1
|
Petrohilos C, Peel E, Batley KC, Fox S, Hogg CJ, Belov K. No Evidence for Distinct Transcriptomic Subgroups of Devil Facial Tumor Disease (DFTD). Evol Appl 2025; 18:e70091. [PMID: 40177324 PMCID: PMC11961399 DOI: 10.1111/eva.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Contagious cancers represent one of the least understood types of infections in wildlife. Devil Facial Tumor Disease (comprised of two different contagious cancers, DFT1 and DFT2) has led to an 80% decline in the Tasmanian devil (Sarcophilus harrisii ) population at the regional level since it was first observed in 1996. There are currently no treatment options for the disease, and research efforts are focused on vaccine development. Although DFT1 is clonal, phylogenomic studies have identified different genetic variants of the pathogen. We postulated that different genetic strains may have different gene expression profiles and would therefore require different vaccine components. Here, we aimed to test this hypothesis by applying two types of unsupervised clustering (hierarchical and k-means) to 35 DFT1 transcriptomes selected from the disease's four major phylogenetic clades. The two algorithms produced conflicting results, and there was low support for either method individually. Validation metrics, such as the Gap statistic method, the Elbow method, and the Silhouette method, were ambiguous, contradictory, or indicated that our dataset only consisted of a single cluster. Collectively, our results show that the different phylogenetic clades of DFT1 all have similar gene expression profiles. Previous studies have suggested that transcriptomic differences exist between tumours from different locations. However, our study differs in that it considers both tumor purity and genotypic clade when analysing differences between DFTD biopsies. These results have important implications for therapeutic development, as they indicate that a single vaccine or treatment approach has the potential to be effective for a large cross-section of DFT1 tumors. As one of the largest studies to use transcriptomics to investigate phenotypic variation within a single contagious cancer, it also provides novel insight into this unique group of diseases.
Collapse
Affiliation(s)
- Cleopatra Petrohilos
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| | - Emma Peel
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| | - Kimberley C. Batley
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Samantha Fox
- Save the Tasmanian Devil ProgramDepartment of Natural Resources and EnvironmentHobartTasmaniaAustralia
| | - Carolyn J. Hogg
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| | - Katherine Belov
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
2
|
Wu L, Yang L, Qian X, Hu W, Wang S, Yan J. Mannan-Decorated Lipid Calcium Phosphate Nanoparticle Vaccine Increased the Antitumor Immune Response by Modulating the Tumor Microenvironment. J Funct Biomater 2024; 15:229. [PMID: 39194667 DOI: 10.3390/jfb15080229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
With the rapid development of tumor immunotherapy, nanoparticle vaccines have attracted much attention as potential therapeutic strategies. A systematic review and analysis must be carried out to investigate the effect of mannose modification on the immune response to nanoparticles in regulating the tumor microenvironment, as well as to explore its potential clinical application in tumor therapy. Despite the potential advantages of nanoparticle vaccines in immunotherapy, achieving an effective immune response in the tumor microenvironment remains a challenge. Tumor immune escape and the overexpression of immunosuppressive factors limit its clinical application. Therefore, our review explored how to intervene in the immunosuppressive mechanism in the tumor microenvironment through the use of mannan-decorated lipid calcium phosphate nanoparticle vaccines to improve the efficacy of immunotherapy in patients with tumors and to provide new ideas and strategies for the field of tumor therapy.
Collapse
Affiliation(s)
- Liusheng Wu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 19077, Singapore
| | - Lei Yang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wang Hu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shuang Wang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Silver LW, Hogg CJ, Belov K. Plethora of New Marsupial Genomes Informs Our Knowledge of Marsupial MHC Class II. Genome Biol Evol 2024; 16:evae156. [PMID: 39031605 PMCID: PMC11305139 DOI: 10.1093/gbe/evae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/22/2024] Open
Abstract
The major histocompatibility complex (MHC) plays a vital role in the vertebrate immune system due to its role in infection, disease and autoimmunity, or recognition of "self". The marsupial MHC class II genes show divergence from eutherian MHC class II genes and are a unique taxon of therian mammals that give birth to altricial and immunologically naive young providing an opportune study system for investigating evolution of the immune system. Additionally, the MHC in marsupials has been implicated in disease associations, including susceptibility to Chlamydia pecorum infection in koalas. Due to the complexity of the gene family, automated annotation is not possible so here we manually annotate 384 class II MHC genes in 29 marsupial species. We find losses of key components of the marsupial MHC repertoire in the Dasyuromorphia order and the Pseudochiridae family. We perform PGLS analysis to show the gene losses we find are true gene losses and not artifacts of unresolved genome assembly. We investigate the associations between the number of loci and life history traits, including lifespan and reproductive output in lineages of marsupials and hypothesize that gene loss may be linked to the energetic cost and tradeoffs associated with pregnancy and reproduction. We found support for litter size being a significant predictor of the number of DBA and DBB loci, indicating a tradeoff between the energetic requirements of immunity and reproduction. Additionally, we highlight the increased susceptibility of Dasyuridae species to neoplasia and a potential link to MHC gene loss. Finally, these annotations provide a valuable resource to the immunogenetics research community to move forward and further investigate diversity in MHC genes in marsupials.
