking, attenuation of the rewarding (and reinforcing) effects of drugs, reductions in control of behavior by drug cues, and, very importantly, relapse prevention. Clinical work also suggests that multidimensional EE interventions (involving physical activity, social interaction, vocational training, recreational and community involvement) might produce similar therapeutic effects, if implemented continuously and rigorously. In this review we survey preclinical and clinical studies assessing the efficacy of EE as a behavioral intervention for substance use disorders and address related challenges. We also review work providing empirical evidence for EE-induced neuroplasticity within the mesocorticolimbic system that is believed to contribute to the seemingly therapeutic effects of EE on drug and alcohol-related behaviors.
Collapse
|
12
|
Torres-Espín A, Beaudry E, Fenrich K, Fouad K. Rehabilitative Training in Animal Models of Spinal Cord Injury. J Neurotrauma 2019; 35:1970-1985. [PMID: 30074874 DOI: 10.1089/neu.2018.5906] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rehabilitative motor training is currently one of the most widely used approaches to promote moderate recovery following injuries of the central nervous system. Such training is generally applied in the clinical setting, whereas it is not standard in preclinical research. This is a concern as it is becoming increasingly apparent that neuroplasticity enhancing treatments require training or some form of activity as a co-therapy to promote functional recovery. Despite the importance of training and the many open questions regarding its mechanistic consequences, its use in preclinical animal models is rather limited. Here we review approaches, findings and challenges when training is applied in animal models of spinal cord injury, and we suggest recommendations to facilitate the integration of training using an appropriate study design, into pre-clinical studies.
Collapse
Affiliation(s)
- Abel Torres-Espín
- Faculty of Rehabilitation Medicine and Institute for Neuroscience and Mental Health, University of Alberta , Edmonton, Alberta, Canada
| | - Eric Beaudry
- Faculty of Rehabilitation Medicine and Institute for Neuroscience and Mental Health, University of Alberta , Edmonton, Alberta, Canada
| | | | - Karim Fouad
- Faculty of Rehabilitation Medicine and Institute for Neuroscience and Mental Health, University of Alberta , Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Zhao W, Li X, Peng Y, Qin Y, Pan J, Li J, Xu A, Ominsky MS, Cardozo C, Feng JQ, Ke HZ, Bauman WA, Qin W. Sclerostin Antibody Reverses the Severe Sublesional Bone Loss in Rats After Chronic Spinal Cord Injury. Calcif Tissue Int 2018; 103:443-454. [PMID: 29931461 PMCID: PMC7891854 DOI: 10.1007/s00223-018-0439-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/08/2018] [Indexed: 12/13/2022]
Abstract
To date, no efficacious therapy exists that will prevent or treat the severe osteoporosis in individuals with neurologically motor-complete spinal cord injury (SCI). Recent preclinical studies have demonstrated that sclerostin antibody (Scl-Ab) can prevent sublesional bone loss after acute SCI in rats. However, it remains unknown whether sclerostin inhibition reverses substantial bone loss in the vast majority of the SCI population who have been injured for several years. This preclinical study tested the efficacy of Scl-Ab to reverse the bone loss that has occurred in a rodent model after chronic motor-complete SCI. Male Wistar rats underwent either complete spinal cord transection or only laminectomy. Twelve weeks after SCI, the rats were treated with Scl-Ab at 25 mg/kg/week or vehicle for 8 weeks. In the SCI group that did not receive Scl-Ab, 20 weeks of SCI resulted in a significant reduction of bone mineral density (BMD) and estimated bone strength, and deterioration of bone structure at the distal femoral metaphysis. Treatment with Scl-Ab largely restored BMD, bone structure, and bone mechanical strength. Histomorphometric analysis showed that Scl-Ab increased bone formation in animals with chronic SCI. In ex vivo cultures of bone marrow cells, Scl-Ab inhibited osteoclastogenesis, and promoted osteoblastogenesis accompanied by increased Tcf7, ENC1, and the OPG/RANKL ratio expression, and decreased SOST expression. Our findings demonstrate for the first time that Scl-Ab reverses the sublesional bone loss when therapy is begun after relatively prolonged spinal cord transection. The study suggests that, in addition to being a treatment option to prevent bone loss after acute SCI, sclerostin antagonism may be a valid clinical approach to reverse the severe bone loss that invariably occurs in patients with chronic SCI.
Collapse
Affiliation(s)
- Wei Zhao
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Yuanzhen Peng
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Yiwen Qin
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Jiangping Pan
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Jiliang Li
- Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Aihua Xu
- Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Michael S Ominsky
- Amgen Inc., Thousand Oaks, CA, USA
- Radius Health, Inc., 950 Winter St, Waltham, MA, 02451, USA
| | - Christopher Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Q Feng
- Baylor College of Dentistry, TX A&M, Dallas, TX, USA
| | | | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weiping Qin
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Environmental enrichment, alone or in combination with various pharmacotherapies, confers marked benefits after traumatic brain injury. Neuropharmacology 2018; 145:13-24. [PMID: 29499273 DOI: 10.1016/j.neuropharm.2018.02.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is a significant health care issue that affects over ten million people worldwide. Treatment options are limited with numerous failures resulting from single therapies. Fortunately, several preclinical studies have shown that combination treatment strategies may afford greater improvement and perhaps can lead to successful clinical translation, particularly if one of the therapies is neurorehabilitation. The aim of this review is to highlight TBI studies that combined environmental enrichment (EE), a preclinical model of neurorehabilitation, with pharmacotherapies. A series of PubMed search strategies yielded only nine papers that fit the criteria. The consensus is that EE provides robust neurobehavioral, cognitive, and histological improvement after experimental TBI and that the combination of EE with some pharmacotherapies can lead to benefits beyond those revealed by single therapies. However, it is noted that EE can be challenged by drugs such as the acetylcholinesterase inhibitor, donepezil, and the antipsychotic drug, haloperidol, which attenuate its efficacy. These findings may help shape clinical neurorehabilitation strategies to more effectively improve patient outcome. Potential mechanisms for the EE and pharmacotherapy-induced effects are also discussed. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
|
15
|
Abstract
OBJECTIVES Cognitive functioning is commonly disrupted in people living with chronic pain, yet it is an aspect of pain that is often not routinely assessed in pain management settings, and there is a paucity of research on treatments or strategies to alleviate the problem. The purpose of this review is to outline recent research on cognitive deficits seen in chronic pain, to give an overview of the mechanisms involved, advocate cognitive functioning as an important target for treatment in pain populations, and discuss ways in which it may be assessed and potentially remediated. METHODS A narrative review. RESULTS There are several options for remediation, including compensatory, restorative, and neuromodulatory approaches to directly modify cognitive functioning, as well as physical, psychological, and medication optimization methods to target secondary factors (mood, sleep, and medications) that may interfere with cognition. DISCUSSION We highlight the potential to enhance cognitive functions and identify the major gaps in the research literature.
