1
|
Yadav E, Neupane NP, Otuechere CA, Yadav JP, Bhat MA, Al-Omar MA, Yadav P, Verma A. Cutaneous Wound-Healing Activity of Quercetin-Functionalized Bimetallic Nanoparticles. Chem Biodivers 2025; 22:e202401551. [PMID: 39609953 DOI: 10.1002/cbdv.202401551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
Quercetin, a natural flavonol, is reported to have significant antioxidant and anti-inflammatory activity, which further aids in its good wound-healing properties via acting on acute as well as chronic inflammatory phases. The current study is focused on understanding the potential of the green-synthesized iron and zinc oxide bimetallic (i.e., zinc ferrite) nanoparticles of quercetin (ZFQNP) on wound healing by an in vivo study model. Bimetallic quercetin nanoparticles were prepared by the co-precipitation method and characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), and dynamic light scattering (DLS) analyses. Synthesized ZFQNP was utilized to prepare the ointment for topical application, and wound-healing activity was evaluated by using the excisional wound method in Wistar rats. The binding affinity of quercetin was ascertained against various wound-healing protein targets by molecular docking. Characterization data confirmed the synthesis of bimetallic ZFQNP of an irregular shape. Molecular docking studies showed satisfactory binding potential of quercetin with selected molecular targets. The study results of various parameters corroborated the significant wound-healing properties of ZFQNP, possibly attributed to the promising binding potential of quercetin with vital wound-healing targets. The study demonstrated that the quercetin bimetallic nanoparticles could provide a promising wound-healing effect.
Collapse
Affiliation(s)
- Ekta Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Netra Prasad Neupane
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Chiagoziem A Otuechere
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| | - Jagat Pal Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
- Faculty of Pharmaceutical Sciences, Rama University, Kanpur, India
| | - Mashooq A Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Al-Omar
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Pankajkumar Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
2
|
Mirshekari M, Bagheri Ghomi A, Hamishehkar H, Farahpour MR. In Vivo, Evaluation of Wound Healing Activity of Nanoliposomes Loaded Withania somnifera Extract. Adv Pharm Bull 2024; 14:846-857. [PMID: 40190681 PMCID: PMC11970498 DOI: 10.34172/apb.42403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose Medicinal plants and their derivatives have been used to treat wounds, and loading the plants into nanoliposomes (NLPs) helps to increase their efficacy. This study investigated the efficacy of NLPs loaded with Withania somnifera (WHSE) extract in mouse models for excisional wound healing. Methods In the present study, we thoroughly evaluated WHSE's antibacterial, antioxidant, and safety profiles. Additionally, we assessed wound contraction, pathological evaluations, and the expression of basic fibroblast growth factor (bFGF) and CD31. Results The results showed that the extract and its NLPs had biocompatibility and exhibited antibacterial and antioxidant properties. Furthermore, our in vivo wound healing assay results showed that ointments containing 0.50% and 1.00% of the WHSE-NLPs accelerated wound healing and increased collagen and epithelialization. Furthermore, the results of the immunofluorescence and immunochemical tests indicated more expression of CD31 and bFGF in the mice that have been treated with WHSE-NLPs compared to those who were treated with WHSE and control groups. (P<0.05). Conclusion We demonstrated that the administration of 1.00% of the WHSE-NLPs could compete with the commercial ointment (Nitrofurazone®). Therefore, balms prepared from WHSE-NLPs expedited the wound healing process by increasing collagen, epithelialization, and the expression of CD31 and bFGF.
Collapse
Affiliation(s)
- Mohadese Mirshekari
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Azar Bagheri Ghomi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street, AZ1096, Baku, Azerbaijan
| | - Mohammad Reza Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| |
Collapse
|
3
|
Pathak D, Mazumder A. A critical overview of challenging roles of medicinal plants in improvement of wound healing technology. Daru 2024; 32:379-419. [PMID: 38225520 PMCID: PMC11087437 DOI: 10.1007/s40199-023-00502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024] Open
Abstract
PURPOSE Chronic diseases often hinder the natural healing process, making wound infections a prevalent clinical concern. In severe cases, complications can arise, potentially leading to fatal outcomes. While allopathic treatments offer numerous options for wound repair and management, the enduring popularity of herbal medications may be attributed to their perceived minimal side effects. Hence, this review aims to investigate the potential of herbal remedies in efficiently treating wounds, presenting a promising alternative for consideration. METHODS A literature search was done including research, reviews, systematic literature review, meta-analysis, and clinical trials considered. Search engines such as Pubmed, Google Scholar, and Scopus were used while retrieving data. Keywords like Wound healing 'Wound healing and herbal combinations', 'Herbal wound dressing', Nanotechnology and Wound dressing were used. RESULT This review provides valuable insights into the role of natural products and technology-based formulations in the treatment of wound infections. It evaluates the use of herbal remedies as an effective approach. Various active principles from herbs, categorized as flavonoids, glycosides, saponins, and phenolic compounds, have shown effectiveness in promoting wound closure. A multitude of herbal remedies have demonstrated significant efficacy in wound management, offering an additional avenue for care. The review encompasses a total of 72 studies, involving 127 distinct herbs (excluding any common herbs shared between studies), primarily belonging to the families Asteraceae, Fabaceae, and Apiaceae. In research, rat models were predominantly utilized to assess wound healing activities. Furthermore, advancements in herbal-based formulations using nanotechnology-based wound dressing materials, such as nanofibers, nanoemulsions, nanofiber mats, polymeric fibers, and hydrogel-based microneedles, are underway. These innovations aim to enhance targeted drug delivery and expedite recovery. Several clinical-based experimental studies have already been documented, evaluating the efficacy of various natural products for wound care and management. This signifies a promising direction in the field of wound treatment. CONCLUSION In recent years, scientists have increasingly utilized evidence-based medicine and advanced scientific techniques to validate the efficacy of herbal medicines and delve into the underlying mechanisms of their actions. However, there remains a critical need for further research to thoroughly understand how isolated chemicals extracted from herbs contribute to the healing process of intricate wounds, which may have life-threatening consequences. This ongoing research endeavor holds great promise in not only advancing our understanding but also in the development of innovative formulations that expedite the recovery process.
Collapse
Affiliation(s)
- Deepika Pathak
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India.
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India
| |
Collapse
|
4
|
Osanloo M, Noori F, Varaa N, Tavassoli A, Goodarzi A, Moghaddam MT, Ebrahimi L, Abpeikar Z, Farmani AR, Safaei M, Fereydouni N, Goodarzi A. The wound healing effect of polycaprolactone-chitosan scaffold coated with a gel containing Zataria multiflora Boiss. volatile oil nanoemulsions. BMC Complement Med Ther 2024; 24:56. [PMID: 38273247 PMCID: PMC10809667 DOI: 10.1186/s12906-024-04352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
AIMS Thymus plant is a very useful herbal medicine with various properties such as anti-inflammatory and antibacterial. Therefore, the properties of this plant have made this drug a suitable candidate for wound healing. In this study, hydroxypropyl methylcellulose (HPMC) gel containing Zataria multiflora volatile oil nanoemulsion (neZM) along with polycaprolactone/chitosan (PCL-CS) nanofibrous scaffold was used, and the effect of three experimental groups on the wound healing process was evaluated. The first group, HPMC gel containing neZM, the second group, PCL-CS nanofibers, and the third group, HPMC gel containing neZM and bandaged with PCL-CS nanofibers (PCL-CS/neZM). Wounds bandaged with common sterile gas were considered as control. METHODS The nanoemulsion was synthesized by a spontaneous method and loaded into a hydroxypropyl methylcellulose (HPMC) gel. The DLS test investigated the size of these nanoemulsions. A PCL-CS nanofibrous scaffold was also synthesized by electrospinning method then SEM and contact angle tests investigated morphology and hydrophilicity/hydrophobicity of its surface. The animal study was performed on full-thickness skin wounds in rats, and the process of tissue regeneration in the experimental and control groups was evaluated by H&E and Masson's trichrome staining. RESULTS The results showed that the nanoemulsion has a size of 225±9 nm and has an acceptable dispersion. The PCL-CS nanofibers synthesized by the electrospinning method also show non-beaded smooth fibers and due to the presence of chitosan with hydrophilic properties, have higher surface hydrophobicity than PCL fibers. The wound healing results show that the PCL-CS/neZM group significantly reduced the wound size compared to the other groups on the 7th, 14th, and 21st days. The histological results also show that the PCL-CS/neZM group could significantly reduce the parameters of edema, inflammation, and vascularity and increase the parameters of fibrosis, re-epithelialization, and collagen deposition compared to other groups on day 21. CONCLUSION The results of this study show that the PCL-CS/neZM treatment can effectively improve wound healing.
Collapse
Affiliation(s)
- Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Fariba Noori
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Negar Varaa
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Alireza Tavassoli
- Department of Pathology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Aida Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Lida Ebrahimi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohsen Safaei
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran.