Collapse
Affiliation(s)
- Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
4
|
Ong CEB, Lyons AB, Woods GM, Flies AS. Generation of Devil Facial Tumour Cells Co-Expressing MHC With CD80, CD86 or 41BBL to Enhance Tumour Immunogenicity. Parasite Immunol 2024; 46:e13062. [PMID: 39313933 DOI: 10.1111/pim.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
The major histocompatibility complex (MHC) molecules play an integral role in the adaptive immune response to transmissible cancers through tumour antigen presentation and recognition of allogeneic MHC molecules. The transmissible devil facial tumours 1 and 2 (DFT1 and DFT2) modulate MHC-I antigen presentation to evade host immune responses and facilitate transmission of tumours cells to new Tasmanian devil (Sarcophilus harrisii) hosts. To enhance T-cell-driven tumour immunogenicity for vaccination and immunotherapy, DFT1 and DFT2 cells were co-transfected with (i) NLRC5 for MHC-I expression or CIITA for MHC-I and MHC-II expression, and (ii) a co-stimulatory molecule, either CD80, CD86 or 41BBL. The co-transfected DFT cells presented enhanced expression of MHC-I and/or MHC-II. As few devil-specific monoclonal antibodies exist, we used recombinant CTLA4 and 41BB fused to a fluorescent protein to confirm expression of cell surface CD80, CD86 and 41BBL. The capacity for these cells to induce T-cell responses including PD1 and IFNG expression was evaluated in in vitro co-culture assays with captive devil peripheral blood mononuclear cells (PBMCs). Although PBMC viability had increased, there was no evidence of enhanced T-cell activation. This system can be used to identify additional factors required to promote activation of naïve devil T-cells in vitro.
Collapse
Affiliation(s)
- Chrissie E B Ong
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - A Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
5
|
Russell GG, Palmieri C, Darby J, Morris GP, Fountain-Jones NM, Pye RJ, Flies AS. Automated Analysis of PD1 and PDL1 Expression in Lymph Nodes and the Microenvironment of Transmissible Tumors in Tasmanian Devils. Immunol Invest 2023:1-20. [PMID: 37267050 DOI: 10.1080/08820139.2023.2217845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The wild Tasmanian devil (Sarcophilus harrisii) population has suffered a devastating decline due to two clonal transmissible cancers. The first devil facial tumor 1 (DFT1) was observed in 1996, followed by a second genetically distinct transmissible tumor, the devil facial tumor 2 (DFT2), in 2014. DFT1/2 frequently metastasize, with lymph nodes being common metastatic sites. MHC-I downregulation by DFT1 cells is a primary means of evading allograft immunity aimed at polymorphic MHC-I proteins. DFT2 cells constitutively express MHC-I, and MHC-I is upregulated on DFT1/2 cells by interferon gamma, suggesting other immune evasion mechanisms may contribute to overcoming allograft and anti-tumor immunity. Human clinical trials have demonstrated PD1/PDL1 blockade effectively treats patients showing increased expression of PD1 in tumor draining lymph nodes, and PDL1 on peritumoral immune cells and tumor cells. The effects of DFT1/2 on systemic immunity remain largely uncharacterized. This study applied the open-access software QuPath to develop a semiautomated pipeline for whole slide analysis of stained tissue sections to quantify PD1/PDL1 expression in devil lymph nodes. The QuPath protocol provided strong correlations to manual counting. PD-1 expression was approximately 10-fold higher than PD-L1 expression in lymph nodes and was primarily expressed in germinal centers, whereas PD-L1 expression was more widely distributed throughout the lymph nodes. The density of PD1 positive cells was increased in lymph nodes containing DFT2 metastases, compared to DFT1. This suggests PD1/PDL1 exploitation may contribute to the poorly immunogenic nature of transmissible tumors in some devils and could be targeted in therapeutic or prophylactic treatments.Abbreviations: PD1: programmed cell death protein 1; PDL1: programmed death ligand 1; DFT1: devil facial tumor 1; DFT2: devil facial tumor 2; DFTD: devil facial tumor disease; MCC: Matthew's correlation coefficient; DAB: diaminobenzidine; ROI: region of interest.
