1
|
She M, Li T, Zhou L, Deng Z, Huang M, Yan Y, Zhang M, Yang Y, Wang D. Ursolic Acid Attenuates Sarcopenia through IL-17a-Related Gut-Muscle Axis in Senile Diabetic Mice and Myotube Model. J Nutr Biochem 2025:109940. [PMID: 40294722 DOI: 10.1016/j.jnutbio.2025.109940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 02/12/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Sarcopenia significantly impairs quality of life, especially in diabetic patients, where effective treatment options remain limited. The IL-17a-related gut-muscle axis suggests a potential role of the gut microbiota in the development of sarcopenia. Ursolic acid (UA) has shown promise as an anti-sarcopenic agent. Nevertheless, the relationship between UA and the IL-17a-related gut-muscle axis remains unclear. METHODS In this research, sarcopenia model was established using streptozotocin in vivo and in vitro with TNF-α-managed C2C12 myotubes. RESULTS UA significantly altered the gut microbiota, notably increasing observed OTUs and the Shannon index of sarcopenic mice. Specifically, UA effectively mitigated the decrease of Bacteroides thetaiotaomicron and restored the total level of short-chain fatty acids, particularly reducing propionic acid and increasing isovaleric acid. Additionally, UA markedly improved muscle quality and function, as evidenced by increased body weight, grip strength, and muscle weight, as well as significantly decreased expression of Atrogin-1 and MuRF-1. Moreover, RNA sequencing results clearly indicated that UA suppressed the IL-17 signaling pathway in sarcopenic mice. Furthermore, UA alleviated oxidative stress and apoptosis in sarcopenic mice. Notably, UA inhibited the IL-17a pathway in sarcopenic mice by suppressing the heightened expression of the proteins. In vitro experiments further confirmed that UA inhibited TNF-α-induced myotube atrophy, reduced Atrogin-1 and MuRF-1 expression, and strongly suggested that IL-17a may be a key target of UA in combating myotube atrophy. CONCLUSIONS The study emphasizes the importance of UA in alleviating sarcopenia, possibly through the IL-17a-related gut-muscle axis.
Collapse
Affiliation(s)
- Meiling She
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangdong, China.; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China.; Department of spleen and stomach diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Tianbai Li
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangdong, China.; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Lingli Zhou
- The First Clinical Medical College, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zihao Deng
- The First Clinical Medical College, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Minna Huang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangdong, China.; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yan Yan
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangdong, China.; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Meng Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen 518000, Guangdong, China
| | - Yajun Yang
- Department of Pharmacology, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangdong, China.; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China.; Department of Traditional Chinese Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 524037, China.
| |
Collapse
|
2
|
Patrícia Gonçalves Tenório L, Xavier FHDC, Silveira Wagner M, Moreira Bagri K, Alves Ferreira EG, Galvani R, Mermelstein C, Bonomo AC, Savino W, Barreto E. Uvaol attenuates TGF-β1-induced epithelial-mesenchymal transition in human alveolar epithelial cells by modulating expression and membrane localization of β-catenin. Front Pharmacol 2025; 15:1504556. [PMID: 39840107 PMCID: PMC11747490 DOI: 10.3389/fphar.2024.1504556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a biological process in which epithelial cells change into mesenchymal cells with fibroblast-like characteristics. EMT plays a crucial role in the progression of fibrosis. Classical inducers associated with the maintenance of EMT, such as TGF-β1, have become targets of several anti-EMT therapeutic strategies. Natural products from the pentacyclic triterpene class have emerged as promising elements in inhibiting EMT. Uvaol is a pentacyclic triterpene found in olive trees (Olea europaea L.) known for its anti-inflammatory, antioxidant, and antiproliferative properties. Yet, its effect on the TGF-β1-induced EMT in alveolar epithelial cells is unknown. The present study aimed to investigate the impact of uvaol upon TGF-β1-induced EMT in a cultured A549 human alveolar epithelial cell line, a classic in vitro model for studies of EMT. Changes in cell shape were measured using phase-contrast and confocal microscopy, whereas protein expression levels were measured using immunofluorescence, flow cytometry, and Western blotting. We also performed wound scratch experiments to explore its effects on cell migration. Uvaol had no significant cytotoxic effects on A549 cells. By contrast, the changes in the cell morphology consistent with TGF-β1-induced EMT were largely suppressed by treatment with uvaol. In addition, increased contents of mesenchymal markers, namely, vimentin, N-cadherin, and fibronectin in TGF-β1-induced A549 cells, were downregulated by uvaol treatment. Furthermore, the TGF-β1-induced migration of A549 cells was significantly suppressed by uvaol. Mechanistically, uvaol prevented the nuclear translocation of β-catenin and reduced the TGF-β1-induced levels of ZEB1 in A549 cells. These results provide compelling evidence that uvaol inhibits EMT by regulating proteins related to the mesenchymal profile in human alveolar epithelial cells, likely by modulating β-catenin and ZEB1 levels.