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
5
|
Gyimah L, Asante-Kwatia E, Adjei S, Owusu FA, Darko F, Tabiri E, Mensah AY. Pharmacognostic characterization, wound healing and toxicity assessment of the stem bark of Xylia evansii Hutch (Leguminosae). Heliyon 2023; 9:e21692. [PMID: 37954382 PMCID: PMC10638049 DOI: 10.1016/j.heliyon.2023.e21692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 09/11/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Xylia evansii is widely used in traditional medicine to stop bleeding gums and treat wounds. This study was undertaken to assess the wound healing activity and toxicity profile of the stem bark methanol extract of X. evansii (XES). Wound healing activity was determined by the dermal excision model in rats. The free radical scavenging capacity, antioxidant activity, total phenolic and flavonoid contents were evaluated by the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, total antioxidant capacity (TAC), aluminum chloride colorimetric and Folin Ciocalteu methods respectively. Acute and sub-acute oral toxicity assessment was performed following the Organization for Economic Co-operation and Development guidelines. Significant (p < 0.05) dose-dependent wound healing effect, similar to that of 1 % silver sulphadiazine was elicit by the 10, 15 and 20 %w/w XES ointments. The highest effect was demonstrated by XES 20 %w/w which resulted in 98.3 % wound surface closure by day 9 of treatment (p < 0.0001). The total phenolic and flavonoid contents were determined to be 381.2 ± 12.57 mg/g gallic acid equivalent (GAE) and 460 ± 29.07 mg/g quercetin equivalent respectively. XES exhibited remarkable free radical scavenging effect (IC50 = 68.13 ± 1.87 μg/mL) and had a total antioxidant capacity of 279.2 ± 32.08 mg/g GAE. The LD50 of XES was estimated to be > 5000 mg/kg. In sub-acute toxicity, 28 days treatment with XES (250, 500, 1000 mg/kg body weight) did not result in any significant (p > 0.05) change in the body weight or weight of the heart, lung, spleen, liver and kidneys. The haematological and biochemical profiles of XES-treated rats were not significantly (p > 0.05) affected after 4-weeks treatment with XES, except for platelet count which increased significantly (p < 0.0001) in a non-dose-dependent manner. Histopathological examination did not reveal any toxic effect to liver cells, however at 1000 mg/kg XES, slight abnormalities were identified in the glomeruli. Microscopy of the powdered stem bark displayed calcium oxalate crystals, pitted vessels and lignified fibres. Tannins, flavonoids, coumarins, saponins, triterpenes and alkaloids were identified in the bark. This is the first report on the wound healing potential and safety profile of X. evansii, giving scientific credence to its use in traditional medicine.
Collapse
Affiliation(s)
- Lord Gyimah
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Evelyn Asante-Kwatia
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Silas Adjei
- Department of Herbal Medicine, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Frederick Akuffo Owusu
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Fanny Darko
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ernest Tabiri
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Abraham Yeboah Mensah
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
6
|
Kowalczyk T, Merecz-Sadowska A, Ghorbanpour M, Szemraj J, Piekarski J, Bijak M, Śliwiński T, Zajdel R, Sitarek P. Enhanced Natural Strength: Lamiaceae Essential Oils and Nanotechnology in In Vitro and In Vivo Medical Research. Int J Mol Sci 2023; 24:15279. [PMID: 37894959 PMCID: PMC10607815 DOI: 10.3390/ijms242015279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
The Lamiaceae is one of the most important families in the production of essential oils known to have a wide spectrum of biological activity. Recent research has highlighted the dermatological capabilities of various Lamiaceae essential oils, which appear to offer potential in free radical scavenging and anti-inflammatory activity. Some have also been extensively studied for their tissue remodeling and wound-healing, anti-aging, anti-melanogenic, and anti-cancer properties. Certain Lamiaceae essential oils are promising as novel therapeutic alternatives for skin disorders. This potential has seen substantial efforts dedicated to the development of modern formulations based on nanotechnology, enabling the topical application of various Lamiaceae essential oils. This review provides a comprehensive summary of the utilization of various essential oils from the Lamiaceae family over the past decade. It offers an overview of the current state of knowledge concerning the use of these oils as antioxidants, anti-inflammatory agents, wound-healers, anti-aging agents, anti-melanogenic agents, and anticancer agents, both alone and in combination with nanoparticles. Additionally, the review explores their potential applicability in patents regarding skin diseases.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (T.Ś.)
| | - Janusz Piekarski
- Department of Surgical Oncology, Medical University in Lodz, 93-513 Lodz, Poland;
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Tomasz Śliwiński
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (T.Ś.)
| | - Radosław Zajdel
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
7
|
Arab Z, Salmani H, Marefati N, Beheshti F, Anaeigoudari A, Shakeri F, Tajmazinani N, Hosseini M. Protective effects of hydro-alcoholic extract of Zataria multiflora on lipopolysaccharide-induced inflammation and oxidative stress in rat liver. AVICENNA JOURNAL OF PHYTOMEDICINE 2023; 13:531-540. [PMID: 38089417 PMCID: PMC10711579 DOI: 10.22038/ajp.2023.21914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 03/05/2025]
Abstract
OBJECTIVE Liver is an important player in regulation of body homeostasis. Study investigated the effects of hydro-alcohol extract of Zataria multiflora (ZM) on oxidative damage, level of IL-6 and enzymes of liver in lipopolysaccharide (LPS)-treated rats. MATERIALS AND METHODS The rats were distributed into 5 groups: 1) Control; 2) LPS; and 3-5) ZM-Extract (Ext) 50, ZM-Ext 100, and ZM-Ext 200. ZM-Ext groups received 50, 100 and 200 mg/kg of extract 30 min before LPS. Drugs were injected intraperitoneally. The entire period of this project was 17 days. In first three days, only extract was injected and then, ZM was injected along with LPS. RESULTS LPS increased the level of ALT (Alanine aminotransferase), AST (Aspartate aminotransferase ), ALK-P (Alkaline Phosphatase), IL-6, malondialdehyde (MDA), and nitric oxide (NO) metabolites and lowered thiol, superoxide dismutase (SOD) and catalase (CAT) concentration. ZM extract not only reduced ALT, AST, ALK-P, IL-6, MDA, and NO metabolites concentrations but also increased thiol content, and SOD and CAT levels. CONCLUSION Extract of ZM prevented LPS-induced hepatotoxicity. This protective effect was associated with reduction in inflammation and oxidative stress.
Collapse
Affiliation(s)
- Zohreh Arab
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Narges Marefati
- Department of Physiology, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Akbar Anaeigoudari
- Department of Physiology,School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Narges Tajmazinani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Hamidi SP, Koohi-Hosseinabadi O, Khaksar S, Ghanbariasad A, Dehghanian AR, Dehghan A, Haddadi Z, Gorgin R, Farjam M, Alipanah H. Evaluation of the topical gel and oral administration of Punica Granatum Var Pleniflora on oral mucositis induced by 5-Fluorouracil in golden hamsters. BMC Complement Med Ther 2023; 23:225. [PMID: 37420236 DOI: 10.1186/s12906-023-04053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/24/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Oral mucositis (OM), an acute inflammation of the oral cavity, is a common complication in patients undergoing invasive myeloblastic chemotherapy or radiation therapy. 5-fluorouracil (5-FU) is one of the most effective therapeutic drugs, but one of the common side effects of 5-FU administration is OM. Unfortunately, no suitable treatment has been found, so far to control its side effects. Studies showed that herbal medicine like Punica granatum var pleniflora (PGP) has medicinal properties such as anti-inflammatory and antibacterial and can be an alternative for the treatment of fungal infection. Accordingly, we decided to investigate the therapeutic effect of PGP in the treatment of OM caused by 5-FU in golden hamsters. METHODS Sixty male golden hamsters were divided into six main group. Chemotherapy with 5-FU at dose of 60 mg/kg was performed at a ten-day duration. Then, cheek pouches of the hamsters were scratched with an 18-gauge sterile needle to induce oral mucositis in animals. On the twelfth day, as a day of intensification of OM, treatment with PGP including topical gel with concentrations of 5% and 10% and oral administration of hydro-alcoholic extract with doses of 125 mg/kg and 250 mg/kg for three- and five-day therapeutic duration were separately started. Finally, samples of cheek pouches in hamsters were collected on 14th and 17th days and histopathologic score (HPS), malondialdehyde (MDA), and myeloperoxidase (MPO) levels were assayed. RESULTS A significant (p < 0.05) decrease in histopathologic score was observed in G10%-, P125-treated groups in comparison to the Ctrl group. Our data showed that treatment with G10% is more potent than P125-treated group. In contrast, histopathologic score in G10%, P125, and P250 treated groups demonstrated almost similar values On the 17th day. However, the levels of MDA and MPO in the treatment groups were enhanced compared with control group (p < 0.05). CONCLUSIONS It is possible that PGP can play protective role in the healing of tissue damage caused by chemotherapy with 5-FU due to the presence of its natural compounds and antioxidant properties.