Collapse
|
16
|
Wu W, Wei N, Wang L, Kong D, Shao G, Qin Y, Wang L, Du Y. Sevoflurane preconditioning ameliorates traumatic spinal cord injury through caveolin-3-dependent cyclooxygenase-2 inhibition. Oncotarget 2017; 8:87658-87666. [PMID: 29152109 PMCID: PMC5675661 DOI: 10.18632/oncotarget.21142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/26/2017] [Indexed: 01/04/2023] Open
Abstract
Acute traumatic spinal cord injury (tSCI) results in a lifetime of paralysis associated with a host of medical complications. The developing secondary complications of tSCI may result in further chronic neurodegenerative diseases. Sevoflurane preconditioning (SF-PreCon) has shown guaranteed protective effects in myocardial or cerebral ischemic/reperfusion injury. However, the role of SF-PreCon in tSCI still remains to be elucidated. Here, we found that SF-PreCon ameliorated the developing secondary complications through reducing the apoptosis rate and the secretion of inflammatory cytokines in injured spinal cord tissues, and therefore enhancing the recovery after tSCI. Notably, we demonstrated that SF-PreCon ameliorates tSCI through inhibiting Cycloxygenase-2 (COX-2). Importantly, we verified that SF-PreCon inhibits the expression of COX-2 and reduces the apoptosis rate after tSCI via the induction of Caveolin-3 (Cav-3). Taken together, our results suggest that SF-PreCon ameliorates tSCI via Cav-3-dependent COX-2 inhibition and provide an economical and practical method against the secondary injury after tSCI.
Collapse
Affiliation(s)
- Weidong Wu
- Danyang People's Hospital of Jiangsu Province, Danyang, Jiangsu, PR China
| | - Ningxian Wei
- Danyang People's Hospital of Jiangsu Province, Danyang, Jiangsu, PR China
| | - Lihui Wang
- Danyang People's Hospital of Jiangsu Province, Danyang, Jiangsu, PR China
| | - Danhui Kong
- Danyang People's Hospital of Jiangsu Province, Danyang, Jiangsu, PR China
| | - Gang Shao
- Danyang People's Hospital of Jiangsu Province, Danyang, Jiangsu, PR China
| | - Yingchun Qin
- Danyang People's Hospital of Jiangsu Province, Danyang, Jiangsu, PR China
| | - Lixin Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yansheng Du
- School of Medicine, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|
17
|
Purpura G, Cioni G, Tinelli F. Multisensory-Based Rehabilitation Approach: Translational Insights from Animal Models to Early Intervention. Front Neurosci 2017; 11:430. [PMID: 28798661 PMCID: PMC5526840 DOI: 10.3389/fnins.2017.00430] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/12/2017] [Indexed: 11/18/2022] Open
Abstract
Multisensory processes permit combinations of several inputs, coming from different sensory systems, allowing for a coherent representation of biological events and facilitating adaptation to environment. For these reasons, their application in neurological and neuropsychological rehabilitation has been enhanced in the last decades. Recent studies on animals and human models have indicated that, on one hand multisensory integration matures gradually during post-natal life and development is closely linked to environment and experience and, on the other hand, that modality-specific information seems to do not benefit by redundancy across multiple sense modalities and is more readily perceived in unimodal than in multimodal stimulation. In this review, multisensory process development is analyzed, highlighting clinical effects in animal and human models of its manipulation for rehabilitation of sensory disorders. In addition, new methods of early intervention based on multisensory-based rehabilitation approach and their applications on different infant populations at risk of neurodevelopmental disabilities are discussed.
Collapse
Affiliation(s)
- Giulia Purpura
- Department of Developmental Neuroscience, Fondazione Stella Maris (IRCCS)Pisa, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, Fondazione Stella Maris (IRCCS)Pisa, Italy.,Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Francesca Tinelli
- Department of Developmental Neuroscience, Fondazione Stella Maris (IRCCS)Pisa, Italy
| |
Collapse
|
18
|
Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao LR. Traumatic Brain Injury: Current Treatment Strategies and Future Endeavors. Cell Transplant 2017; 26:1118-1130. [PMID: 28933211 PMCID: PMC5657730 DOI: 10.1177/0963689717714102] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 01/04/2023] Open
Abstract
Traumatic brain injury (TBI) presents in various forms ranging from mild alterations of consciousness to an unrelenting comatose state and death. In the most severe form of TBI, the entirety of the brain is affected by a diffuse type of injury and swelling. Treatment modalities vary extensively based on the severity of the injury and range from daily cognitive therapy sessions to radical surgery such as bilateral decompressive craniectomies. Guidelines have been set forth regarding the optimal management of TBI, but they must be taken in context of the situation and cannot be used in every individual circumstance. In this review article, we have summarized the current status of treatment for TBI in both clinical practice and basic research. We have put forth a brief overview of the various subtypes of traumatic injuries, optimal medical management, and both the noninvasive and invasive monitoring modalities, in addition to the surgical interventions necessary in particular instances. We have overviewed the main achievements in searching for therapeutic strategies of TBI in basic science. We have also discussed the future direction for developing TBI treatment from an experimental perspective.
Collapse
Affiliation(s)
- Michael Galgano
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gentian Toshkezi
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Xuecheng Qiu
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
- VA Health Care Upstate New York, Syracuse VA Medical Center, Syracuse, NY, USA
| | - Thomas Russell
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Lawrence Chin
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
- VA Health Care Upstate New York, Syracuse VA Medical Center, Syracuse, NY, USA
| |
Collapse
|
19
|
Hegde P, O'Mara S, Laxmi TR. Extinction of Contextual Fear with Timed Exposure to Enriched Environment: A Differential Effect. Ann Neurosci 2017; 24:90-104. [PMID: 28588364 DOI: 10.1159/000475898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/30/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Extinction of fear memory depends on the environmental and emotional cues. Furthermore, consolidation of extinction is also dependent on the environmental exposure. But, the relationship of the time of the exposure to a variety of environmental cues is not well known. The important region involved in facilitation of extinction of fear memory is through diversion of the flow of information leaving the lateral nucleus of amygdala. PURPOSE The study aimed to address a question to explain how these brain regions react to environmental stimulation during the retention and extinction of fear memory. METHODS An enriched environment (EE) is assumed to mediate extinction of fear memory, we examined the apparent discrepancy between the effects of defensive response, the freezing behavior induced by Pavlovian classical fear conditioning by subjecting them to variance in the timing to EE. The different timing of EE exposure was 10 days of EE either before fear conditioning and/or after extinction training to the rats. The local field potentials was recorded from CA1 hippocampus, lateral nucleus of amygdala and infralimbic region of medial prefrontal cortex (mPFC) during the fear learning and extinction from the control rats and rats exposed to EE before and after fear conditioning. RESULTS Exposure to EE before the fear conditioning and after extinction training was more effective in the extinction fear memory. In addition, we also found switching from exploratory locomotion to freezing during retention of contextual fear memory which was associated with decreased theta power and reduced synchronized theta oscillations in CA1-hippocampus, lateral nucleus of amygdala, and infralimbic region of mPFC. CONCLUSION Thus, we propose that the timing of exposure to EE play a key role in the extinction of fear memory.