Collapse
Affiliation(s)
- Grace G Russell
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Jocelyn Darby
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Gary P Morris
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicholas M Fountain-Jones
- School of Natural Sciences, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Ruth J Pye
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
6
|
Pharmaceutics for free-ranging wildlife: Case studies to illustrate considerations and future prospects. Int J Pharm 2022; 628:122284. [DOI: 10.1016/j.ijpharm.2022.122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022]
|
7
|
Kayigwe AN, M. Darby J, Lyons AB, L. Patchett A, Lisowski L, Liu GS, S. Flies A. A human adenovirus encoding IFN-γ can transduce Tasmanian devil facial tumour cells and upregulate MHC-I. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The devil facial tumour disease (DFTD) has led to a massive decline in the wild Tasmanian devil (Sarcophilus harrisii) population. The disease is caused by two independent devil facial tumours (DFT1 and DFT2). These transmissible cancers have a mortality rate of nearly 100 %. An adenoviral vector-based vaccine has been proposed as a conservation strategy for the Tasmanian devil. This study aimed to determine if a human adenovirus serotype 5 could express functional transgenes in devil cells. As DFT1 cells do not constitutively express major histocompatibility complex class I (MHC-I), we developed a replication-deficient adenoviral vector that encodes devil interferon gamma (IFN-γ) fused to a fluorescent protein reporter. Our results show that adenoviral-expressed IFN-γ was able to stimulate upregulation of beta-2 microglobulin, a component of MHC-I, on DFT1, DFT2 and devil fibroblast cell lines. This work suggests that human adenoviruses can serve as a vaccine platform for devils and potentially other marsupials.
Collapse
Affiliation(s)
- Ahab N. Kayigwe
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Bibititi and Morogoro Rd Junction, P. O. Box 2958, Dar-es-salaam, Tanzania
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Jocelyn M. Darby
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - A. Bruce Lyons
- Tasmanian School of Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Amanda L. Patchett
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Leszek Lisowski
- Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, 04-141 Warsaw, Poland
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3002, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Andrew S. Flies
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| |
Collapse
|
8
|
Espejo C, Wilson R, Pye RJ, Ratcliffe JC, Ruiz-Aravena M, Willms E, Wolfe BW, Hamede R, Hill AF, Jones ME, Woods GM, Lyons AB. Cathelicidin-3 Associated With Serum Extracellular Vesicles Enables Early Diagnosis of a Transmissible Cancer. Front Immunol 2022; 13:858423. [PMID: 35422813 PMCID: PMC9004462 DOI: 10.3389/fimmu.2022.858423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
The identification of practical early diagnostic biomarkers is a cornerstone of improved prevention and treatment of cancers. Such a case is devil facial tumor disease (DFTD), a highly lethal transmissible cancer afflicting virtually an entire species, the Tasmanian devil (Sarcophilus harrisii). Despite a latent period that can exceed one year, to date DFTD diagnosis requires visual identification of tumor lesions. To enable earlier diagnosis, which is essential for the implementation of effective conservation strategies, we analyzed the extracellular vesicle (EV) proteome of 87 Tasmanian devil serum samples using data-independent acquisition mass spectrometry approaches. The antimicrobial peptide cathelicidin-3 (CATH3), released by innate immune cells, was enriched in serum EV samples of both devils with clinical DFTD (87.9% sensitivity and 94.1% specificity) and devils with latent infection (i.e., collected while overtly healthy, but 3-6 months before subsequent DFTD diagnosis; 93.8% sensitivity and 94.1% specificity). Although high expression of antimicrobial peptides has been mostly related to inflammatory diseases, our results suggest that they can be also used as accurate cancer biomarkers, suggesting a mechanistic role in tumorous processes. This EV-based approach to biomarker discovery is directly applicable to improving understanding and diagnosis of a broad range of diseases in other species, and these findings directly enhance the capacity of conservation strategies to ensure the viability of the imperiled Tasmanian devil population.