Collapse
Affiliation(s)
| | | | - Sepideh Khaksar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Ali Ghanbariasad
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Surgical and Clinical Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Reza Dehghanian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Azizallah Dehghan
- Surgical and Clinical Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Haddadi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Roxana Gorgin
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Mojtaba Farjam
- Surgical and Clinical Pathology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hiva Alipanah
- Surgical and Clinical Pathology, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Physiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
9
|
Zhang X, Zhang Y, Wu Y, Xia Q, Ji Y, Yao W, Qi J, Cao L. Effects of irradiated biological dressings on second-degree burn wounds. Afr Health Sci 2023; 23:367-373. [PMID: 38223637 PMCID: PMC10782298 DOI: 10.4314/ahs.v23i2.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Objective To explore the effect of irradiated biological dressing (IBD) on second degree burn wounds. Methods Eighty patients with second-degree burns who were treated in our department were selected and randomly divided into IBD group and traditional dressing (TD) group by random number table method. The dressing change, wound healing, comfort and adverse reactions of patients in the two groups were compared and analysed. Results The number of dressing changes in the IBD group was significantly less than that in the TD group, and the pain degree of dressing changes was significantly lower than that in the TD group (P<0.05). The dressing comfort of the IBD group was higher than that of the TD group, the secondary trauma score was lower than that of the TD group, the wound scar hyperplasia score was lower than that of the TD group, and the healing time was shorter than that of the TD group (P<0.05). There was no statistically significant difference in adverse reactions between the two groups (P>0.05). Conclusion IBD can promote the healing of second-degree burn wounds, improve patient comfort, reduce secondary trauma and wound scarring, and improve patients' quality of life.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Burn and Plastic, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yi Zhang
- Department of Burn and Plastic, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yangyang Wu
- Department of Burn and Plastic, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Qinchen Xia
- Department of Burn and Plastic, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yaoyao Ji
- Department of Burn and Plastic, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Wangwang Yao
- Department of Burn and Plastic, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jun Qi
- Department of Burn and Plastic, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Ling Cao
- Department of Burn and Plastic, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
10
|
Huang KX, Zhou LY, Chen JQ, Peng N, Chen HX, Gu HZ, Zou T. Applications and perspectives of quaternized cellulose, chitin and chitosan: A review. Int J Biol Macromol 2023:124990. [PMID: 37211070 DOI: 10.1016/j.ijbiomac.2023.124990] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Recently, increasing attention has been paid to natural polysaccharides for their low cost, biocompatibility and biodegradability. Quaternization is a modification method to improve the solubility and antibacterial ability of natural polysaccharides. Water-soluble derivatives of cellulose, chitin and chitosan offer the prospect of diverse applications in a wide range of fields, such as antibacterial products, drug delivery, wound healing, sewage treatment and ion exchange membranes. By combining the inherent properties of cellulose, chitin and chitosan with the inherent properties of the quaternary ammonium groups, new products with multiple functions and properties can be obtained. In this review, we summarized the research progress in the applications of quaternized cellulose, chitin and chitosan in recent five years. Moreover, ubiquitous challenges and personal perspectives on the further development of this promising field are also discussed.
Collapse
Affiliation(s)
- Ke-Xin Huang
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Ling-Yue Zhou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Jia-Qi Chen
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Na Peng
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Hong-Xiang Chen
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Hua-Zhi Gu
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Tao Zou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
11
|
Mishra P, Gupta P, Srivastava R, Srivastava AK, Poluri KM, Prasad R. Exploration of Antibiofilm and In Vivo Wound Healing Activity of p-Cymene-Loaded Gellan/PVA Nanofibers. ACS APPLIED BIO MATERIALS 2023; 6:1816-1831. [PMID: 37075306 DOI: 10.1021/acsabm.3c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Wound dressings with outstanding biocompatibility, antimicrobial, and tissue regeneration activities are essential to manage emerging recalcitrant antifungal infections to speed up healing. In this study, we have engineered p-cymene-loaded gellan/PVA nanofibers using electrospinning. Morphological and physicochemical properties of the nanofibers were characterized using a multitude of techniques to validate the successful integration of p-cymene (p-cym). The fabricated nanomaterials exhibited strong antibiofilm activity against Candida albicans and Candida glabrata compared to pure p-cymene. In vitro biocompatibility assay demonstrated that nanofibers did not possess any cytotoxicity to the NIH3T3 cell lines. In vivo, full-thickness excision wound healing study showed that the nanofibers were able to heal skin lesions faster than the conventional clotrimazole gel in 24 days without forming any scar. These findings unraveled p-cymene-loaded gellan gum (GA)/poly(vinyl alcohol) (PVA) nanofibers as an effective biomaterial for cutaneous tissue regeneration.
Collapse
Affiliation(s)
- Purusottam Mishra
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Payal Gupta
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Department of Biotechnology, Graphic Era University, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Rajnish Srivastava
- Moradabad Educational Trust Group of Institutions, Faculty of Pharmacy, Moradabad 244001, Uttar Pradesh, India
| | - Amit Kumar Srivastava
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ramasare Prasad
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
12
|
Saginova D, Tashmetov E, Kamyshanskiy Y, Koshanova A, Arutyunyan M, Rustambek I. The histological assessment of new bone formation with zolendronic acid loaded bone allograft in rabbit femoral bone defect. J Med Life 2023; 16:616-622. [PMID: 37305828 PMCID: PMC10251371 DOI: 10.25122/jml-2022-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/24/2023] [Indexed: 06/13/2023] Open
Abstract
The aim of this experimental study was to evaluate the effect of zolendronic acid (ZOL) combined with bone allograft prepared using the Marburg Bone Bank System on bone formation in the implant remodeling zone. Femoral bone defects with a diameter of 5 mm and a depth of 10 mm were created in 32 rabbits. Animals were divided into 2 similar groups: Group 1 (control), where defects were filled with bone allograft, and Group 2, where allograft was combined with ZOL. Eight animals from each group were sacrificed at 14- and 60-days post-surgery and bone defect healing was assessed using histopathological and histomorphometric analyses after 14 and 60 days. The results showed that new bone formation within the bone allograft was significantly greater in the control group than in the ZOL-treated group after 14 and 60 days (p<0.05). In conclusion, local co-administration of ZOL on heat-treated allograft inhibits allograft resorption and new bone formation in the bone defect.
Collapse
Affiliation(s)
- Dina Saginova
- Center for Applied Scientific Research, National Scientific Center of Traumatology and Orthopaedics named after academician N.D.Batpenov, Nur-Sultan, Kazakhstan
| | - Elyarbek Tashmetov
- Department of Surgical Diseases, Karaganda Medical University, Karaganda, Kazakhstan
| | - Yevgeniy Kamyshanskiy
- Institute of Pathology of the University Clinic, Karaganda Medical University, Karaganda, Kazakhstan
| | - Amina Koshanova
- Department of Surgical Diseases, Karaganda Medical University, Karaganda, Kazakhstan
| | - Marietta Arutyunyan
- Department of Surgical Diseases, Karaganda Medical University, Karaganda, Kazakhstan
| | - Ibrahim Rustambek
- Department of Surgical Diseases, Karaganda Medical University, Karaganda, Kazakhstan
| |
Collapse
|
13
|
Osanloo M, Noori F, Tavassoli A, Ataollahi MR, Davoodi A, Seifalah-Zade M, Taghinezhad A, Fereydouni N, Goodarzi A. Effect of PCL nanofiber mats coated with chitosan microcapsules containing cinnamon essential oil for wound healing. BMC Complement Med Ther 2023; 23:84. [PMID: 36934283 PMCID: PMC10024394 DOI: 10.1186/s12906-023-03905-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/02/2023] [Indexed: 03/20/2023] Open
Abstract
INTRODUCTION Cinnamon is one of the most common spices that has been studied for its anti-inflammatory, antioxidant, and antibacterial properties in wound healing. The purpose of this study was to evaluate the effectiveness of polycaprolactone nanofiber mats coated with chitosan microcapsules loaded with cinnamon essential oil in wound healing. MATERIAL AND METHODS For this purpose, chitosan microcapsules containing cinnamon essential oil (µCS-CiZ) were prepared by ion gelation and PCL nanofibers by electrospinning. The size of the µCS-CiZ and the morphology of nanofibers were evaluated by DLS and FESEM methods. In order to evaluate wound healing, 48 rats in 4 groups of Control, µCS-CiZ, PCL, and PCL + µCS-CiZ and were examined on days 7, 14, and 21 in terms of macroscopy (wound closure rate) and histology (edema, inflammation, vascularity, fibrotic tissue, and re-epithelialization). RESULTS The particle size of the µCS-CiZ and the diameter of the nanofibers were estimated at about 6.33 ± 1.27 μm and 228 ± 33 nm, respectively. On day 21, both µCS-CiZ and PCL groups showed a significant decrease in wound size compared to the control group (P < 0.001). The PCL + µCS-CiZ group also showed a significant decrease compared to the µCS-CiZ (P < 0.05) and PCL groups (P < 0.05). Histological results showed further reduction of edema, inflammation, and vascularity in granulation tissue and appearance of moderate to marked fibrotic tissue in PCL + µCS-CiZ group compared with the other groups. CONCLUSION The results of the study showed that the combined use of PCL + µCS-CiZ indicates a synergistic effect on improving wound healing.