Collapse
Affiliation(s)
- Liliane Patrícia Gonçalves Tenório
- Cell Biology Laboratory, Federal University of Alagoas, Maceió, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Felipe Henrique da Cunha Xavier
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mônica Silveira Wagner
- Cell Structure and Dynamics Laboratory, National Cancer Institute, Rio de Janeiro, Brazil
| | - Kayo Moreira Bagri
- Muscle Differentiation Laboratory, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Romulo Galvani
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Muscle Differentiation Laboratory, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Cesar Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Emiliano Barreto
- Cell Biology Laboratory, Federal University of Alagoas, Maceió, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Yang F, Cheng MH, Pan HF, Gao J. Progranulin: A promising biomarker and therapeutic target for fibrotic diseases. Acta Pharm Sin B 2024; 14:3312-3326. [PMID: 39220875 PMCID: PMC11365408 DOI: 10.1016/j.apsb.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Progranulin (PGRN), a multifunctional growth factor-like protein expressed by a variety of cell types, serves an important function in the physiologic and pathologic processes of fibrotic diseases, including wound healing and the inflammatory response. PGRN was discovered to inhibit pro-inflammation effect by competing with tumor necrosis factor-alpha (TNF-α) binding to TNF receptors. Notably, excessive tissue repair in the development of inflammation causes tissue fibrosis. Previous investigations have indicated the significance of PGRN in regulating inflammatory responses. Recently, multiple studies have shown that PGRN was linked to fibrogenesis, and was considered to monitor the formation of fibrosis in multiple organs, including liver, cardiovascular, lung and skin. This paper is a comprehensive review summarizing our current knowledge of PGRN, from its discovery to the role in fibrosis. This is followed by an in-depth look at the characteristics of PGRN, consisting of its structure, basic function and intracellular signaling. Finally, we will discuss the potential of PGRN in the diagnosis and treatment of fibrosis.
Collapse
Affiliation(s)
- Fan Yang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
- Department of Ophthalmology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ming-Han Cheng
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230022, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230022, China
| | - Jian Gao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| |
Collapse
|
4
|
Liu H, Deng Y, Luo G, Yang Y, Xie B, Diao H, Chen M, Chen L, Xie P, Kwan HY, Zhao X, Sun X. DNA methylation of miR-181a-5p mediated by DNMT3b drives renal interstitial fibrosis developed from acute kidney injury. Epigenomics 2024; 16:945-960. [PMID: 39023272 PMCID: PMC11370974 DOI: 10.1080/17501911.2024.2370229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Aim: To explore the role of miR-181a-5p in the progression of acute kidney injury (AKI) to renal interstitial fibrosis (RIF) from the perspective of DNA methylation.Materials & methods: The role of miR-181a-5p was confirmed by collecting clinical samples, injecting miR-181a-5p agomir into tail vein, and transfecting miR-181a-5p mimic in vitro. The mechanism of miR-181a-5p's influence on AKI induced RIF was investigated by methylation-specific PCR, bioinformatic analysis, transcriptome sequencing and so on.Results: MiR-181a-5p plays an important role in AKI induced RIF. DNMT3b-mediated miR-181a-5p promoter hypermethylation is the main reason for the downregulation of miR-181a-5p. HDAC9 and SNAI2 are direct targets of miR-181a-5p.Conclusion: Hypermethylation of miR-181a-5p promoter mediated by DNMT3b promotes AKI induced RIF by targeting HDAC9 and SNAI2.