Collapse
Affiliation(s)
- Camila Espejo
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS, Australia
| | - Ruth J Pye
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Julian C Ratcliffe
- La Trobe University Bioimaging Platform, La Trobe University, Bundoora, VIC, Australia
| | - Manuel Ruiz-Aravena
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia.,Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Eduard Willms
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Barrett W Wolfe
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia.,CANECEV, Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
| | - Andrew F Hill
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.,Institute for Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - A Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
9
|
Hossain MK, Hassanzadeganroudsari M, Feehan J, Apostolopoulos V. The race for a COVID-19 vaccine: where are we up to? Expert Rev Vaccines 2021; 21:355-376. [PMID: 34937492 DOI: 10.1080/14760584.2022.2021074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION A novel strain of coronavirus, SARS-CoV-2, has triggered a global pandemic of coronavirus disease (COVID-19) in late 2019. In January 2020, the WHO declared this pandemic a public health emergency. This pandemic has already caused over 5.3 million deaths from more than 272 million infections. The development of a successful vaccine is an urgent global priority to halt the spread of SARS-CoV-2 and prevent further fatalities. Researchers are fast-tracking this process, and there have already been significant developments in preclinical and clinical phases in a relatively short period of time. Some vaccines have been approved either for emergency use or mass application in recent months. AREAS COVERED Herein, we provide a general understanding of the fast-tracked clinical trial procedures and highlight recent successes in preclinical and clinical trials to generate a clearer picture of the progress of COVID-19 vaccine development. EXPERT OPINION A good number of vaccines have been rolled out within a short period a feat unprecedented in medical history. However, the emergence of new variants over time has appeared as a new threat, and the number of infections and casualties is still on the rise and this is going to be an ongoing battle.
Collapse
Affiliation(s)
- Md Kamal Hossain
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | | | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Department of Medicine The University of Melbourne, Melbourne, Australia
| | | |
Collapse
|
10
|
Espejo C, Patchett AL, Wilson R, Lyons AB, Woods GM. Challenges of an Emerging Disease: The Evolving Approach to Diagnosing Devil Facial Tumour Disease. Pathogens 2021; 11:27. [PMID: 35055975 PMCID: PMC8780694 DOI: 10.3390/pathogens11010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Devil Facial Tumour Disease (DFTD) is an emerging infectious disease that provides an excellent example of how diagnostic techniques improve as disease-specific knowledge is generated. DFTD manifests as tumour masses on the faces of Tasmanian devils, first noticed in 1996. As DFTD became more prevalent among devils, karyotyping of the lesions and their devil hosts demonstrated that DFTD was a transmissible cancer. The subsequent routine diagnosis relied on microscopy and histology to characterise the facial lesions as cancer cells. Combined with immunohistochemistry, these techniques characterised the devil facial tumours as sarcomas of neuroectodermal origin. More sophisticated molecular methods identified the origin of DFTD as a Schwann cell, leading to the Schwann cell-specific protein periaxin to discriminate DFTD from other facial lesions. After the discovery of a second facial cancer (DFT2), cytogenetics and the absence of periaxin expression confirmed the independence of the new cancer from DFT1 (the original DFTD). Molecular studies of the two DFTDs led to the development of a PCR assay to differentially diagnose the cancers. Proteomics and transcriptomic studies identified different cell phenotypes among the two DFTD cell lines. Phenotypic differences were also reflected in proteomics studies of extracellular vesicles (EVs), which yielded an early diagnostic marker that could detect DFTD in its latent stage from serum samples. A mesenchymal marker was also identified that could serve as a serum-based differential diagnostic. The emergence of two transmissible cancers in one species has provided an ideal opportunity to better understand transmissible cancers, demonstrating how fundamental research can be translated into applicable and routine diagnostic techniques.