Collapse
Affiliation(s)
- Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Fariba Noori
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Alireza Tavassoli
- Department of Pathology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Reza Ataollahi
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Davoodi
- School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Morteza Seifalah-Zade
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Taghinezhad
- Noncommunicable Diseases Research Center (NCDRC), Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Noncommunicable Diseases Research Center (NCDRC), Fasa University of Medical Sciences, Fasa, Iran.
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
14
|
Zhao Q, Zhu L, Wang S, Gao Y, Jin F. Molecular mechanism of the anti-inflammatory effects of plant essential oils: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115829. [PMID: 36252876 DOI: 10.1016/j.jep.2022.115829] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plant essential oils (PEOs) extracted from aromatic compounds of the plant contain complex mixtures of volatile and lipophilic bioactive compounds. In ancient Egypt, Arabia, Greece, and China, PEOs were traditional used in aromatherapy for various health disorders, including pain and inflammation. AIM OF THE STUDY In this review, we provide an overview of the anti-inflammatory effects of PEOs and the underlying mechanisms associated with anti-inflammatory effects using in vitro and in vivo models. Further, clinical trials associated with PEOs were explored. MATERIALS AND METHODS The literature search was performed using various web-based tools and databases like Google Scholar, Web of Science, PubMed, CNKI and SCOPUS. The keywords used for conducting the literature review were general terms like "essential oils" followed by (AND) the subject of interest like "in vitro and/or in vivo anti-inflammatory models," "inflammatory response," "inflammatory indicators," "pro-inflammatory cytokines," "signaling pathway," "anti-inflammatory mechanism," "toxicology and side effects" and "clinical trials." The articles selected were published between 2017 and 2022. The articles prior to 2017 were only considered if they were associated with molecular mechanisms or signaling pathways involved in the inflammatory responses. RESULTS In vitro and in vivo inflammation models have been used to study the anti-inflammatory effects of 48 PEOs. Studies have reported that PEOs targets and inhibit multiple dysregulated signaling pathways associated with inflammation, including Toll-like receptors, nuclear transcription factor-κ B, mitogen-activated protein kinases, Nod-like receptor family pyrin domain containing 3, and auxiliary pathways like the nuclear factor erythroid 2-related factor 2/antioxidant response element and Janus kinase/signal transducers and activators of transcription) signaling pathways. CONCLUSION PEOs extracted from different plant materials had varied qualitative and quantitative compositions of biologically active compounds. Different anti-inflammatory potentials and different molecular signal transduction have been attributed to PEOs-derived bioactive compounds with different chemical structures. The data on therapeutic efficacy and the long-term side effects of PEOs as an anti-inflammatory drug are still unknown due to the lack of clinical trials on PEOs. There is still insufficient evidence to draw conclusions on anti-inflammatory properties of PEOs without promising outcomes from clinical trials.
Collapse
Affiliation(s)
- Qian Zhao
- College of Life Sciences, China Jiliang University, Aroma Engineering Technology Research and Development Center, Hangzhou, 310018, China.
| | - Liyun Zhu
- College of Life Sciences, China Jiliang University, Aroma Engineering Technology Research and Development Center, Hangzhou, 310018, China; Anhui Hanfang Biotechnology Co., Ltd, Huaibei, 23500, China.
| | - Sunan Wang
- Canadian Food and Wine Institute, Niagara College Canada, 135 Taylor Road, Niagara-on-the-Lake, Ontario, L0S1J0, Canada
| | - Yongsheng Gao
- College of Life Sciences, China Jiliang University, Aroma Engineering Technology Research and Development Center, Hangzhou, 310018, China; Anhui Hanfang Biotechnology Co., Ltd, Huaibei, 23500, China
| | - Fei Jin
- College of Life Sciences, China Jiliang University, Aroma Engineering Technology Research and Development Center, Hangzhou, 310018, China
| |
Collapse
|
15
|
Ohkura N, Yoshiba K, Yoshiba N, Edanami N, Ohshima H, Takenaka S, Noiri Y. SVCT2-GLUT1-mediated ascorbic acid transport pathway in rat dental pulp and its effects during wound healing. Sci Rep 2023; 13:1251. [PMID: 36690706 PMCID: PMC9870884 DOI: 10.1038/s41598-023-28197-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Ascorbic acid (AA; vitamin C) plays a crucial role in the biosynthesis and secretion of collagen to produce the organic matrix of hard tissues. Nevertheless, the detailed mechanism by which AA induces reparative dentinogenesis is still unknown. This study aimed to investigate the pathway and function of AA during wound healing in a rat pulpotomy model. Sodium-dependent vitamin C transporter (SVCT) 2 and glucose transporter (GLUT) 1 were detected in odontoblasts, endothelial cells, and nerve fibers in normal pulp tissues. SVCT2 and GLUT1 were also expressed in odontoblast-like cells in pulpotomized tissues of Wistar rats, and immunopositive cells of SVCT2 were significantly increased at 5 days after pulpotomy (p < 0.05). By contrast, osteogenic disorder Shionogi (ODS) rats, which cannot generate AA, also expressed SVCT2 and GLUT1 in normal and wound healing conditions. However, in ODS rats, when compared with the AA-addition group, the formation of dentin bridges in the AA-loss group was not evident, a layer of osteopontin was significantly increased beneath the wound surface (p < 0.05), and alpha smooth muscle actin at the odontoblast-like cells observed along this layer was significantly increased (p < 0.05), but not Nestin. Moreover, the amounts of type 1 collagen generated in the reparative dentin and beneath the wound healing site were significantly diminished (p < 0.05). Macrophages expressing CD68 and CD206 increased beneath the wound site. Hence, AA may be involved in odontoblast-like cell differentiation and anti-inflammatory response during dental pulp wound healing. Our results provide new insights into the function of AA through SVCT2 and GLUT1 in reparative dentinogenesis and may help in developing new therapeutic targets for dental pulpal disease.
Collapse
Affiliation(s)
- Naoto Ohkura
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Kunihiko Yoshiba
- Division of Oral Science for Health Promotion, Department of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nagako Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Edanami
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
16
|
Yu Z, Li Y, Fu R, Xue Y, Zhao D, Han D. Platycodin D inhibits the proliferation and migration of hypertrophic scar-derived fibroblasts and promotes apoptosis through a caspase-dependent pathway. Arch Dermatol Res 2022; 315:1257-1267. [DOI: 10.1007/s00403-022-02513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
AbstractAbnormal fibroblast proliferation and excessive extracellular matrix (ECM) deposition lead to the formation of hypertrophic scars (HSs). However, there is no satisfactory method to inhibit the occurrence and development of HSs. In our study, platycodin D (PD), a natural compound extracted from Platycodon grandiflorus, inhibited HSs formation both in vitro and in vivo. First, qRT-PCR and Western blot were used to confirm PD dose-dependently downregulated the expression of Col I, Col III and α-SMA in human hypertrophic scar-derived fibroblasts (HSFs) (p < 0.05). Second, cck-8, transwell and wound healing assays verified PD suppressed the proliferation (p < 0.05) and migration of HSFs (p < 0.05), and inhibited the differentiation of HSFs into myofibroblasts. Moreover, PD-induced HSFs apoptosis were analyzed by flow cytometry and the apoptosis was activated through a caspase-dependent pathway. The rabbit ear scar model was used to further confirm the inhibitory effect of PD on collagen and α-SMA deposition. Finally, Western blot analysis showed that PD reduced TGF-β RI expression (p < 0.05) and affected matrix metalloproteinase 2 (MMP2) protein levels (p < 0.05). In conclusion, our study showed that PD inhibited the proliferation and migration of HSFs by inhibiting fibrosis-related molecules and promoting apoptosis via a caspase-dependent pathway. The TGF-β/Smad pathway also mediated the inhibition of HSFs proliferation and HSFs differentiation into myofibroblasts. Therefore, PD is a potential therapeutic agent for HSs and other fibrotic diseases.