Collapse
Affiliation(s)
- Huaxi Liu
- Department of Nephrology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, 510315, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
- Boai Hospital of Zhongshan, Zhongshan, Guangdong528403, China
| | - Yijian Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Guanfeng Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Ying Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Bei Xie
- Department of Nephrology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, 510315, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Huiling Diao
- Department of Nephrology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, 510315, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Meilin Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Liqian Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Penghui Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoshan Zhao
- Department of Nephrology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, 510315, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xiaomin Sun
- Department of Nephrology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, 510315, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong510280, China
| |
Collapse
|
5
|
Pan D, Qu Y, Shi C, Xu C, Zhang J, Du H, Chen X. Oleanolic acid and its analogues: promising therapeutics for kidney disease. Chin Med 2024; 19:74. [PMID: 38816880 PMCID: PMC11140902 DOI: 10.1186/s13020-024-00934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Kidney diseases pose a significant threat to human health due to their high prevalence and mortality rates. Worryingly, the clinical use of drugs for kidney diseases is associated with more side effects, so more effective and safer treatments are urgently needed. Oleanolic acid (OA) is a common pentacyclic triterpenoid that is widely available in nature and has been shown to have protective effects in kidney disease. However, comprehensive studies on its role in kidney diseases are still lacking. Therefore, this article first explores the botanical sources, pharmacokinetics, derivatives, and safety of OA, followed by a summary of the anti-inflammatory, immunomodulatory, anti-oxidative stress, autophagy-enhancing, and antifibrotic effects of OA and its analogues in renal diseases, and an analysis of the molecular mechanisms, aiming to provide further insights for the development of novel drugs for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Dan Pan
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yilun Qu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Chunru Shi
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Cheng Xu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Jie Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Hongjian Du
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xiangmei Chen
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| |
Collapse
|
6
|
Hadpech S, Thongboonkerd V. Epithelial-mesenchymal plasticity in kidney fibrosis. Genesis 2024; 62:e23529. [PMID: 37345818 DOI: 10.1002/dvg.23529] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is an important biological process contributing to kidney fibrosis and chronic kidney disease. This process is characterized by decreased epithelial phenotypes/markers and increased mesenchymal phenotypes/markers. Tubular epithelial cells (TECs) are commonly susceptible to EMT by various stimuli, for example, transforming growth factor-β (TGF-β), cellular communication network factor 2, angiotensin-II, fibroblast growth factor-2, oncostatin M, matrix metalloproteinase-2, tissue plasminogen activator (t-PA), plasmin, interleukin-1β, and reactive oxygen species. Similarly, glomerular podocytes can undergo EMT via these stimuli and by high glucose condition in diabetic kidney disease. EMT of TECs and podocytes leads to tubulointerstitial fibrosis and glomerulosclerosis, respectively. Signaling pathways involved in EMT-mediated kidney fibrosis are diverse and complex. TGF-β1/Smad and Wnt/β-catenin pathways are the major venues triggering EMT in TECs and podocytes. These two pathways thus serve as the major therapeutic targets against EMT-mediated kidney fibrosis. To date, a number of EMT inhibitors have been identified and characterized. As expected, the majority of these EMT inhibitors affect TGF-β1/Smad and Wnt/β-catenin pathways. In addition to kidney fibrosis, these EMT-targeted antifibrotic inhibitors are expected to be effective for treatment against fibrosis in other organs/tissues.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Molecular Mechanistic Pathways Targeted by Natural Antioxidants in the Prevention and Treatment of Chronic Kidney Disease. Antioxidants (Basel) 2021; 11:antiox11010015. [PMID: 35052518 PMCID: PMC8772744 DOI: 10.3390/antiox11010015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic kidney disease (CKD) is the progressive loss of renal function and the leading cause of end-stage renal disease (ESRD). Despite optimal therapy, many patients progress to ESRD and require dialysis or transplantation. The pathogenesis of CKD involves inflammation, kidney fibrosis, and blunted renal cellular antioxidant capacity. In this review, we have focused on in vitro and in vivo experimental and clinical studies undertaken to investigate the mechanistic pathways by which these compounds exert their effects against the progression of CKD, particularly diabetic nephropathy and kidney fibrosis. The accumulated and collected data from preclinical and clinical studies revealed that these plants/bioactive compounds could activate autophagy, increase mitochondrial bioenergetics and prevent mitochondrial dysfunction, act as modulators of signaling pathways involved in inflammation, oxidative stress, and renal fibrosis. The main pathways targeted by these compounds include the canonical nuclear factor kappa B (NF-κB), canonical transforming growth factor-beta (TGF-β), autophagy, and Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid factor 2-related factor 2 (Nrf2)/antioxidant response element (ARE). This review presented an updated overview of the potential benefits of these antioxidants and new strategies to treat or reduce CKD progression, although the limitations related to the traditional formulation, lack of standardization, side effects, and safety.