Collapse
Affiliation(s)
- Preethi Hegde
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Shane O'Mara
- School of Psychology and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Thenkanidiyoor Rao Laxmi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
20
|
Kuyucu E, Gümüs B, Erbas O, Oltulu F, Bora A. Exenatide promotes regeneration of injured rat sciatic nerve. Neural Regen Res 2017; 12:637-643. [PMID: 28553346 PMCID: PMC5436364 DOI: 10.4103/1673-5374.205105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Damage to peripheral nerves results in partial or complete dysfunction. After peripheral nerve injuries, a full functional recovery usually cannot be achieved despite the standard surgical repairs. Neurotrophic factors and growth factors stimulate axonal growth and support the viability of nerve cells. The objective of this study is to investigate the neurotrophic effect of exenatide (glucagon like peptide-1 analog) in a rat sciatic nerve neurotmesis model. We injected 10 μg/d exenatide for 12 weeks in the experimental group (n = 12) and 0.1 mL/d saline for 12 weeks in the control group (n = 12). We evaluated nerve regeneration by conducting electrophysiological and motor functional tests. Histological changes were evaluated at weeks 1, 3, 6, and 9. Nerve regeneration was monitored using stereomicroscopy. The electrophysiological and motor functions in rats treated with exenatide were improved at 12 weeks after surgery. Histological examination revealed a significant increase in the number of axons in injured sciatic nerve following exenatide treatment confirmed by stereomicroscopy. In an experimentally induced neurotmesis model in rats, exenatide had a positive effect on nerve regeneration evidenced by electromyography, functional motor tests, histological and stereomicroscopic findings.
Collapse
Affiliation(s)
- Ersin Kuyucu
- Department of Orthopedics and Traumatology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Bilal Gümüs
- Orthopedics Clinic, Antalya State Hospital, Antalya, Turkey
| | - Oytun Erbas
- Department of Physiology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Fatih Oltulu
- Department of Histology Clinic, Ege University Faculty of Medicine, Izmir, Turkey
| | - Arslan Bora
- Department of Orthopedics and Traumatology, Izmir Atatürk Training and Educational Research Hospital, Izmir, Turkey
| |
Collapse
|
21
|
McCreary JK, Metz GA. Environmental enrichment as an intervention for adverse health outcomes of prenatal stress. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw013. [PMID: 29492294 PMCID: PMC5804528 DOI: 10.1093/eep/dvw013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/02/2016] [Accepted: 06/20/2016] [Indexed: 05/14/2023]
Abstract
Prenatal stress (PS) has complex neurological, behavioural and physiological consequences for the developing offspring. The phenotype linked to PS usually lasts into adulthood and may even propagate to subsequent generations. The often uncontrollable exposure to maternal stress and the lasting consequences emphasize the urgent need for treatment strategies that effectively reverse stress programming. Exposure to complex beneficial experiences, such as environmental enrichment (EE), is one of the most powerful therapies to promote neuroplasticity and behavioural performance at any time in life. A small number of studies have previously used EE to postnatally treat consequences of PS in the attempt to reverse deficits that were primarily induced in utero . This review discusses the available data on postnatal EE exposure in prenatally stressed individuals. The goal is to determine if EE is a suitable treatment option that reverses adverse consequences of stress programming and enhances stress resiliency. Moreover, this review discusses data with respect to relevant hypotheses including the cumulative stress and the mismatch hypotheses. The articles included in this review emphasize that EE reverses most behavioural, physiological and neural deficits associated with PS. Differing responses may be dependent on the timing and variability of stress and EE, exercise, and potentially vulnerable and resilient phenotypes of PS. Results from this study suggest that enrichment may provide an effective therapy for clinical populations suffering from the effects of PS or early life trauma.
Collapse
Affiliation(s)
- J. Keiko McCreary
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada T1K3M4
| | - Gerlinde A.S. Metz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada T1K3M4
| |
Collapse
|
22
|
Gonzalez-Rothi EJ, Lee KZ, Dale EA, Reier PJ, Mitchell GS, Fuller DD. Intermittent hypoxia and neurorehabilitation. J Appl Physiol (1985) 2015; 119:1455-65. [PMID: 25997947 DOI: 10.1152/japplphysiol.00235.2015] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/18/2015] [Indexed: 02/05/2023] Open
Abstract
In recent years, it has become clear that brief, repeated presentations of hypoxia [i.e., acute intermittent hypoxia (AIH)] can boost the efficacy of more traditional therapeutic strategies in certain cases of neurologic dysfunction. This hypothesis derives from a series of studies in animal models and human subjects performed over the past 35 yr. In 1980, Millhorn et al. (Millhorn DE, Eldridge FL, Waldrop TG. Respir Physiol 41: 87-103, 1980) showed that electrical stimulation of carotid chemoafferent neurons produced a persistent, serotonin-dependent increase in phrenic motor output that outlasts the stimulus for more than 90 min (i.e., a "respiratory memory"). AIH elicits similar phrenic "long-term facilitation" (LTF) by a mechanism that requires cervical spinal serotonin receptor activation and de novo protein synthesis. From 2003 to present, a series of studies demonstrated that AIH can induce neuroplasticity in the injured spinal cord, causing functional recovery of breathing capacity after cervical spinal injury. Subsequently, it was demonstrated that repeated AIH (rAIH) can induce recovery of limb function, and the functional benefits of rAIH are greatest when paired with task-specific training. Since uncontrolled and/or prolonged intermittent hypoxia can elicit pathophysiology, a challenge of intermittent hypoxia research is to ensure that therapeutic protocols are well below the threshold for pathogenesis. This is possible since many low dose rAIH protocols have induced functional benefits without evidence of pathology. We propose that carefully controlled rAIH is a safe and noninvasive modality that can be paired with other neurorehabilitative strategies including traditional activity-based physical therapy or cell-based therapies such as intraspinal transplantation of neural progenitors.