Collapse
|
17
|
Sousa AJC, de Sousa Neto BP, da Costa DS, de Sousa MC, de Carvalho CES, Quintans-Junior LJ, Quintans JSS, Neves JA, da Silva FV, Viana AFSC, Nunes PHM, de Cássia Meneses Oliveira R. Antiulcerogenic and healing activity of hecogenin acetate in rodents. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:759-769. [PMID: 36474020 DOI: 10.1007/s00210-022-02341-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Peptic ulcers are lesions in the gastric and duodenal mucosa generated by an imbalance between protective factors (gastroduodenal mucus secretion, bicarbonate production, adequate blood flow) and harmful factors (excess pepsin or hydrochloric acid). Some drugs used in peptic ulcer therapy are associated with adverse effects. The aim of this study was to evaluate the antiulcerogenic and healing activity of hecogenin acetate (HA) in acute and chronic models of gastric lesions in rodents. The antiulcerogenic activity of HA was evaluated in models of gastric lesions induced by absolute ethanol and in acidified ethanol with HA (5, 10, and 20 mg/kg). For the model of gastric lesions induced by ischemia and reperfusion, rats were pre-treated with HA (5, 10, 20 mg/kg). After that, they were submitted to 30 min of ischemia, followed by 1 h of reperfusion. To evaluate the healing activity was induced gastric ulcer using acetic acid (80%) in rats. After 24 h, they were treated for 7 consecutive days with HA (10 and 20 mg/kg). They were evaluated the possible signs of toxicity, measurement of the lesions, collagen deposition, and histological analysis. HA significantly reduced the area of the lesion in models of gastric lesions induced by absolute and acidified ethanol, ischemia-induced gastric lesions and reperfusion, and regarding healing. In the collagen deposition, the presence and increase of collagen demonstrate the healing effect. The AH has antiulcerogenic and healing potential demonstrated by the decrease in gastric injury and presence of collagen fibers, respectively.
Collapse
|
18
|
Mahmoodi Nesheli M, Khorasani G, Hosseinimehr SJ, Rahmati J, Yavari A. The Effects of Zataria multiflora Cream on Split-Thickness Skin Graft Donor-Site Management: A Randomized, Blinded, Placebo-Controlled Study. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2022; 28:948-954. [PMID: 36206040 DOI: 10.1089/jicm.2022.0533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Purpose: The wound healing process involves a complex series of biological events. Skin grafts have several uses as a reconstructive method. There are several dressings for the skin graft donor site, but the optimum dressing agents that provide all the requirements at the same time are unclear. This prospective, randomized, placebo-controlled clinical trial aimed to evaluate the therapeutic effect of Zataria multiflora cream in the wound healing process of partial-thickness skin graft donor sites and compared it with a placebo. Materials and Methods: This clinical trial study was performed on patients who underwent split-thickness skin grafts. Enrolled patients applied Z. multiflora cream and placebo controlled (petrolatum ointment) twice a day, from the day of intervention at the skin graft donor sites in two parts, separately. On 7, 14, 21, and 28 days after surgery, the wound healing process was evaluated, photographed, and scored according to the Bates-Jensen assessment tool. Evidence of infection was evaluated. The main agent and placebo were compared during the wound healing process. Results: Decreases in wound surface area and total score were significantly greater in the Z. multiflora group (p < 0.05). The wounds of 30% of patients in the second week and 90% of patients in the third week were completely epithelialized in the Z. multiflora group. These values were 3.3% and 36.7% for the control group, respectively, and so, the healing rate was ∼9-fold in the second week and 2.45-fold in the third week in the Z. multiflora group compared with the control group (p < 0.05). Conclusion: Wound healing and reepithelialization accelerated significantly in the first, second, third, and fourth week after intervention in the Z. multiflora treatment group, due to modulating the inflammatory phase and improving the proliferative phase. Clinical Trial Registration Number: IRCT20210624051695N1.
Collapse
Affiliation(s)
- Mohsen Mahmoodi Nesheli
- Department of Plastic and Reconstructive Surgery, Imam Khomeini Hospital Complex, Medicine Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasemali Khorasani
- Department of Plastic and Reconstructive Surgery, Imam Khomeini Hospital Complex, Medicine Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Rahmati
- Department of Plastic and Reconstructive Surgery, Imam Khomeini Hospital Complex, Medicine Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Yavari
- Department of Plastic and Reconstructive Surgery, Imam Khomeini Hospital Complex, Medicine Faculty, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
The Effect of Plasma on Bacteria and Normal Cells in Infected Wound. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1838202. [PMID: 36506937 PMCID: PMC9729034 DOI: 10.1155/2022/1838202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022]
Abstract
Infected wound is one of the most common and serious problem in wound management. Cold atmospheric plasma (CAP) is considered to have a good effect in wound healing as a new type medicine. However, there is a key issue that has not been addressed in the treatment of infected wounds by plasma. Bacteria are always found in the deep region of the wound. When plasma is used to treat wounds, it also acts on normal tissue cells while decontaminating. What is the difference between the same dose of plasma acting on bacteria and normal cells? In this study, the most common bacteria (S. aureus, P. aeruginosa, and E. coli) in infected wound and two kinds of normal skin cells (human keratinocyte and human skin fibroblasts (HSF)) were selected to study the difference of the effects of the same dose of plasma on bacteria and cells. The results reveal that three kinds of 106 CFU mL bacteria could be effectively inactivated by 5 order after plasma treatment 3 min, and P. aeruginosa was more sensitive to plasma (could be inactivated 5 order after 2 min treatment). The 104 mL keratinocyte and HSF were treated with the same dose of plasma; keratinocyte can maintain over 90% of the activity and HSF cells can maintain over 70% of the activity. Moreover, the level of collagen I secreted by HSF increased. Therefore, cells can remain a high activity when a plasma dose capable of inactivating bacteria is applied to them.
Collapse
|
20
|
Saleem U, Khalid S, Zaib S, Anwar F, Akhtar MF, Hussain L, Saleem A, Ahmad B. Wound Healing Potential and In Silico Appraisal of Convolvulus arvensis L. Methanolic Extract. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1373160. [PMID: 36467883 PMCID: PMC9715325 DOI: 10.1155/2022/1373160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 10/29/2023]
Abstract
Convolvulus arvensis L. is rich in phenolic compounds and traditionally used to treat wounds, skin ulcer, and inflammation. The current study is aimed at scientifically potentiating its traditional wound healing use. The methanolic extract of C. arvensis stem (CaME) was analyzed for HPLC and GC-MS analyses. The binding modes of active compounds were investigated against protein targets glycogen synthase kinase-3β (GSK-3β), transforming growth factor-beta (TGF-β), c-myc, and β-catenin by molecular docking followed by molecular dynamic simulations which revealed some conserved mode of binding as reported in crystal structures. The antioxidant potential of CaME was evaluated by in vitro methods such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, hydrogen peroxide scavenging, and ferric reducing power assays. Ointment formulations of 10 and 20% CaME were applied topically and evaluated for wound healing potency against the excisional wound on the skin of Wistar rats. Gentamycin (0.1%) served as standard therapy. The healing process was observed for 20 days in the form of wound size and epithelialization followed by histopathological evaluation of the wound area. Chemical characterization showed the presence of 7-hexadecenoic acid, 2-hexadecylicosan-1-ol, quercetin, gallic acid, ferulic acid, and other compounds. The plant extract exhibited significant in vitro antioxidant activity. The animals treated with 10% ointment showed moderate healing, whereas the treatment with 20% CaME revealed healing potential comparable to the standard 0.1% gentamycin as coevidenced from histopathological evaluation of skin. The study corroborates promising potential of C. arvensis on the healing of wounds, which possibly will be attributed to its antioxidant activity, fatty acids, quercetin, and gallic and caffeic acids, and binding potential of its phytoconstituents (phenolic acids) with wound healing targets.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Sana Khalid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Shingraf Zaib
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Liaqat Hussain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Bashir Ahmad
- Hamza College of Pharmaceutical and Allied Health Sciences, Lahore, Pakistan
| |
Collapse
|
21
|
Nunes MAS, Silva LDS, Santos DM, Cutrim BDS, Vieira SL, Silva ISS, Castelo Branco SJDS, do Nascimento MDS, Vale AAM, dos Santos-Azevedo APS, Zagmignan A, Sousa JCDS, Napoleão TH, Paiva PMG, Monteiro-Neto V, Nascimento da Silva LC. Schinus terebinthifolius Leaf Lectin (SteLL) Reduces the Bacterial and Inflammatory Burden of Wounds Infected by Staphylococcus aureus Promoting Skin Repair. Pharmaceuticals (Basel) 2022; 15:ph15111441. [PMID: 36422571 PMCID: PMC9697850 DOI: 10.3390/ph15111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus is commonly found in wound infections where this pathogen impairs skin repair. The lectin isolated from leaves of Schinus terebinthifolius (named SteLL) has antimicrobial and antivirulence action against S. aureus. This study evaluated the effects of topical administration of SteLL on mice wounds infected by S. aureus. Seventy-two C57/BL6 mice (6−8 weeks old) were allocated into four groups: (i) uninfected wounds; (ii) infected wounds, (iii) infected wounds treated with 32 µg/mL SteLL solution; (iv) infected wounds treated with 64 µg/mL SteLL solution. The excisional wounds (64 mm2) were induced on the dorsum and infected by S. aureus 432170 (4.0 × 106 CFU/wound). The daily treatment started 1-day post-infection (dpi). The topical application of both SteLL concentrations significantly accelerated the healing of S. aureus-infected wounds until the 7th dpi, when compared to untreated infected lesions (reductions of 1.95−4.55-fold and 1.79−2.90-fold for SteLL at 32 µg/mL and 64 µg/mL, respectively). The SteLL-based treatment also amended the severity of wound infection and reduced the bacterial load (12-fold to 72-fold for 32 µg/mL, and 14-fold to 282-fold for 64 µg/mL). SteLL-treated wounds show higher collagen deposition and restoration of skin structure than other groups. The bacterial load and the levels of inflammatory markers (IL-6, MCP-1, TNF-α, and VEGF) were also reduced by both SteLL concentrations. These results corroborate the reported anti-infective properties of SteLL, making this lectin a lead candidate for developing alternative agents for the treatment of S. aureus-infected skin lesions.