Collapse
|
8
|
Jia Z, Li W, Bian P, Yang L, Liu H, Pan D, Dou Z. Ursolic acid treats renal tubular epithelial cell damage induced by calcium oxalate monohydrate via inhibiting oxidative stress and inflammation. Bioengineered 2021; 12:5450-5461. [PMID: 34506233 PMCID: PMC8806476 DOI: 10.1080/21655979.2021.1955176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/21/2023] Open
Abstract
Ursolic acid (UA) has been proved to have antioxidant and anti-inflammatory effects. However, it is not clear whether it has a protective impact on kidney damage induced by crystals of calcium oxalate monohydrate (COM). This work aimed to make clear the potential mechanism of UA protecting COM-induced kidney damage. The results manifested that high- and low-dose UA reduced COM crystals in COM rats' kidney, down-regulated urea, creatinine, and neutrophil gelatinase-associated lipocalin (NGAL) levels in rat plasma, declined kidney tissue and HK-2 cell apoptosis, inhibited Bax expression but elevated Bcl-2 expression. Additionally, UA alleviated renal fibrosis in COM rats, repressed α-SMA and collagen I protein expressions in the kidney and COM rats' HK-2 cells, depressed COM-induced oxidative damage in vivo and in vitro via up-regulating Nrf2/HO-1 pathway, up-regulated SOD levels and reduced MDA levels, down-regulated TNF-α, IL-1β, and IL-6 levels in vivo and in vitro via suppressing activation of TLR4/NF-κB pathway. In summary, the results of this study suggest that COM-induced renal injury can be effectively improved via UA, providing powerful data support for the development of effective clinical drugs for renal injury in the future.
Collapse
Affiliation(s)
- Zhaohui Jia
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Wensheng Li
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Pan Bian
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Liuyang Yang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Hui Liu
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Dong Pan
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Zhongling Dou
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang City, Henan Province, China
| |
Collapse
|
9
|
Ghosh R, Siddarth M, Kare PK, Banerjee BD, Kalra OP, Tripathi AK. β-Endosulfan-mediated induction of pro-fibrotic markers in renal (HK-2) cells in vitro: A new insight in the pathogenesis of chronic kidney disease of unknown etiology. ENVIRONMENTAL TOXICOLOGY 2021; 36:2354-2360. [PMID: 34402583 DOI: 10.1002/tox.23349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Chronic kidney disease of unknown etiology (CKDu), manifested clinically as tubulo interstitial fibrosis, has emerged as the second major cause of chronic kidney disease (CKD) in the Indian subcontinent and various agrochemicals have been implicated in its occurance. Among the agrochemicals organochlorine pesticides particularly endosulfan is well known for its toxicity and recent residue analysis have shown its presence in the blood samples of general population. In this present study, we have investigated the consequences of endosulfan exposure at a concentration (0.01 μM) equivalent to their highest reported presence in human blood sample of some CKDu patients, to human renal proximal tubular epithelial (HK-2) cell line with regard to ROS generation and expression of profibrotic and epithelial to mesenchymal (EMT) markers in order to find out endosulfan's ability to induce profibrotic changes in renal cell. We demonstrated a significant increase in intracellular ROS generation and increased expression of TGF-β1 when cells were incubated with β-endosulfan (0.01 μM) indicating occurrence of oxidative stress and fibrotic process. Again, decreased expression of epithelial marker E-cadherin and increase in the expression of mesenchymal marker α-smooth muscle actin (α-SMA) suggest possible onset of EMT process. Pre-treatment with 5 mM concentration of anti-oxidant N-acetyl cysteine partially attenuated the above process. In conclusion, these findings suggest possible involvement of β-endosulfan in the development of CKDu through oxidative stress and profibrotic signaling.