Collapse
Affiliation(s)
- Camila Espejo
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia; (C.E.); (A.B.L.)
| | - Amanda L. Patchett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia;
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7000, Australia;
| | - A. Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia; (C.E.); (A.B.L.)
| | - Gregory M. Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia;
| |
Collapse
|
11
|
Durrant R, Hamede R, Wells K, Lurgi M. Disruption of Metapopulation Structure Reduces Tasmanian Devil Facial Tumour Disease Spread at the Expense of Abundance and Genetic Diversity. Pathogens 2021; 10:pathogens10121592. [PMID: 34959547 PMCID: PMC8705368 DOI: 10.3390/pathogens10121592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Metapopulation structure plays a fundamental role in the persistence of wildlife populations. It can also drive the spread of infectious diseases and transmissible cancers such as the Tasmanian devil facial tumour disease (DFTD). While disrupting this structure can reduce disease spread, it can also impair host resilience by disrupting gene flow and colonisation dynamics. Using an individual-based metapopulation model we investigated the synergistic effects of host dispersal, disease transmission rate and inter-individual contact distance for transmission, on the spread and persistence of DFTD from local to regional scales. Disease spread, and the ensuing population declines, are synergistically determined by individuals' dispersal, disease transmission rate and within-population mixing. Transmission rates can be magnified by high dispersal and inter-individual transmission distance. The isolation of local populations effectively reduced metapopulation-level disease prevalence but caused severe declines in metapopulation size and genetic diversity. The relative position of managed (i.e., isolated) local populations had a significant effect on disease prevalence, highlighting the importance of considering metapopulation structure when implementing metapopulation-scale disease control measures. Our findings suggest that population isolation is not an ideal management method for preventing disease spread in species inhabiting already fragmented landscapes, where genetic diversity and extinction risk are already a concern.
Collapse
Affiliation(s)
- Rowan Durrant
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (R.D.); (K.W.)
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Konstans Wells
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (R.D.); (K.W.)
| | - Miguel Lurgi
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (R.D.); (K.W.)
- Correspondence: ; Tel.: +44-(0)-1792-602157
| |
Collapse
|
12
|
Ong CEB, Patchett AL, Darby JM, Chen J, Liu GS, Lyons AB, Woods GM, Flies AS. NLRC5 regulates expression of MHC-I and provides a target for anti-tumor immunity in transmissible cancers. J Cancer Res Clin Oncol 2021; 147:1973-1991. [PMID: 33797607 PMCID: PMC8017436 DOI: 10.1007/s00432-021-03601-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Purpose Downregulation of MHC class I (MHC-I) is a common immune evasion strategy of many cancers. Similarly, two allogeneic clonal transmissible cancers have killed thousands of wild Tasmanian devils (Sarcophilus harrisii) and also modulate MHC-I expression to evade anti-cancer and allograft responses. IFNG treatment restores MHC-I expression on devil facial tumor (DFT) cells but is insufficient to control tumor growth. Transcriptional co-activator NLRC5 is a master regulator of MHC-I in humans and mice but its role in transmissible cancers remains unknown. In this study, we explored the regulation and role of MHC-I in these unique genetically mis-matched tumors. Methods We used transcriptome and flow cytometric analyses to determine how MHC-I shapes allogeneic and anti-tumor responses. Cell lines that overexpress NLRC5 to drive antigen presentation, and B2M-knockout cell lines incapable of presenting antigen on MHC-I were used to probe the role of MHC-I in rare cases of tumor regressions. Results Transcriptomic results suggest that NLRC5 plays a major role in MHC-I regulation in devils. NLRC5 was shown to drive the expression of many components of the antigen presentation pathway but did not upregulate PDL1. Serum from devils with tumor regressions showed strong binding to IFNG-treated and NLRC5 cell lines; antibody binding to IFNG-treated and NRLC5 transgenic tumor cells was diminished or absent following B2M knockout. Conclusion MHC-I could be identified as a target for anti-tumor and allogeneic immunity. Consequently, NLRC5 could be a promising target for immunotherapy and vaccines to protect devils from transmissible cancers and inform development of transplant and cancer therapies for humans. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03601-x.
Collapse
Affiliation(s)
- Chrissie E B Ong
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia
| | - Amanda L Patchett
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia
| | - Jocelyn M Darby
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia
| | - Jinying Chen
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia.,Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
| | - A Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart TAS 7000, Australia.