Collapse
Affiliation(s)
- Marcio Anderson Sousa Nunes
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, Brazil
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | - Lucas dos Santos Silva
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | - Deivid Martins Santos
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Brenda da Silva Cutrim
- Laboratório de Bioquímica de Proteínas, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-570, Brazil
| | - Silvamara Leite Vieira
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | | | | | | | | | | | - Adrielle Zagmignan
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
| | | | - Thiago Henrique Napoleão
- Laboratório de Bioquímica de Proteínas, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-570, Brazil
| | - Patrícia Maria Guedes Paiva
- Laboratório de Bioquímica de Proteínas, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-570, Brazil
| | - Valério Monteiro-Neto
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, Brazil
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão, São Luís 65080-805, Brazil
- Correspondence: (V.M.-N.); (L.C.N.d.S.)
| | - Luís Cláudio Nascimento da Silva
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal, BIONORTE, São Luís 65055-310, Brazil
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, São Luís 65075-120, Brazil
- Correspondence: (V.M.-N.); (L.C.N.d.S.)
| |
Collapse
|
22
|
Fabrication of novel polysaccharide hybrid nanoliposomes containing citral for targeting MRSA-infected wound healing. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Rambe PS, Putra IB, Yosi A. The effect of roselle leaf ( Hibiscus sabdariffa L.) extract gel on wound healing. J Med Life 2022; 15:1246-1251. [PMID: 36420282 PMCID: PMC9675303 DOI: 10.25122/jml-2021-0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
Roselle (Hibiscus sabdariffa L.) belongs to the genus Hibiscus with proven anti-inflammatory, antioxidant, and antimicrobial properties. Scientific evidence associated roselle content with bioactive compounds, such as phenolic acids, flavonoids, and anthocyanin. Most studies focused on their petals, while research on leaf extract on wound healing has never been done. This study aimed to assess the effect of roselle leaf extract on wound healing in rats. This was an experimental laboratory study with a posttest-only control group design. There were 30 rats divided into 5 groups: negative control, 5%, 10%, and 15% roselle leaf extract, and positive control (bioplacenton). The parameters assessed in this research were wound size and histological assessment. The data were analyzed using ANOVA. P<0.05 was considered statistically significant. Wound healing percentage and epithelial thickness in the 15% group were the largest (84.17%; 64.69 µm). The lowest value was recorded in placebo (64%; 36.33 µm). Meanwhile, wound healing percentage and epithelial thickness of rats in the 5% and 10% groups were 68.53%, 43,57 µm, and 78.11%, 56.49 µm, respectively. Finally, positive control had a 77.44% wound healing percentage and 49.7 µm epithelial thickness. There were no significant differences in wound healing and epithelial thickness among the groups. Roselle leaf extract at 15% concentration showed greater wound healing properties based on clinical and histological assessment. Although there were no statistically significant differences, roselle leaf showed an opportunity to be further investigated as a potential wound healing therapy.
Collapse
Affiliation(s)
- Puspita Sari Rambe
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Imam Budi Putra
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Ariyati Yosi
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
24
|
Vlaykov A, Miśkiewicz-Orczyk K. Effect of IL-4, IL-5, IL-13, and IgE on Nasal Congestion in Patients with Allergic Rhinitis. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective
Allergic rhinitis is a symptomatic nasal disease provoked by exposure of the nasal mucosa to allergens, resulting in IgE-mediated inflammation. Swelling of the nasal mucosa is caused by interstitial mucosal edema due to leakage of plasma fluid and congestion of the nasal mucosal vessels and imbibition of the perivascular space. The method for determining the cross-sectional area as a function of airway distance is known as acoustic rhinometry. By using this approach, it is possible to determine the area as a function of the distance in the airways.
Methods
IL and IgE levels were measured in serum and nasal lavage with enzymelinked immunosorbent assay (ELISA) - Invitrogen ELISA kit. The results were expressed as optical density (OD) at 450 nm and calculated according to the OD of the standart.
For our study A1 Acoustic Rhinometer, GM instruments Ltd., Kilwining, Scotland was chosen. Data analysis was performed after two measurements were taken: before and after nasal decongestion, with drops containing 0.1% Xylometazoline hydrochloride.
Statistical analyses were performed using SPSS 16.0 for Windows (SPSS Inc.).
All participants, after detailed presentation of the aims, tasks and methodology of the study and the opportunity for discussion, signed an informed consent form.
Results
The study was conducted on the territory of the University Hospital in Stara Zagora, Bulgaria and 111 participants, aged from 19 to 84 years, were examined. Data analysis was performed after two acoustic rhinometry measurements, respectively, before and after nasal decongestion.
Conclusion
The published results show that there is an inverse relationship between the degree of nasal congestion (determined by acoustic rhinometry) and the serum concentration of proinflammatory cytokines.
Collapse
|
25
|
Wound Healing Properties and Antimicrobial Effects of Parkia clappertoniana Keay Fruit Husk Extract in a Rat Excisional Wound Model. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9709365. [PMID: 35915797 PMCID: PMC9338854 DOI: 10.1155/2022/9709365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022]
Abstract
Background Parkia clappertoniana Keay (Family: Fabaceae) (P. clappertoniana) fruit husk is commonly used in northern Ghana for wound treatment. However, this folk claim remains to be confirmed scientifically. Objective This study investigated wound healing and antimicrobial effects of P. clappertoniana fruit husk extract (PCFHE) by using excision wound model in rats. Materials and Methods After preparation and phytochemical analysis of PCFHE, it was reconstituted in purified water and emulsifying ointment yielding a wound healing formula (0.3, 1, and 3%). Excision wounds were established in healthy male Sprague-Dawley rats (aged 8-10 weeks; weighing 150–200 g). Rats were randomly assigned into six groups (model, 1% silver sulfadiazine [SSD], vehicle, and PCFHE [0.3, 1, and 3%, respectively]) and topically treated daily until complete wound healing. The endpoints (period of epithelialization, wound contraction, collagen content, erythema index, oedema index, inflammatory cell infiltration, and antimicrobial activity) were assessed for all groups. Minimum fungicidal concentration (MFC), minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-kill were assessed. Results Quercetin and catechin were detected in PCFHE. Compared to model and vehicle groups, PCFHE-treatment groups improved wound healing and antimicrobial (MBC, MFC, and MIC) endpoints. PCFHE demonstrated bacteriostatic and fungicidal effects against identified wound contaminants (Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Candida albicans). Conclusion P. clappertoniana fruit husk possesses wound healing and antimicrobial effects in excisional wounds in rats that confirms its folk use, and the reported pharmacological properties of PCFHE are attributable to its quercetin and catechin phyto-constituents.
Collapse
|
26
|
Akhtari A, Davari M, Habibi-Yangjeh A, Ebadollahi A, Feizpour S. Antifungal Activities of Pure and ZnO-Encapsulated Essential Oil of Zataria multiflora on Alternaria solani as the Pathogenic Agent of Tomato Early Blight Disease. FRONTIERS IN PLANT SCIENCE 2022; 13:932475. [PMID: 35865290 PMCID: PMC9294508 DOI: 10.3389/fpls.2022.932475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The utilization of plant essential oils (EOs) and nanomaterials due to their safety compared with synthetic chemicals has been considered in the management of plant diseases. In this study, the inhibitory effects of Zataria multiflora, Nepeta haussknechtii, Artemisia sieberi, and Citrus aurantifolia EOs in pure and Zinc Oxide (ZnO) nanocapsulated formulations were evaluated on the mycelial growth of Alternaria solani to find a suitable alternative for synthetic chemicals. The crystal structure and morphological properties of the fabricated nanomaterials were assessed via X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses. The textural features of the prepared nanoparticles were investigated with Brunauer-Emmett-Teller (BET) analysis, and the presence of elements in the samples was studied with energy-dispersive X-ray (EDX) technique. The mycelial growth inhibitory (MGI) was performed in the laboratory by mixing with potato dextrose agar (PDA) medium at concentrations of 100, 300, 600, 1,000, 1,500, and 2,000 ppm. Based on the results, major differences were monitored between different concentrations. At the highest studied concentration, the inhibition of Z. multiflora EO was 100%, which was 43.20, 42.37, and 21.19% for N. haussknechtii, A. sieberi, and C. aurantifolia, respectively, and the inhibition of their nanocapsules was 100, 51.32, 55.23, and 26.58%, respectively. In the greenhouse study, Z. multiflora EO and its nanocapsule (ZnO-ZmEO) were compared with the ZnO and chlorothalonil fungicide based on the highest inhibitory of Z. multiflora in vitro. The highest antifungal effect was related to the ZnO-ZmEO by 53.33%. Therefore, the ZnO-ZmEO formulation can be recommended as a biofungicide for managing and controlling tomato early blight disease after further research.