Collapse
Affiliation(s)
- Rishila Ghosh
- Department of Biochemistry, Environmental Biochemistry and Immunology Laboratory, University College of Medical Sciences (University of Delhi) and G.T.B. Hospital, Delhi, India
| | - Manushi Siddarth
- Multidisciplinary Research Unit, University College of Medical Sciences (University of Delhi) and G.T.B. Hospital, Delhi, India
| | - Pawan Kumar Kare
- Department of Biochemistry, Environmental Biochemistry and Immunology Laboratory, University College of Medical Sciences (University of Delhi) and G.T.B. Hospital, Delhi, India
| | - Basu Dev Banerjee
- Department of Biochemistry, Environmental Biochemistry and Immunology Laboratory, University College of Medical Sciences (University of Delhi) and G.T.B. Hospital, Delhi, India
| | - Om Prakash Kalra
- Department of Medicine, University College of Medical Sciences (University of Delhi) and G.T.B. Hospital, Delhi, India
| | - Ashok Kumar Tripathi
- Department of Biochemistry, Environmental Biochemistry and Immunology Laboratory, University College of Medical Sciences (University of Delhi) and G.T.B. Hospital, Delhi, India
| |
Collapse
|
10
|
Xu H, Wu T, Huang L. Therapeutic and delivery strategies of phytoconstituents for renal fibrosis. Adv Drug Deliv Rev 2021; 177:113911. [PMID: 34358538 DOI: 10.1016/j.addr.2021.113911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is one of the most common diseases endangering human health and life. By 2030, 14 per 100,000 people may die from CKD. Renal fibrosis (RF) is an important intermediate link and the final pathological change during CKD progression to the terminal stage. Therefore, identifying safe and effective treatment methods for RF has become an important goal. In 2018, the World Health Organization introduced traditional Chinese medicine into its effective global medical program. Various phytoconstituents that affect the RF process have been extracted from different plants. Here, we review the potential therapeutic capabilities of active phytoconstituents in RF treatment and discuss how phytoconstituents can be structurally modified or combined with other ingredients to enhance efficiency and reduce toxicity. We also summarize phytoconstituent delivery strategies to overcome renal barriers and improve bioavailability and targeting.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | - Tianyi Wu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
11
|
Zheng JL, Wang SS, Shen KP, Chen L, Peng X, Chen JF, An HM, Hu B. Ursolic acid induces apoptosis and anoikis in colorectal carcinoma RKO cells. BMC Complement Med Ther 2021; 21:52. [PMID: 33549076 PMCID: PMC7866452 DOI: 10.1186/s12906-021-03232-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ursolic acid (UA) is an anti-cancer herbal compound. In the present study, we observed the effects of UA on anchorage-dependent and -independent growth of human colorectal cancer (CRC) RKO cells. METHODS RKO cells were cultured in conventional and detached condition and treated with UA. Cell viability was evaluated by CCK-8 assay. Cell cycle was analyzed by flow cytometry. Apoptosis was identified by Hoechst 33258 staining and flow cytometry analysis. Activities of caspases were measured by commercial kits. Reactive oxygen species (ROS) was recognized by DCFH-DA fluorescent staining. Anoikis was identified by EthD-1 fluorescent staining and flow cytometry analysis. Expression and phosphorylation of proteins were analyzed by western blot. RESULTS UA inhibited RKO cell viability in both a dose- and time-dependent manner. UA arrested the cell cycle at the G0/G1 phase, and induced caspase-dependent apoptosis. UA inhibited Bcl-2 expression and increased Bax expression. In addition, UA up-regulated the level of ROS that contributed to UA activated caspase-3, - 8 and - 9, and induced apoptosis. Furthermore, UA inhibited cell growth in a detached condition and induced anoikis in RKO cells that was accompanied by dampened phosphorylation of FAK, PI3K and AKT. UA also inhibited epithelial-mesenchymal transition (EMT) as indicated by the down-regulation of N-Cad expression and up-regulation of E-Cad expression. CONCLUSIONS UA induced caspase-dependent apoptosis, and FAK/PI3K/AKT singling and EMT related anoikis in RKO cells. UA was an effective anti-cancer compound against both anchorage-dependent and -independent growth of RKO cells.