| |
Collapse
|
13
|
Patchett AL, Tovar C, Blackburn NB, Woods GM, Lyons AB. Mesenchymal plasticity of devil facial tumour cells during in vivo vaccine and immunotherapy trials. Immunol Cell Biol 2021; 99:711-723. [PMID: 33667023 DOI: 10.1111/imcb.12451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/12/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Immune evasion is critical to the growth and survival of cancer cells. This is especially pertinent to transmissible cancers, which evade immune detection across genetically diverse hosts. The Tasmanian devil (Sarcophilus harrisii) is threatened by the emergence of Devil Facial Tumour Disease (DFTD), comprising two transmissible cancers (DFT1 and DFT2). The development of effective prophylactic vaccines and therapies against DFTD has been restricted by an incomplete understanding of how allogeneic DFT1 and DFT2 cells maintain immune evasion upon activation of tumour-specific immune responses. In this study, we used RNA sequencing to examine tumours from three experimental DFT1 cases. Two devils received a vaccine prior to inoculation with live DFT1 cells, providing an opportunity to explore changes to DFT1 cancers under immune pressure. Analysis of DFT1 in the non-immunised devil revealed a 'myelinating Schwann cell' phenotype, reflecting both natural DFT1 cancers and the DFT1 cell line used for the experimental challenge. Comparatively, immunised devils exhibited a 'dedifferentiated mesenchymal' DFT1 phenotype. A third 'immune-enriched' phenotype, characterised by increased PDL1 and CTLA-4 expression, was detected in a DFT1 tumour that arose after immunotherapy. In response to immune pressure, mesenchymal plasticity and upregulation of immune checkpoint molecules are used by human cancers to evade immune responses. Similar mechanisms are associated with immune evasion by DFTD cancers, providing novel insights that will inform modification of DFTD vaccines. As DFT1 and DFT2 are clonal cancers transmitted across genetically distinct hosts, the Tasmanian devil provides a 'natural' disease model for more broadly exploring these immune evasion mechanisms in cancer.
Collapse
Affiliation(s)
- Amanda L Patchett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Cesar Tovar
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.,School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Nicholas B Blackburn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
14
|
Gastaldello A, Ramarathinam SH, Bailey A, Owen R, Turner S, Kontouli N, Elliott T, Skipp P, Purcell AW, Siddle HV. The immunopeptidomes of two transmissible cancers and their host have a common, dominant peptide motif. Immunology 2021; 163:169-184. [PMID: 33460454 PMCID: PMC8114214 DOI: 10.1111/imm.13307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022] Open
Abstract
Transmissible cancers are malignant cells that can spread between individuals of a population, akin to both a parasite and a mobile graft. The survival of the Tasmanian devil, the largest remaining marsupial carnivore, is threatened by the remarkable emergence of two independent lineages of transmissible cancer, devil facial tumour (DFT) 1 and devil facial tumour 2 (DFT2). To aid the development of a vaccine and to interrogate how histocompatibility barriers can be overcome, we analysed the peptides bound to major histocompatibility complex class I (MHC‐I) molecules from Tasmanian devil cells and representative cell lines of each transmissible cancer. Here, we show that DFT1 + IFN‐γ and DFT2 cell lines express a restricted repertoire of MHC‐I allotypes compared with fibroblast cells, potentially reducing the breadth of peptide presentation. Comparison of the peptidomes from DFT1 + IFNγ, DFT2 and host fibroblast cells demonstrates a dominant motif, despite differences in MHC‐I allotypes between the cell lines, with preference for a hydrophobic leucine residue at position 3 and position Ω of peptides. DFT1 and DFT2 both present peptides derived from neural proteins, which reflects a shared cellular origin that could be exploited for vaccine design. These results suggest that polymorphisms in MHC‐I molecules between tumours and host can be ‘hidden’ by a common peptide motif, providing the potential for permissive passage of infectious cells and demonstrating complexity in mammalian histocompatibility barriers.
Collapse
Affiliation(s)
| | - Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology and the Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Alistair Bailey
- Centre for Cancer Immunology, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Rachel Owen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Steven Turner
- Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - N Kontouli
- Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Tim Elliott
- Centre for Cancer Immunology, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Paul Skipp
- School of Biological Sciences, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and the Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Hannah V Siddle
- School of Biological Sciences, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
15
|
Wong C, Darby JM, Murphy PR, Pinfold TL, Lennard PR, Woods GM, Lyons AB, Flies AS. Tasmanian devil CD28 and CTLA4 capture CD80 and CD86 from adjacent cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103882. [PMID: 33039410 DOI: 10.1016/j.dci.2020.103882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Immune checkpoint immunotherapy is a pillar of human oncology treatment with potential for non-human species. The first checkpoint immunotherapy approved for human cancers targeted the CTLA4 protein. CTLA4 can inhibit T cell activation by capturing and internalizing CD80 and CD86 from antigen presenting cells, a process called trans-endocytosis. Similarly, CD28 can capture CD80 and CD86 via trogocytosis and retain the captured ligands on the surface of the CD28-expressing cells. The wild Tasmanian devil (Sarcophilus harrisii) population has declined by 77% due to transmissible cancers that evade immune defenses despite genetic mismatches between the host and tumors. We used a live cell-based assay to demonstrate that devil CTLA4 and CD28 can capture CD80 and CD86. Mutation of evolutionarily conserved motifs in CTLA4 altered functional interactions with CD80 and CD86 in accordance with patterns observed in other species. These results suggest that checkpoint immunotherapies can be translated to evolutionarily divergent species.