Collapse
Affiliation(s)
- Elisa J Gonzalez-Rothi
- Department of Physical Therapy College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Kun-Ze Lee
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Erica A Dale
- Department of Integrative Biology and Physiology, University of California-Los Angeles, Los Angeles, California; and
| | - Paul J Reier
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida
| | - Gordon S Mitchell
- Department of Physical Therapy College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - David D Fuller
- Department of Physical Therapy College of Public Health and Health Professions, University of Florida, Gainesville, Florida;
| |
Collapse
|
23
|
Wang D, Zhang J. Electrophysiological functional recovery in a rat model of spinal cord hemisection injury following bone marrow-derived mesenchymal stem cell transplantation under hypothermia. Neural Regen Res 2015; 7:749-55. [PMID: 25737697 PMCID: PMC4345656 DOI: 10.3969/j.issn.1673-5374.2012.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/24/2012] [Indexed: 12/12/2022] Open
Abstract
Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury.
Collapse
Affiliation(s)
- Dong Wang
- Department of Neurosurgery, Tianjin Fourth Central Hospital, Tianjin 300140, China
| | - Jianjun Zhang
- Department of Neurosurgery, Tianjin Fourth Central Hospital, Tianjin 300140, China
| |
Collapse
|
24
|
Bondi CO, Klitsch KC, Leary JB, Kline AE. Environmental enrichment as a viable neurorehabilitation strategy for experimental traumatic brain injury. J Neurotrauma 2014; 31:873-88. [PMID: 24555571 DOI: 10.1089/neu.2014.3328] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Environmental enrichment (EE) emerged as a robust independent variable capable of influencing behavioral outcome in experimental studies after the fortuitous observation by renowned neuropsychologist Donald O. Hebb that rats raised as pets in his home performed markedly better on problem-solving tasks than those kept in the laboratory. In the subsequent years, numerous studies ensued demonstrating that EE was also capable of inducing neuroplasticity in normal (i.e., noninjured) rats. These behavioral and neural alterations provided the impetus for investigating EE as a potential therapy for traumatic brain injury (TBI), which, over the past two decades, has resulted in several reports. Hence, the aim of this review is to integrate the findings and present the current state of EE as a viable neurorehabilitation strategy for TBI. Using the specific key term searches "traumatic brain injury" and "environmental enrichment" or "enriched environment," 30 and 30 experimental TBI articles were identified by PubMed and Scopus, respectively. Of these, 27 articles were common to both search engines. An additional article was found on PubMed using the key terms "enriched environment" and "fluid percussion." A review of the bibliographies in the 34 articles did not yield additional citations. The overwhelming consensus of the 34 publications is that EE benefits behavioral and histological outcome after brain injury produced by various models. Further, the enhancements are observed in male and female as well as adult and pediatric rats and mice. Taken together, these cumulative findings provide strong support for EE as a generalized and robust preclinical model of neurorehabilitation. However, to further enhance the model and to more accurately mimic the clinic, future studies should continue to evaluate EE during more rehabilitation-relevant conditions, such as delayed and shorter time periods, as well as in combination with other therapeutic approaches, as we have been doing for the past few years.
Collapse
Affiliation(s)
- Corina O Bondi
- 1 Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
25
|
Starkey ML, Bleul C, Kasper H, Mosberger AC, Zörner B, Giger S, Gullo M, Buschmann F, Schwab ME. High-Impact, Self-Motivated Training Within an Enriched Environment With Single Animal Tracking Dose-Dependently Promotes Motor Skill Acquisition and Functional Recovery. Neurorehabil Neural Repair 2014; 28:594-605. [PMID: 24519022 DOI: 10.1177/1545968314520721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Functional recovery following central nervous system injuries is strongly influenced by rehabilitative training. In the clinical setting, the intensity of training and the level of motivation for a particular task are known to play important roles. With increasing neuroscience studies investigating the effects of training and rehabilitation, it is important to understand how the amount and type of training of individuals influences outcome. However, little is known about the influence of spontaneous "self-training" during daily life as it is often uncontrolled, not recorded, and mostly disregarded. Here, we investigated the effects of the intensity of self-training on motor skill acquisition in normal, intact rats and on the recovery of functional motor behavior following spinal cord injury in adult rats. We used a custom-designed small animal tracking system, "RatTrack," to continuously record the activity of multiple rats, simultaneously in a complex Natural Habitat-enriched environment. Naïve, adult rats performed high-intensity, self-motivated motor training, which resulted in them out-performing rats that were conventionally housed and trained on skilled movement tasks, for example, skilled prehension (grasping) and ladder walking. Following spinal cord injury the amount of self-training was correlated with improved functional recovery. These data suggest that high-impact, self-motivated training leads to superior skill acquisition and functional recovery than conventional training paradigms. These findings have important implications for the design of animal studies investigating rehabilitation and for the planning of human rehabilitation programs.
Collapse
Affiliation(s)
- Michelle L Starkey
- Brain Research Institute, University of Zurich, Zurich, Switzerland ETH Zurich, Zurich, Switzerland
| | - Christiane Bleul
- Brain Research Institute, University of Zurich, Zurich, Switzerland ETH Zurich, Zurich, Switzerland
| | - Hansjörg Kasper
- Brain Research Institute, University of Zurich, Zurich, Switzerland ETH Zurich, Zurich, Switzerland
| | - Alice C Mosberger
- Brain Research Institute, University of Zurich, Zurich, Switzerland ETH Zurich, Zurich, Switzerland
| | - Björn Zörner
- Brain Research Institute, University of Zurich, Zurich, Switzerland ETH Zurich, Zurich, Switzerland
| | - Stefan Giger
- Brain Research Institute, University of Zurich, Zurich, Switzerland ETH Zurich, Zurich, Switzerland
| | - Miriam Gullo
- Brain Research Institute, University of Zurich, Zurich, Switzerland ETH Zurich, Zurich, Switzerland
| | | | - Martin E Schwab
- Brain Research Institute, University of Zurich, Zurich, Switzerland ETH Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Renno WM, Al-Khaledi G, Mousa A, Karam SM, Abul H, Asfar S. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats. Neuropharmacology 2013; 77:100-19. [PMID: 24071567 DOI: 10.1016/j.neuropharm.2013.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/13/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) causes severe and long lasting motor and sensory deficits, chronic pain, and autonomic dysreflexia. (-)-epigallocatechin-3-gallate (EGCG) has shown to produce neuroprotective effect in a broad range of neurodegenerative disease animal models. This study designed to test the efficacy of intravenous infusion of EGCG for 36 h, in acutely injured rats' spinal cord: within first 4 h post-injury and, in chronically SC injured rats: after one year of injury. Functional outcomes measured using standard BBB scale, The Louisville Swim Scale (LSS) and, pain behavior assessment tests. 72 Female adult rats subjected to moderate thoracic SCI using MASCIS Impactor, blindly randomized as the following: (I) Acute SCI + EGCG (II) Acute SCI + saline. (III) Chronic SCI + EGCG. (IV) Chronic SCI + saline and, sham SCI animals. EGCG i.v. treatment of acute and, chronic SCI animals resulted in significantly better recovery of motor and sensory functions, BBB and LSS (P < 0.005) and (P < 0.05) respectively. Tactile allodynia, mechanical nociception (P < 0.05) significantly improved. Paw withdrawal and, tail flick latencies increase significantly (P < 0.05). Moreover, in the EGCG treated acute SCI animals the percentage of lesion size area significantly reduced (P < 0.0001) and, the number of neurons in the spinal cord increased (P < 0.001). Percent areas of GAP-43 and GFAP immunohistochemistry showed significant (P < 0.05) increase. We conclude that the therapeutic window of opportunity for EGCG to depict neurological recovery in SCI animals, is viable up to one year post SCI when intravenously infused for 36 h.