Collapse
Affiliation(s)
- Jia-Lu Zheng
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Shuang-Shuang Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Ke-Ping Shen
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lei Chen
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Xiao Peng
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Jin-Fang Chen
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Hong-Mei An
- Department of Science & Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
12
|
Wang Z, Chen Z, Li B, Zhang B, Du Y, Liu Y, He Y, Chen X. Curcumin attenuates renal interstitial fibrosis of obstructive nephropathy by suppressing epithelial-mesenchymal transition through inhibition of the TLR4/NF-кB and PI3K/AKT signalling pathways. PHARMACEUTICAL BIOLOGY 2020; 58:828-837. [PMID: 32866059 PMCID: PMC7470153 DOI: 10.1080/13880209.2020.1809462] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Renal interstitial fibrosis (RIF) is characterized by the accumulation of inflammatory cytokines and epithelial-mesenchymal transition (EMT). Curcumin exerts antifibrogenic, anti-inflammatory and antiproliferative effects. OBJECTIVE To explore the mechanisms underlying the effects of curcumin on RIF. MATERIALS AND METHODS Eight-week-old male C57BL/6 mice were intragastrically administered curcumin (50 mg/kg/day) for 14 days after undergoing unilateral ureteral obstruction (UUO) operations. Renal function (blood urea nitrogen [BUN] and serum creatinine [Scr]) and inflammatory cytokine levels were tested using colorimetric assays and ELISA, respectively. EMT markers were evaluated through immunohistochemistry, western blotting and qPCR. Transforming growth factor beta 1 (TGF-β1; 10 ng/mL) and lipopolysaccharides (LPS; 100 ng/mL) were used to stimulate EMT and an inflammatory response in human renal proximal tubular epithelial (HK-2) cells, respectively, for further investigation. RESULTS In vivo, curcumin significantly improved the levels of BUN and Scr by 28.7% and 21.3%, respectively. Moreover, curcumin reduced the levels of IL-6, IL-1β and TNF-α by 22.5%, 30.3% and 26.7%, respectively, and suppressed vimentin expression in UUO mice. In vitro, curcumin reduced the expression of vimentin and α-smooth muscle actin in TGF-β1-induced HK-2 cells. In LPS-induced HK-2 cells, curcumin decreased the release of IL-6, IL-1β and TNF-α by 43.4%, 38.1% and 28.3%, respectively. In addition, curcumin reduced the expression of TLR4, p-PI3K, p-AKT, p-NF- κB and p-IκBα in both LPS- and TGF-β1-induced HK-2 cells. DISCUSSION AND CONCLUSIONS Curcumin repressed EMT and the inflammatory response by inhibiting the TLR4/NF-κB and PI3K/AKT pathways, demonstrating its potential utility in RIF treatment.