Collapse
Affiliation(s)
- Candida Wong
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Jocelyn M Darby
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Peter R Murphy
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia; University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Terry L Pinfold
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Patrick R Lennard
- The Roslin Institute and Royal School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Gregory M Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - A Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia.
| |
Collapse
|
16
|
Pye R, Darby J, Flies AS, Fox S, Carver S, Elmer J, Swift K, Hogg C, Pemberton D, Woods G, Lyons AB. Post-release immune responses of Tasmanian devils vaccinated with an experimental devil facial tumour disease vaccine. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr20210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
ContextDisease is increasingly becoming a driver of wildlife population declines and an extinction risk. Vaccines are one of the most successful health interventions in human history, but few have been tested for mitigating wildlife disease. The transmissible cancer, devil facial tumour disease (DFTD), triggered the Tasmanian devil’s (Sarcophilus harrisii) inclusion on the international endangered species list. In 2016, 33 devils from a DFTD-free insurance population were given an experimental DFTD vaccination before their wild release on the Tasmanian northern coast.
AimTo determine the efficacy of the vaccination protocol and the longevity of the induced responses.
MethodSix trapping trips took place over the 2.5 years following release, and both vaccinated and incumbent devils had blood samples and tumour biopsies collected.
Key resultsIn all, 8 of the 33 vaccinated devils were re-trapped, and six of those developed DFTD within the monitoring period. Despite the lack of protection provided by the vaccine, we observed signs of immune activation not usually found in unvaccinated devils. First, sera collected from the eight devils showed that anti-DFTD antibodies persisted for up to 2 years post-vaccination. Second, tumour-infiltrating lymphocytes were found in three of four biopsies collected from vaccinated devils, which contrasts with the ‘immune deserts’ typical of DFTs; only 1 of the 20 incumbent devils with DFTD had a tumour biopsy exhibiting immune-cell infiltrate. Third, immunohistochemical analysis of the vaccinated devils’ tumour biopsies identified the functional immune molecules associated with antigen-presenting cells (MHC-II) and T-cells (CD3), and the immune checkpoint molecule PD-1, all being associated with anti-tumour immunity in other species.
ConclusionsThese results correlate with our previous study on captive devils in which a prophylactic vaccine primed the devil immune system and, following DFTD challenge and tumour growth, immunotherapy induced complete tumour regressions. The field trial results presented here provide further evidence that the devil immune system can be primed to recognise DFTD cells, but additional immune manipulation could be needed for complete protection or induction of tumour regressions.
ImplicationsA protective DFTD vaccine would provide a valuable management approach for conservation of the Tasmanian devil.
Collapse
|
17
|
Ohmer MEB, Costantini D, Czirják GÁ, Downs CJ, Ferguson LV, Flies A, Franklin CE, Kayigwe AN, Knutie S, Richards-Zawacki CL, Cramp RL. Applied ecoimmunology: using immunological tools to improve conservation efforts in a changing world. CONSERVATION PHYSIOLOGY 2021; 9:coab074. [PMID: 34512994 PMCID: PMC8422949 DOI: 10.1093/conphys/coab074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 05/11/2023]
Abstract
Ecoimmunology is a rapidly developing field that explores how the environment shapes immune function, which in turn influences host-parasite relationships and disease outcomes. Host immune defence is a key fitness determinant because it underlies the capacity of animals to resist or tolerate potential infections. Importantly, immune function can be suppressed, depressed, reconfigured or stimulated by exposure to rapidly changing environmental drivers like temperature, pollutants and food availability. Thus, hosts may experience trade-offs resulting from altered investment in immune function under environmental stressors. As such, approaches in ecoimmunology can provide powerful tools to assist in the conservation of wildlife. Here, we provide case studies that explore the diverse ways that ecoimmunology can inform and advance conservation efforts, from understanding how Galapagos finches will fare with introduced parasites, to using methods from human oncology to design vaccines against a transmissible cancer in Tasmanian devils. In addition, we discuss the future of ecoimmunology and present 10 questions that can help guide this emerging field to better inform conservation decisions and biodiversity protection. From better linking changes in immune function to disease outcomes under different environmental conditions, to understanding how individual variation contributes to disease dynamics in wild populations, there is immense potential for ecoimmunology to inform the conservation of imperilled hosts in the face of new and re-emerging pathogens, in addition to improving the detection and management of emerging potential zoonoses.