Collapse
Affiliation(s)
- Waleed M Renno
- Department of Anatomy, Kuwait University, Faculty of Medicine, Kuwait.
| | - Ghanim Al-Khaledi
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Alyaa Mousa
- Department of Anatomy, Kuwait University, Faculty of Medicine, Kuwait
| | - Shaima M Karam
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Habib Abul
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Sami Asfar
- Department of Surgery, Kuwait University, Faculty of Medicine, Kuwait
| |
Collapse
|
27
|
Jones ML, Harness E, Denison P, Tefertiller C, Evans N, Larson CA. Activity-based Therapies in Spinal Cord Injury:: Clinical Focus and Empirical Evidence in Three Independent Programs. Top Spinal Cord Inj Rehabil 2013; 18:34-42. [PMID: 23459641 DOI: 10.1310/sci1801-34] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This article summarizes presentations of a symposium examining the potential impact of activity-based therapies (ABT) in promoting neurological and functional recovery after spinal cord injury (SCI). The symposium addressed 3 key questions concerning activity-based therapy in SCI: (1) What clinical approaches are used? (2) Is there empirical evidence supporting efficacy of ABT in promoting neurological recovery and improving overall function, health, and quality of life? (3) What are the issues related to long-term viability of ABT?
Collapse
Affiliation(s)
- Michael L Jones
- Virginia C. Crawford Research Institute, Shepherd Center , Atlanta , Georgia
| | | | | | | | | | | |
Collapse
|
28
|
Battistuzzo CR, Callister RJ, Callister R, Galea MP. A systematic review of exercise training to promote locomotor recovery in animal models of spinal cord injury. J Neurotrauma 2012; 29:1600-13. [PMID: 22401139 DOI: 10.1089/neu.2011.2199] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the early 1980s experiments on spinalized cats showed that exercise training on the treadmill could enhance locomotor recovery after spinal cord injury (SCI). In this review, we summarize the evidence for the effectiveness of exercise training aimed at promoting locomotor recovery in animal models of SCI. We performed a systematic search of the literature using Medline, Web of Science, and Embase. Of the 362 studies screened, 41 were included. The adult female rat was the most widely used animal model. The majority of studies (73%) reported that exercise training had a positive effect on some aspect of locomotor recovery. Studies employing a complete SCI were less likely to have positive outcomes. For incomplete SCI models, contusion was the most frequently employed method of lesion induction, and the degree of recovery depended on injury severity. Positive outcomes were associated with training regimens that involved partial weight-bearing activity, commenced within a critical period of 1-2 weeks after SCI, and maintained training for at least 8 weeks. Considerable heterogeneity in training paradigms and methods used to assess or quantify recovery was observed. A 13-item checklist was developed and employed to assess the quality of reporting and study design; only 15% of the studies had high methodological quality. We recommend that future studies include control groups, randomize animals to groups, conduct blinded assessments, report the extent of the SCI lesion, and report sample size calculations. A small battery of objective assessment methods including assessment of over-ground stepping should also be developed and routinely employed. This would allow future meta-analyses of the effectiveness of exercise interventions on locomotor recovery.
Collapse
Affiliation(s)
- Camila R Battistuzzo
- Department of Physiotherapy, Melbourne School of Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
29
|
Navarro R, Juhas S, Keshavarzi S, Juhasova J, Motlik J, Johe K, Marsala S, Scadeng M, Lazar P, Tomori Z, Schulteis G, Beattie M, Ciacci JD, Marsala M. Chronic spinal compression model in minipigs: a systematic behavioral, qualitative, and quantitative neuropathological study. J Neurotrauma 2012; 29:499-513. [PMID: 22029501 DOI: 10.1089/neu.2011.2076] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The goal of the present study was to develop a porcine spinal cord injury (SCI) model, and to describe the neurological outcome and characterize the corresponding quantitative and qualitative histological changes at 4-9 months after injury. Adult Gottingen-Minnesota minipigs were anesthetized and placed in a spine immobilization frame. The exposed T12 spinal segment was compressed in a dorso-ventral direction using a 5-mm-diameter circular bar with a progressively increasing peak force (1.5, 2.0, or 2.5 kg) at a velocity of 3 cm/sec. During recovery, motor and sensory function were periodically monitored. After survival, the animals were perfusion fixed and the extent of local SCI was analyzed by (1) post-mortem MRI analysis of dissected spinal cords, (2) qualitative and quantitative analysis of axonal survival at the epicenter of injury, and (3) defining the presence of local inflammatory changes, astrocytosis, and schwannosis. Following 2.5-kg spinal cord compression the animals demonstrated a near complete loss of motor and sensory function with no recovery over the next 4-9 months. Those that underwent spinal cord compression with 2 kg force developed an incomplete injury with progressive partial neurological recovery characterized by a restricted ability to stand and walk. Animals injured with a spinal compression force of 1.5 kg showed near normal ambulation 10 days after injury. In fully paralyzed animals (2.5 kg), MRI analysis demonstrated a loss of spinal white matter integrity and extensive septal cavitations. A significant correlation between the magnitude of loss of small and medium-sized myelinated axons in the ventral funiculus and neurological deficits was identified. These data, demonstrating stable neurological deficits in severely injured animals, similarities of spinal pathology to humans, and relatively good post-injury tolerance of this strain of minipigs to spinal trauma, suggest that this model can successfully be used to study therapeutic interventions targeting both acute and chronic stages of SCI.