Collapse
Affiliation(s)
- Zhaohui Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Bingsheng Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yongchao Du
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yuhang Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
- CONTACT Yao He
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
- Xiang Chen Department of Urology, Xiangya Hospital, Central South University, Changsha, PR China
| |
Collapse
|
13
|
Cao M, Xiao D, Ding X. The anti-tumor effect of ursolic acid on papillary thyroid carcinoma via suppressing Fibronectin-1. Biosci Biotechnol Biochem 2020; 84:2415-2424. [PMID: 32942951 DOI: 10.1080/09168451.2020.1813543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
This study aims to discover the effects of ursolic acid (UA) on papillary thyroid carcinoma (PTC). Human PTC cells were under UA treatment, and cell viability, clone formation, and apoptosis were measured by MTT assay, clone formation assay, and flow cytometry, respectively. Expressions of apoptosis- and epithelial-mesenchymal transition (EMT)-related markers were determined via qRT-PCR and western blot. Fibronectin-1 (FN1) expression in thyroid carcinoma was analyzed by GEPIA2 and qRT-PCR. The effects of overexpressed FN1 on UA-treated cells were detected following the previous procedures. Cell viability, proliferation, and EMT-related marker expressions were inhibited, while cell apoptosis and apoptosis-related marker expressions were promoted by UA. FN1 was higher expressed in thyroid carcinoma and downregulated by UA. Effects of FN1 on cell viability, proliferation, and apoptosis- and EMT-related marker expressions were partially reversed by UA. UA inhibited human PTC cell viability, proliferation, and EMT but promoted apoptosis via suppressing FN1.
Collapse
Affiliation(s)
- Mingxiang Cao
- Department of Anesthesiology, Jingmen No.1 People's Hospital , Jingmen, Hubei Province, China
| | - Di Xiao
- Department of Anesthesiology, Jingmen No.1 People's Hospital , Jingmen, Hubei Province, China
| | - Xubei Ding
- Department of Thyroid and Breast Surgery, Jingmen No.1 People's Hospital , Jingmen, Hubei Province, China
| |
Collapse
|
14
|
Wang M, Yu H, Wu R, Chen ZY, Hu Q, Zhang YF, Gao SH, Zhou GB. Autophagy inhibition enhances the inhibitory effects of ursolic acid on lung cancer cells. Int J Mol Med 2020; 46:1816-1826. [PMID: 32901853 PMCID: PMC7521584 DOI: 10.3892/ijmm.2020.4714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to identify natural compounds that bear significant anti‑tumor activity. Thus, the effects of 63 small molecules that were isolated from traditional Chinese medicinal herbs on A549 human non‑small cell lung cancer (NSCLC) and MCF‑7 breast cancer cells were examined. It was found that ursolic acid (UA), a natural pentacyclic triterpenoid, exerted significant inhibitory effect on these cells. Further experiments revealed that UA inhibited the proliferation of various lung cancer cells, including the NSCLC cells, H460, H1975, A549, H1299 and H520, the human small cell lung cancer (SCLC) cells, H82 and H446, and murine Lewis lung carcinoma (LLC) cells. UA induced the apoptosis and autophagy of NSCLC cells. The inhibition of the mammalian target of rapamycin (mTOR) signaling pathway, but not the activation of the extracellular signal‑regulated kinase 1/2 (ERK1/2) signaling pathway contributed to the UA‑induced autophagy of NSCLC cells. Moreover, the inhibition of autophagy by chloroquine (CQ) or siRNA for autophagy‑related gene 5 (ATG5) enhanced the UA‑induced inhibition of cell proliferation and promotion of apoptosis, indicating that UA‑induced autophagy is a pro‑survival mechanism in NSCLC cells. On the whole, these findings suggest that combination treatment with autophagy inhibitors may be a novel strategy with which enhance the antitumor activity of UA in lung cancer.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan 450052
| | - Hong Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029
| | - Ran Wu
- Guizhou University School of Medicine, Guiyang, Guizhou 550025, P.R. China
| | - Zhen-Yin Chen
- Guizhou University School of Medicine, Guiyang, Guizhou 550025, P.R. China
| | - Qian Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029
| | - Yan-Fei Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101
| | - San-Hui Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101
| |
Collapse
|
15
|