Collapse
Affiliation(s)
- Arezou Akhtari
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mahdi Davari
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Asgar Ebadollahi
- Department of Plant Sciences, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Solmaz Feizpour
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
27
|
Dikilitaş A, Taşpınar M, İnanç B. Evaluation of the Effects of Enamel Matrix Protein Derivatives on Clinical Attachment Gain in Periodontal Defects and on Proliferation and Differentiation of Periodontal Ligament Fibroblasts <i>In Vitro</i>: A Double-blind Study. MEANDROS MEDICAL AND DENTAL JOURNAL 2022. [DOI: 10.4274/meandros.galenos.2021.72602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Ding X, Tang Q, Xu Z, Xu Y, Zhang H, Zheng D, Wang S, Tan Q, Maitz J, Maitz PK, Yin S, Wang Y, Chen J. Challenges and innovations in treating chronic and acute wound infections: from basic science to clinical practice. BURNS & TRAUMA 2022; 10:tkac014. [PMID: 35611318 PMCID: PMC9123597 DOI: 10.1093/burnst/tkac014] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/06/2022] [Indexed: 12/30/2022]
Abstract
Acute and chronic wound infection has become a major worldwide healthcare burden leading to significantly high morbidity and mortality. The underlying mechanism of infections has been widely investigated by scientist, while standard wound management is routinely been used in general practice. However, strategies for the diagnosis and treatment of wound infections remain a great challenge due to the occurrence of biofilm colonization, delayed healing and drug resistance. In the present review, we summarize the common microorganisms found in acute and chronic wound infections and discuss the challenges from the aspects of clinical diagnosis, non-surgical methods and surgical methods. Moreover, we highlight emerging innovations in the development of antimicrobial peptides, phages, controlled drug delivery, wound dressing materials and herbal medicine, and find that sensitive diagnostics, combined treatment and skin microbiome regulation could be future directions in the treatment of wound infection.
Collapse
Affiliation(s)
- Xiaotong Ding
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Qinghan Tang
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Zeyu Xu
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Ye Xu
- Department of Burns and Plastic Surgery, The affiliated Drum Tow Hospital of Nanjing University of Chinese Medicine, Nanjing 210008, People's Republic of China
| | - Hao Zhang
- Department of Burns and Plastic Surgery, The affiliated Drum Tow Hospital of Nanjing University of Chinese Medicine, Nanjing 210008, People's Republic of China
| | - Dongfeng Zheng
- Department of Burns and Plastic Surgery, The affiliated Drum Tow Hospital of Nanjing University of Chinese Medicine, Nanjing 210008, People's Republic of China
| | - Shuqin Wang
- Department of Burns and Plastic Surgery, The affiliated Drum Tow Hospital of Nanjing University of Chinese Medicine, Nanjing 210008, People's Republic of China
| | - Qian Tan
- Department of Burns and Plastic Surgery, The affiliated Drum Tow Hospital of Nanjing University of Chinese Medicine, Nanjing 210008, People's Republic of China
| | - Joanneke Maitz
- Burns Injury and Reconstructive Surgery Research, ANZAC Research Institute, University of Sydney, Sydney, Australia, 2137
| | - Peter K Maitz
- Burns Injury and Reconstructive Surgery Research, ANZAC Research Institute, University of Sydney, Sydney, Australia, 2137
| | - Shaoping Yin
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Yiwei Wang
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Jun Chen
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| |
Collapse
|
29
|
Ariaee N, Yadegari Y, Shabestari M, Asili J, Panahi M, Ghorbani J, Jabbari F. Interleukin-4 can play a role in allergic rhinitis patient during treatment with Zataria multiflora. Clin Mol Allergy 2022; 20:3. [PMID: 35144653 PMCID: PMC8829980 DOI: 10.1186/s12948-022-00169-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/03/2022] [Indexed: 11/21/2022] Open
Abstract
Background Allergic rhinitis is a widespread disorder across the globe. The Shirazi thyme (Zataria multiflora) has been shown to have considerable antioxidant and anti-inflammatory properties. This study assessed the effect of this herbal product on alterations in inflammatory/anti-inflammatory cytokines. Method This study was conducted on the bank sample before and after the intervention to measure interleukin-4, interleukin-5, and interferon -γ levels with the ELISA test method in a supernatant taken from the PBMC cell culture from 30 allergic rhinitis patients. Results The IL-4 level had no significant difference between the two groups before the treatment. However, it had a significant increase in the case group after the treatment. The IL-5 level was significantly higher in the case group before the treatment. Nevertheless, there were no significant differences between the case and control groups after the treatment. Similarly, no significant differences were observed between the two groups considering IFN-γ before and after the treatment. Conclusion Consuming thyme with an increase in anti-inflammatory cytokine IL-4 and a decrease in IL-5 cytokine control inflammation and improvement in allergic rhinitis symptoms. Clinical trial details This clinical trial study was recorded at 22.5.2014 in the Iran Registry of Clinical Trials code: (IRCT2016121823235N6) https://www.irct.ir/trial/19852
Collapse
Affiliation(s)
- Nazila Ariaee
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yaser Yadegari
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamad Shabestari
- Preventive Cardiovascular Care Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Panahi
- Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalal Ghorbani
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farahzad Jabbari
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Al-Otaibi AM, Al-Gebaly AS, Almeer R, Albasher G, Al-Qahtani WS, Abdel Moneim AE. Melatonin pre-treated bone marrow derived-mesenchymal stem cells prompt wound healing in rat models. Biomed Pharmacother 2022; 145:112473. [PMID: 34861635 DOI: 10.1016/j.biopha.2021.112473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 01/16/2023] Open
Abstract
Bone marrow derived-mesenchymal stem cells (BMSCs)-based therapy is an outstanding candidate for cutaneous wound healing. Melatonin (MEL) has been reported for its anti-inflammatory as well as tissue regenerative properties. Existing work aimed to explore the potential healing power of BMSCs pre-treated with MEL in a skin wound model. Adult rats were allocated into control, PIO, BMSCs (1 × 105 cells), and MEL/BMSCs groups. On the 21 days post-wounding, tissues were sampled for analysis. The results demonstrated that compared to the control group, MEL/BMSCs therapy induced noticeable decline in wound area and elevated rate of wound retraction. Furthermore, marked increases in tissue hydroxyproline, as well as tissue content and gene expression level of vascular endothelial growth factor in MEL/BMSCs treated-wounded animals. Compared to the untreated control group, marked increases were found in antioxidant enzymatic activities together with elevated GSH levels in wounded tissues after MEL/BMSCs treatment. Moreover, therapeutically handled wounds with MEL/BMSCs revealed low levels of MDA, NO and protein carbonyls. Combined therapy with MEL/BMSCs relieved the inflammation witnessed by decreasing IL-1β, TNF-α and NF-κB levels in wounded tissues. Furthermore, noteworthy rises in levels of TGF-β and gene expression of α-SMA were noticed after MEL/BMSCs application that reveals their anti-scarring properties. Histologically, noticeable improvement in histopathological skin lesions in wound area and elevated the collagen synthesis and deposition. Collectively, the obtained data depict that the pre-treatment of BMSCs with MEL could potentially be a successful strategy for scaling-up the wound healing outcomes more than using BMSCs monotherapy in rat models.
Collapse
Affiliation(s)
- Aljohara M Al-Otaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Asma S Al-Gebaly
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wedad S Al-Qahtani
- Department of Forensic Sciences, College of Forensic Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
31
|
Fereidouni A, Khaleghian A, Mousavi-Niri N, Moradikor N. The effects of supplementation of Nannochloropsis oculata microalgae on biochemical, inflammatory and antioxidant responses in diabetic rats. Biomol Concepts 2022; 13:314-321. [PMID: 36315027 DOI: 10.1515/bmc-2022-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023] Open
Abstract
Diabetes is accompanied by inflammation and oxidation. Supplementation of anti-inflammatory and antioxidant compounds can prevent the progression of diabetes. This study aimed to investigate the effects of supplementation of Nannochloropsis oculata microalgae (NOM) on the inflammatory and antioxidant responses in diabetic rats. Sixty male rats were divided into six groups as diabetic and non-diabetic rats receiving 0, 10 and 20 mg/kg of body weight of NOM daily for 21 days. Body weight, the serum concentrations of insulin and glucose and the tissue concentrations of interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), nuclear factor kappa B (NF-κB), interleukin-6 (IL-6), malondialdehyde (MDA), ferric reducing antioxidant power (FRAP), superoxide dismutase (SOD), glutathione peroxidase (GPx) were assessed. The results showed that induction of diabetes significantly reduced the body weight, the serum concentrations of insulin and the tissue concentrations of SOD, FRAP and GPx while increasing the concentrations of glucose, MDA, IL-1β, IL-6, NF-κB and TNF-α. Daily oral administration of NOM (10 and 20 mg/kg) significantly maintained the body weight, the serum concentrations of insulin and the tissue concentrations of SOD, FRAP and GPx while preventing the increase in the concentrations of glucose, MDA, IL-1β and TNF-α. In conclusion, diabetes caused inflammation and oxidation while NOM worked as a natural anti-inflammatory and antioxidant compound.