Collapse
Affiliation(s)
- Roman Navarro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), San Diego, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yildirim E, Erol K, Ulupinar E. Effects of sertraline on behavioral alterations caused by environmental enrichment and social isolation. Pharmacol Biochem Behav 2012; 101:278-87. [PMID: 22248860 DOI: 10.1016/j.pbb.2011.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 11/13/2011] [Accepted: 12/22/2011] [Indexed: 12/12/2022]
Abstract
Environmental conditions are known to play a critical role in the pathogenesis of affective disorders. In this study, the effects of sertraline, a selective serotonin (5-HT) reuptake inhibitor, on anxiety- and depression-like behaviors were investigated in rats reared in different housing conditions. Wistar rats of both sexes were divided into three groups according to their rearing conditions (Enriched = EC, Isolated = IC and Standard = SC), after weaning at postnatal day 21. While animals in control conditions were housed as a group of 4 rats in regular size plexiglass cages, social isolation groups were housed individually in metal cages. Animals in enriched conditions were housed as a group of 12 rats in specially designed cages equipped with different stimulating objects. Six weeks later, activitymeter, elevated plus maze, rotarod, grip, forced swimming and sucrose preference tests were applied to all animals and all of the tests were repeated after i.p. injection of sertraline (10 mg/kg/day) for 7 days. Environmental enrichment reduced the stereotypic behavior, improved the motor coordination and facilitated the learning skills in animals. However, housing conditions affected depression-like parameters, but not anxiety-like parameters. Sertraline treatment reduced the depression-like effect in EC and SC, but not in IC. It decreased anxiety-like behavior in IC while increased in EC. Socially isolated animals preferentially consumed more sucrose and water than the other groups, and interestingly, these differences became more significant following sertraline treatment. These results show that the responses of animals to anti-depressive drugs could be differentially affected by the behavioral consequences of the diverse housing conditions. Thus, to improve the treatment of depression; behavioral consequences of diverse housing conditions should be taken into consideration.
Collapse
Affiliation(s)
- Engin Yildirim
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Pharmacology, 26480 Eskisehir, Turkey.
| | | | | |
Collapse
|
31
|
McDonald JW, Sadowsky CL, Stampas A. The changing field of rehabilitation: optimizing spontaneous regeneration and functional recovery. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:317-336. [PMID: 23098722 DOI: 10.1016/b978-0-444-52137-8.00020-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
For neurorehabilitation of patients with spinal cord injury (SCI), the traditional emphasis on social adaptation is being expanded to include strategies that promote plasticity and regeneration in the central nervous system. Such strategies are needed to optimize recovery of neurological function. For example, the known dependence of most cellular processes on physical activity has led to the novel concept that activity is important in neural repair. This hypothesis has given rise to activity-based restoration therapies (ABRT), which aim to optimize neural activity in the damaged spinal cord, particularly below the injury level. Here, we review the basic science and clinical evidence supporting the lifelong use of ABRT for recovery from spinal cord injury. We define and describe ABRT, and discuss its components, its clinical applications, its relationship to medical management of spinal cord injury, and the potential influences of medications on recovery. We also discuss the health benefits of ABRT under physiological and pathological conditions. We stress that lifelong ABRT is required to optimize return of function and to allow patients to benefit from any "cures" that will be discovered.
Collapse
Affiliation(s)
- John W McDonald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
32
|
Carulli D, Foscarin S, Rossi F. Activity-dependent plasticity and gene expression modifications in the adult CNS. Front Mol Neurosci 2011; 4:50. [PMID: 22144945 PMCID: PMC3226246 DOI: 10.3389/fnmol.2011.00050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/11/2011] [Indexed: 01/20/2023] Open
Abstract
Information processing, memory formation, or functional recovery after nervous system damage depend on the ability of neurons to modify their functional properties or their connections. At the cellular/molecular level, structural modifications of neural circuits are finely regulated by intrinsic neuronal properties and growth-regulatory cues in the extracellular milieu. Recently, it has become clear that stimuli coming from the external world, which comprise sensory inflow, motor activity, cognitive elaboration, or social interaction, not only provide the involved neurons with instructive information needed to shape connection patterns to sustain adaptive function, but also exert a powerful influence on intrinsic and extrinsic growth-related mechanisms, so to create permissive conditions for neuritic remodeling. Here, we present an overview of recent findings concerning the effects of experience on molecular mechanisms underlying CNS structural plasticity, both in physiological conditions and after damage, with particular focus on activity-dependent modulation of growth-regulatory genes and epigenetic modifications.
Collapse
Affiliation(s)
- Daniela Carulli
- Department of Neuroscience, Neuroscience Institute of Turin, University of TurinTurin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of TurinTurin, Italy
| | - Simona Foscarin
- Department of Neuroscience, Neuroscience Institute of Turin, University of TurinTurin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of TurinTurin, Italy
| | - Ferdinando Rossi
- Department of Neuroscience, Neuroscience Institute of Turin, University of TurinTurin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of TurinTurin, Italy
| |
Collapse
|
33
|
Kovesdi E, Gyorgy AB, Kwon SKC, Wingo DL, Kamnaksh A, Long JB, Kasper CE, Agoston DV. The effect of enriched environment on the outcome of traumatic brain injury; a behavioral, proteomics, and histological study. Front Neurosci 2011; 5:42. [PMID: 21503146 PMCID: PMC3072528 DOI: 10.3389/fnins.2011.00042] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/15/2011] [Indexed: 12/30/2022] Open
Abstract
De novo hippocampal neurogenesis contributes to functional recovery following traumatic brain injury (TBI). Enriched environment (EEN) can improve the outcome of TBI by positively affecting neurogenesis. Blast induced traumatic brain injury (bTBI) characterized by memory impairment and increased anxiety levels, is a leading cause of chronic disability among soldiers. Using a rodent model of bTBI we asked: (a) whether long-term exposure to EEN after injury can ameliorate behavioral abnormalities and (b) what the effects of EEN are at the molecular and cellular levels and on de novo neurogenesis. We found that housing injured animals in EEN resulted in significantly improved spatial memory while animals in normal housing (NH) showed persistent memory impairment. VEGF and Tau protein but not Interleukin-6 (IL-6) levels were normalized in the dorsal hippocampus (DHC) of EEN rats while all three markers remained elevated in NH rats. Interestingly, after peaking at 6 weeks post-injury, anxiety returned to normal levels at 2 months independent of housing conditions. Housing animals in EEN had no significant effect on VEGF and Tau protein levels in the ventral hippocampus (VHC) and the amygdala (AD). We also found that EEN reduced IL-6 and IFNγ levels in the VHC; these markers remained elevated following NH. We observed an increase in GFAP and DCX immunoreactivities in the VHC of NH animals at 2 months post-injury. Conversely, injured animals housed in EEN showed no increase in GFAP or DCX immunoreactivity in their VHC. In summary, long-term exposure of injured animals to EEN appears to play a positive role in the restoration of memory functions but not on anxiety, which returned to normal levels after a significant period of time. Cellular and molecular changes in response to EEN appear to be a part of neurogenesis-independent as well as dependent recovery processes triggered by bTBI.