Zhang L, Liu X, Liang J, Wu J, Tan D, Hu W. Lefty-1 inhibits renal epithelial-mesenchymal transition by antagonizing the TGF-β/Smad signaling pathway. J Mol Histol 2020; 51:77-87. [PMID: 32065356 DOI: 10.1007/s10735-020-09859-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process in which tubular epithelial cells lose their phenotypes, and new mesenchymal feature are obtained. In particular, type II EMT possibly contributes to renal tissue fibrogenesis. Recent studies indicate that Lefty-1, a novel member of the TGF-β superfamily with pleiotropical and biological regulation characteristics on TGF-β and other signaling pathways, is considered to have potential fibrotic effects. However, its role in EMT, which is often a long-term consequence of renal tubulointerstitial fibrosis, remains unknown. In this study, we found that Lefty-1 alleviates EMT induction through antagonizing TGF-β/Smad pathway in vivo and in vitro. In unilateral ureteral obstruction (UUO) model mice, administration of adenovirus-mediated overexpression of Lefty-1 (Ad-Lefty-1) significantly reduced TGF-β1/Smad expression and alleviated the phenotypic transition of epithelial cells to mesenchymal cells and extracellular matrix (ECM) accumulation. In high glucose-induced rat renal tubular duct epithelial cell line (NRK-52E), EMT and ECM synthesis were alleviated with Lefty-1 treatment, which significantly inhibited TGF-β1/Smad pathway activation in UUO mice and high glucose-treated NRK-52E cells. Thus, Lefty-1 can alleviate EMT and renal interstitial fibrosis in vivo and in vitro through antagonizing the TGF-β/Smad pathway, and Lefty-1 might have a potential novel therapeutic effect on fibrotic kidney diseases.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Urology, Minda Hospital, Affiliated to Hubei Minzu University, Enshi, 445000, Hubei, China.
| | - Xiaohua Liu
- Department of Urology, Minda Hospital, Affiliated to Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Jun Liang
- Department of Urology, Minda Hospital, Affiliated to Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Jianhua Wu
- Department of Urology, Minda Hospital, Affiliated to Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Daqing Tan
- Department of Urology, Minda Hospital, Affiliated to Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Wei Hu
- Department of Urology, The First Affiliated Hospital of University of South of China, Hengyang, 421001, Hunan, China
| |
Collapse
|
16
|
Zhu K, Cao C, Huang J, Cheng Z, Li D, Liu X, Mao Y, Qi Q. Inhibitory effects of ursolic acid from Bushen Yijing Formula on TGF-β1-induced human umbilical vein endothelial cell fibrosis via AKT/mTOR signaling and Snail gene. J Pharmacol Sci 2019; 140:33-42. [PMID: 31151763 DOI: 10.1016/j.jphs.2019.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 01/27/2023] Open
Abstract
The present study aimed to investigate the functional components from Bushen Yijing Formula and their inhibition of endothelial-mesenchymal transition (EndMT) and fibrosis in human umbilical vascular endothelial cells (HUVECs). HUVEC fibrosis was induced by treatment of transforming growth factor β (TGF-β) as the cellular model. Expression of EndMT biomarker gene and cofactors were determined by quantitative real-time-PCR, western blotting, and immunofluorescence. Angiogenesis capacity of vein endothelial cells was evaluated using tube formation assay. Ursolic acid and drug-contained serum ameliorated EndMT biomarker gene expression changes and angiogenesis capacity suppression induced by TGF-β treatment. Slug, Snail, and Twist gene expression and phosphorylation of mammalian target of rapamycin (mTOR) and AKT altered by TGF-β in HUVECs were suppressed by ursolic acid and drug-contained serum. Treatment with the mTOR signaling pathway inhibitor, rapamycin, inhibited the phosphorylation of mTOR and AKT, decreased Snail and Vimentin protein levels, and increased VE-cad protein levels. Overexpression of Snail gene promoted expression of EndMT-related genes and suppressed angiogenesis in HUVECs, which were attenuated by application of ursolic acid and drug-contained serum. Ursolic acid from Bushen Yijing Formula inhibits human umbilical vein endothelial cell EndMT and fibrosis, mediated by AKT/mTOR signaling and Snail gene expression.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Cuixiang Cao
- Department of Dermatology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510220, China
| | - Jiaqi Huang
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zixuan Cheng
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Donghai Li
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiuting Liu
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yueping Mao
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Qing Qi
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Dermatology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510220, China; Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|