Collapse
Affiliation(s)
- Ali Fereidouni
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Khaleghian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nasrollah Moradikor
- Department of Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia
| |
Collapse
|
32
|
de Moura FBR, Ferreira BA, Deconte SR, Landim BC, Justino AB, Aro AAD, Espindola FS, Rodrigues RAF, Ribeiro DL, Araújo FDA, Tomiosso TC. Wound healing activity of the hydroethanolic extract of the leaves of Maytenus ilicifolia Mart. Ex Reis. J Tradit Complement Med 2021; 11:446-456. [PMID: 34522639 PMCID: PMC8427480 DOI: 10.1016/j.jtcme.2021.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND AIM Maytenus ilicifolia has analgesic, healing, antioxidant and anti-inflammatory properties. This study evaluated effect of the hydroalcoholic extract of M. ilicifolia leaves on skin wound repair. EXPERIMENTAL PROCEDURE Wounds were induced on mice and treated with the extract. The treatment was performed daily, until day 7 after wound induction. Wound closure was measured and the features of the repaired tissue were investigated, including mast cell quantification, neutrophil and macrophage activities, collagen deposition, angiogenesis, and pro-metalloproteases and metalloproteases 2 and 9 activity (pro-MMPs and MMPs). RESULTS AND CONCLUSION The M. ilicifolia extract accelerated the closure of wounds. The extract at a concentration of 4% was found to be effective, presenting anti-inflammatory effects and hemoglobin increased, along with increased soluble, total and type III collagens in the wound. In addition, there was an increase in pro-MMP9 and MMP9 activity after day 7th of treatment. The phenolic compounds and tannins present in this plant could be associated with the anti-inflammatory and healing activities observed in this study. Therefore, the ability to modulate essential parameters for accelerated and adequate healing as shown here suggests that the use of standardised extracts of M. ilicifolia and its fractions enriched in polyphenols may represent a therapeutic strategy for the treatment of wounds.
Collapse
Affiliation(s)
- Francyelle Borges Rosa de Moura
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenue Pará 1720, zip code 38400-902, Uberlândia, MG, Brazil
- Institute of Biology, State University of Campinas, Street Monteiro Lobato, 255, zip code 13083-862, Campinas, SP, Brazil
| | - Bruno Antonio Ferreira
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenue Pará 1720, zip code 38400-902, Uberlândia, MG, Brazil
- Institute of Biotechnology, Federal University of Uberlândia, Street Acre 1004, zip code 38405-319, Uberlândia, MG, Brazil
| | - Simone Ramos Deconte
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenue Pará 1720, zip code 38400-902, Uberlândia, MG, Brazil
| | - Breno Costa Landim
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenue Pará 1720, zip code 38400-902, Uberlândia, MG, Brazil
| | - Allisson Benatti Justino
- Institute of Biotechnology, Federal University of Uberlândia, Street Acre 1004, zip code 38405-319, Uberlândia, MG, Brazil
| | - Andrea Aparecida de Aro
- Institute of Biology, State University of Campinas, Street Monteiro Lobato, 255, zip code 13083-862, Campinas, SP, Brazil
| | - Foued Salmen Espindola
- Institute of Biotechnology, Federal University of Uberlândia, Street Acre 1004, zip code 38405-319, Uberlândia, MG, Brazil
| | - Rodney Alexandre Ferreira Rodrigues
- Multidisciplinary Center of Chemical, Biological and Agricultural Research, State University of Campinas, Street Alexandre Cazelatto 999, zip code 13148-218, Paulínia, SP, Brazil
| | - Daniele Lisboa Ribeiro
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenue Pará 1720, zip code 38400-902, Uberlândia, MG, Brazil
| | - Fernanda de Assis Araújo
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenue Pará 1720, zip code 38400-902, Uberlândia, MG, Brazil
| | - Tatiana Carla Tomiosso
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenue Pará 1720, zip code 38400-902, Uberlândia, MG, Brazil
| |
Collapse
|
33
|
Mahmoudabadi S, Farahpour MR, Jafarirad S. Effectiveness of Green Synthesis of Silver/Kaolinite Nanocomposite Using Quercus infectoria Galls Aqueous Extract and Its Chitosan-Capped Derivative on the Healing of Infected Wound. IEEE Trans Nanobioscience 2021; 20:530-542. [PMID: 34406944 DOI: 10.1109/tnb.2021.3105356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Kaolinite nanocomposites (NCs) could be utilized as agents for wound healing owing to their efficiency and low toxicity. The present study was conducted to synthesize a novel silver/kaolinite NCs (Ag/Kaol NCs) and investigate their chitosan derivation (Ag/Kaol/Chit NCs) using oak extract. XRD, SEM, EDX, FT-IR, and DLS were employed for the investigation of structural and physio-chemical properties of the synthesized NCs. The obtained results revealed that synthesized Ag/Kaol NCs were mesoporous and spherical with sizes ranging from 7-11 nm. They also demonstrated successful synthesis between silver and kaolinite using the extract. Cytotoxicity and in vitro antibacterial activity were also investigated. The clinical effects of ointments containing the NCs for improving wound healing were studied on the wound area, total bacterial count, histological parameters, and protein expression of some genes. Nanocomposites were safe up to 0.50 mg/mL. The results of in vivo and in vitro antibacterial activity showed that Ag/Kaol NCs, were of antibacterial activity ( ). The results of antioxidant activity indicated that Ag/Kaol NCs have antioxidant structures. Our findings concerning molecular mechanism implied that Ag/Kaol/Chit increased the expression of Wnt/ β -catenin and collagen ( ). In sum, Ag/Kaol/Chit showed antibacterial activity and improved wound healing by decreasing the inflammation and promoting the proliferative phase. The novel NCs showed wound healing properties by decreasing inflammation and total bacterial count and increasing proliferative phase. The application of Ag/Kaol/Chit was suggested as a green agent for improving infected wound healing.
Collapse
|
34
|
Xia T, Xie F, Bian X, Chen Z, Zhang S, Fang Z, Ye Q, Cai J, Wang Y. Ultrabroad-spectrum, multidrug resistant bacteria-killing, and biocompatible quaternized chitin derivative for infected wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112177. [PMID: 34082977 DOI: 10.1016/j.msec.2021.112177] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022]
Abstract
Wound infections have consistently been recognized as serious threats to human. The design of antimicrobial and biocompatible wound dressings for infected wounds is an area of constant research. Herein, we homogeneously synthesized an ultrabroad-spectrum antimicrobial and biocompatible quaternized chitin derivative (QC-4) in a high-efficiency and sustainable route using aqueous KOH/urea solution. Particularly, QC-4 displayed powerful multidrug resistant bacteria-killing activities even at a very low antimicrobial concentration range from 500 ng/mL to 5 μg/mL, including clinically prevalent multidrug-resistant Escherichia coli (MDR-E. coli), methicillin resistant Staphylococcus aureus (MRSA), multidrug-resistant Pseudomonas aeruginosa (MRPA), and multidrug-resistant Acinetobacter baumannii (MDR-A. baumannii). With the aim to facilitate clinical translation, we validated the biocompatibility and safety of QC-4 both in vitro and in vivo, and further assessed the effects of QC-4 on infected wound healing in a porcine infectious full-thickness skin wound model. QC-4 demonstrated significant reduction of microbial aggregates and enhanced wound-healing effects by promoted re-epithelialization and collagen deposition, which were quite comparable to that of commercial Alginate-Ag dressing and absolutely superior to commercial Chitoclot Bandage dressing. Additionally, we provided clear evidences that QC-4 had a unique mechanism of action by attracting electrostatically to the negatively charged microbial surface, thus damaging the microbial cell wall and membrane. Findings of this work provided robust preclinical rationale for the future translational applications of QC-4 as a novel ultrabroad-spectrum and multidrug resistant bacteria-killing antimicrobial wound dressing for clinical wound management.
Collapse
Affiliation(s)
- Tian Xia
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan 430072, China
| | - Fang Xie
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoen Bian
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan 430072, China
| | - Zuhan Chen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan 430072, China
| | - Shichen Zhang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan 430072, China
| | - Zehong Fang
- Jiangxi Provincial People's Hospital of Nanchang University, Department of General Surgery, Nanchang 330006, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan 430072, China
| | - Jie Cai
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China; Research Institute of Shenzhen, Wuhan University, Shenzhen 518057, China.
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan 430072, China; Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|