Collapse
Affiliation(s)
- Erzsebet Kovesdi
- U.S. Department of Veterans Affairs, Veterans Affairs Central Office Washington, DC, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Aoki M, Warita H, Mizuno H, Suzuki N, Yuki S, Itoyama Y. Feasibility study for functional test battery of SOD transgenic rat (H46R) and evaluation of edaravone, a free radical scavenger. Brain Res 2011; 1382:321-5. [DOI: 10.1016/j.brainres.2011.01.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
|
35
|
Onifer SM, Zhang O, Whitnel-Smith LK, Raza K, O'Dell CR, Lyttle TS, Rabchevsky AG, Kitzman PH, Burke DA. Horizontal ladder task-specific re-training in adult rats with contusive thoracic spinal cord injury. Restor Neurol Neurosci 2011; 29:275-86. [PMID: 21697591 PMCID: PMC3544551 DOI: 10.3233/rnn-2011-598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Using the horizontal ladder task, we examined some issues that need to be resolved before task-specific rehabilitative training can be employed clinically for the frequent contusive spinal cord injury (SCI). We hypothesized that improving recovery in task performance after contusive thoracic SCI requires frequent re-training and initiating the re-training early during spontaneous recovery. METHODS Contusive SCI was produced at the adult female Sprague Dawley rat T10 vertebra. Task re-training was initiated one week later when occasional weight-supported plantar steps were taken overground (n = 8). It consisted of 2 repetitions each day, 5 days each week, for 3 weeks. Task performance and overground locomotion were assessed weekly. Neurotransmission through the SCI ventrolateral funiculus was examined. SCI morphometry was determined. RESULTS Re-training did not improve task performance recovery compared to untrained Controls (n = 7). Untrained overground locomotion and neurotransmission through the SCI did not change. Lesion area at the injury epicenter as a percentage of the total spinal cord area as well as total tissue, lesion, and spared tissue, white matter, or gray matter volumes did not differ. CONCLUSIONS For the horizontal ladder task after contusive thoracic SCI, earlier re-training sessions with more repetitions and critical neural circuitry may be necessary to engender a rehabilitation effect.
Collapse
Affiliation(s)
- Stephen M Onifer
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kiss P, Atlasz T, Szabadfi K, Horvath G, Griecs M, Farkas J, Matkovits A, Toth G, Lubics A, Tamas A, Gabriel R, Reglodi D. Comparison between PACAP- and enriched environment-induced retinal protection in MSG-treated newborn rats. Neurosci Lett 2010; 487:400-5. [PMID: 21050880 DOI: 10.1016/j.neulet.2010.10.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/25/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors occur throughout the nervous system, including the retina. PACAP exerts diverse actions in the eye: it influences ocular blood flow, contraction of the ciliary muscle, and has retinoprotective effects. This effect has been proven in different models of retinal degeneration. We have previously shown that PACAP protects against monosodium-glutamate (MSG)-induced damage in neonatal rats. The beneficial effects of enriched environment, another neuroprotective strategy, have long been known. Environmental enrichment has been shown to decrease different neuronal injuries. It also influences the development of the visual system. We have recently demonstrated that significant neuroprotection can be achieved in MSG-induced retinal degeneration in animals kept in an enriched environment. Combination of neuroprotective strategies often results in increased protection. Therefore, the aim of the present study was to compare the two neuroprotective strategies alone and in combination therapy. We found that both PACAP and environmental enrichment led to a similar degree of retinal protection, but the two treatments together did not lead to increased protection: their effects were not additive.
Collapse
Affiliation(s)
- Peter Kiss
- Department of Anatomy, University of Pecs, 7624 Pecs, Szigeti u 12, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sozda CN, Hoffman AN, Olsen AS, Cheng JP, Zafonte RD, Kline AE. Empirical comparison of typical and atypical environmental enrichment paradigms on functional and histological outcome after experimental traumatic brain injury. J Neurotrauma 2010; 27:1047-57. [PMID: 20334496 DOI: 10.1089/neu.2010.1313] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Several studies have shown that housing rats in an enriched environment (EE) after traumatic brain injury (TBI) improves functional and histological outcome. The typical EE includes exploratory, sensory, and social components in cages that are often vastly larger than standard (STD) housing. It is uncertain, however, whether a single or specific component is sufficient to confer these benefits after TBI, or if all, perhaps in an additive or synergistic manner, are necessary. To clarify this ambiguity, anesthetized adult male rats were subjected to either a controlled cortical impact or sham injury, and then were randomly assigned to five different housing paradigms: (1) EE (typical), (2) EE (-social), (3) EE (-stimuli), (4) STD (typical), and (5) STD (+stimuli). Motor and cognitive function were assessed using conventional motor (beam-balance/traversal) and cognitive (spatial learning in a Morris water maze) tests on postoperative days 1-5 and 14-19, respectively, and cortical lesion volume and CA1/CA3 cell loss were quantified at 3 weeks. No significant differences were observed among the sham groups in any comparison and thus their data were pooled (i.e., SHAM). In the TBI groups, typical EE improved beam-balance versus both STD (+stimuli) and EE (-social), it facilitated the acquisition of spatial learning and memory retention versus all other housing conditions (p < 0.003), and it reduced lesion volume and CA3 cell loss versus STD (typical) housing. While rats in the three atypical EE conditions exhibited slightly better cognitive performance and histological protection versus the typical STD group, the overall effects were not significant. These data suggest that exposing TBI rats to any of the three components individually may be more advantageous than no enrichment, but only exposure to typical EE yields optimal benefits.
Collapse
Affiliation(s)
- Christopher N Sozda
- Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
38
|
Environmental enrichment induces behavioral recovery and enhanced hippocampal cell proliferation in an antidepressant-resistant animal model for PTSD. PLoS One 2010; 5:e11943. [PMID: 20700523 PMCID: PMC2916817 DOI: 10.1371/journal.pone.0011943] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 07/13/2010] [Indexed: 01/17/2023] Open
Abstract
Background Post traumatic stress disorder (PTSD) can be considered the result of a failure to recover after a traumatic experience. Here we studied possible protective and therapeutic aspects of environmental enrichment (with and without a running wheel) in Sprague Dawley rats exposed to an inescapable foot shock procedure (IFS). Methodology/Principal Findings IFS induced long-lasting contextual and non-contextual anxiety, modeling some aspects of PTSD. Even 10 weeks after IFS the rats showed reduced locomotion in an open field. The antidepressants imipramine and escitalopram did not improve anxiogenic behavior following IFS. Also the histone deacetylase (HDAC) inhibitor sodium butyrate did not alleviate the IFS induced immobility. While environmental enrichment (EE) starting two weeks before IFS did not protect the animals from the behavioral effects of the shocks, exposure to EE either immediately after the shock or one week later induced complete recovery three weeks after IFS. In the next set of experiments a running wheel was added to the EE to enable voluntary exercise (EE/VE). This also led to reduced anxiety. Importantly, this behavioral recovery was not due to a loss of memory for the traumatic experience. The behavioral recovery correlated with an increase in cell proliferation in hippocampus, a decrease in the tissue levels of noradrenalin and increased turnover of 5-HT in prefrontal cortex and hippocampus. Conclusions/Significance This animal study shows the importance of (physical) exercise in the treatment of psychiatric diseases, including post-traumatic stress disorder and points out the possible role of EE in studying the mechanism of recovery from anxiety disorders.
Collapse
|
39
|
Environmental enrichment reduces mechanical hypersensitivity in neuropathic mice, but fails to abolish the phenotype of CCK2 receptor deficient mice. Neurosci Lett 2009; 467:230-3. [PMID: 19840831 DOI: 10.1016/j.neulet.2009.10.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 10/10/2009] [Accepted: 10/13/2009] [Indexed: 11/29/2022]
Abstract
Genetic invalidation of CCK(2) receptors abolishes chronic constriction injury (CCI) induced mechanical hypersensitivity in mice. However, housing in environmentally enriched conditions significantly alters the phenotype of CCK(2) receptor deficient mice in all major behavioral domains. Furthermore, environmental enrichment itself has been reported to have protective effects in several rodent models of neurological diseases (brain and spinal trauma, ischemic stroke, Alzheimer's disease, etc.). In the present study we reproduced the earlier finding that mice, lacking CCK(2) receptors (-/-) are resistant to CCI-induced hypersensitivity. On the other hand, environmental enrichment substantially reduced CCI-induced mechanical hypersensitivity in wild-type (+/+) mice. Nevertheless, the phenotypic differences between wild-type (+/+) and mutant (-/-) mice in mechanical sensitivity before and after CCI-surgery were not eliminated by alternative housing conditions. These observations suggest that environmental enrichment has beneficial effects in neuropathic conditions and reinforce the causal link between CCK(2) receptors, mechanical sensitivity and the development of CCI-induced hypersensitivity.
Collapse
|
40
|
Szabadfi K, Atlasz T, Horváth G, Kiss P, Hamza L, Farkas J, Tamás A, Lubics A, Gábriel R, Reglődi D. Early postnatal enriched environment decreases retinal degeneration induced by monosodium glutamate treatment in rats. Brain Res 2009; 1259:107-12. [DOI: 10.1016/j.brainres.2009.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 01/02/2009] [Accepted: 01/05/2009] [Indexed: 10/21/2022]
|
41
|
Ahmed Z, Wieraszko A. Combined effects of acrobatic exercise and magnetic stimulation on the functional recovery after spinal cord lesions. J Neurotrauma 2009; 25:1257-69. [PMID: 18986227 DOI: 10.1089/neu.2008.0626] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The objective of the study was to determine whether physical exercise combined with epidural spinal cord magnetic stimulation could improve recovery after injury of the spinal cord. Spinal cord lesioning in mice resulted in reduced locomotor function and negatively affected the muscle strength tested in vitro. Acrobatic exercise attenuated the behavioral effects of spinal cord injury. The exposure to magnetic fields facilitated further this improvement. The progress in behavioral recovery was correlated with reduced muscle degeneration and enhanced muscle contraction. The acrobatic exercise combined with stimulation with magnetic fields significantly facilitates behavioral recovery and muscle physiology in mice following spinal cord injury.
Collapse
Affiliation(s)
- Zaghloul Ahmed
- Department of Physical Therapy, and CSI/IBR Center for Developmental Neuroscience, The College of Staten Island/CUNY, Staten Island, New York 10314, USA.
| | | |
Collapse
|
42
|
Dunlop SA. Activity-dependent plasticity: implications for recovery after spinal cord injury. Trends Neurosci 2008; 31:410-8. [DOI: 10.1016/j.tins.2008.05.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 05/27/2008] [Accepted: 05/27/2008] [Indexed: 12/29/2022]
|
43
|
Beaumont E, Kaloustian S, Rousseau G, Cormery B. Training improves the electrophysiological properties of lumbar neurons and locomotion after thoracic spinal cord injury in rats. Neurosci Res 2008; 62:147-54. [PMID: 18760313 DOI: 10.1016/j.neures.2008.07.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 07/15/2008] [Accepted: 07/16/2008] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to evaluate the effect of a stepping-based rehabilitation program in voluntary wheel cages on the functional recovery and electrophysiological properties of neurons in the rat lumbar spinal cord after compressive thoracic (T10) spinal cord injury (SCI). A significant decrease in stance/swing duration and the number of limbs simultaneously in the stance phase was seen in trained compared to sedentary rats at 28 days after SCI (p<0.05). These kinematic improvements were associated with a significant increase in the amplitude of extracellular recordings from the tibial motoneuron pool in response to descending neuronal drive as well as significant amelioration of electrophysiological properties assessed from intracellular recordings. In fact, electrophysiological properties were not significantly different between uninjured controls and SCI-trained rats. Brain-derived neurotrophic factor (BDNF) levels were significantly elevated in the lumbar spinal cord of SCI-trained rats compared to SCI-sedentary controls. The data support a therapeutic role of increased neuromuscular activity in promoting functional recovery and suggest that it might occur via the beneficial effects of neurotrophic factors on neuronal plasticity.
Collapse
Affiliation(s)
- Eric Beaumont
- Centre de Recherche, Hôpital du Sacré-Coeur de Montréal, Département de Chirurgie, Université de Montréal, Montréal, Québec, Canada.
| | | | | | | |
Collapse
|