Collapse
Affiliation(s)
- Michel E B Ohmer
- Living Earth Collaborative, Washington University in St. Louis, MO 63130, USA
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), Muséum National d’Histoire Naturelle, CNRS, 57 Rue Cuvier, CP32, 75005, Paris, France
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Cynthia J Downs
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Laura V Ferguson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andy Flies
- Menzies Institute for Medical Research, University of Tasmania, Tasmania 7001, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Queensland 4072, Australia
| | - Ahab N Kayigwe
- Menzies Institute for Medical Research, University of Tasmania, Tasmania 7001, Australia
| | - Sarah Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06268, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06268, USA
| | | | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Queensland 4072, Australia
- Corresponding author: School of Biological Sciences, The University of Queensland, Queensland 4072, Australia.
| |
Collapse
|
18
|
Patton AH, Lawrance MF, Margres MJ, Kozakiewicz CP, Hamede R, Ruiz-Aravena M, Hamilton DG, Comte S, Ricci LE, Taylor RL, Stadler T, Leaché A, McCallum H, Jones ME, Hohenlohe PA, Storfer A. A transmissible cancer shifts from emergence to endemism in Tasmanian devils. Science 2020; 370:370/6522/eabb9772. [PMID: 33303589 DOI: 10.1126/science.abb9772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/21/2020] [Indexed: 01/05/2023]
Abstract
Emerging infectious diseases pose one of the greatest threats to human health and biodiversity. Phylodynamics is often used to infer epidemiological parameters essential for guiding intervention strategies for human viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). Here, we applied phylodynamics to elucidate the epidemiological dynamics of Tasmanian devil facial tumor disease (DFTD), a fatal, transmissible cancer with a genome thousands of times larger than that of any virus. Despite prior predictions of devil extinction, transmission rates have declined precipitously from ~3.5 secondary infections per infected individual to ~1 at present. Thus, DFTD appears to be transitioning from emergence to endemism, lending hope for the continued survival of the endangered Tasmanian devil. More generally, our study demonstrates a new phylodynamic analytical framework that can be applied to virtually any pathogen.
Collapse
Affiliation(s)
- Austin H Patton
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.,Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Matthew F Lawrance
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | | | - Rodrigo Hamede
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,CANECEV, Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC), Montpellier 34090, France
| | - Manuel Ruiz-Aravena
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - David G Hamilton
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Sebastien Comte
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,Vertebrate Pest Research Unit, Invasive Species and Biosecurity, NSW Department of Primary Industries, Orange, New South Wales 2800, Australia
| | - Lauren E Ricci
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.,Department of Wildland Resources, Utah State University, Logan, UT 84322, USA
| | - Robyn L Taylor
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Tanja Stadler
- Department for Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland.,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Adam Leaché
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Hamish McCallum
- Vertebrate Pest Research Unit, Invasive Species and Biosecurity, NSW Department of Primary Industries, Orange, New South Wales 2800, Australia.,Environmental Futures Research Institute, Griffith University, Brisbane, Queensland 4111, Australia
| | - Menna E Jones
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Paul A Hohenlohe
- Department of Biological Science, University of Idaho, Moscow, ID 83844, USA
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
19
|
Barnett KM, Civitello DJ. Ecological and Evolutionary Challenges for Wildlife Vaccination. Trends Parasitol 2020; 36:970-978. [PMID: 32952060 PMCID: PMC7498468 DOI: 10.1016/j.pt.2020.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Wildlife vaccination is of urgent interest to reduce disease-induced extinction and zoonotic spillover events. However, several challenges complicate its application to wildlife. For example, vaccines rarely provide perfect immunity. While some protection may seem better than none, imperfect vaccination can present epidemiological, ecological, and evolutionary challenges. While anti-infection and antitransmission vaccines reduce parasite transmission, antidisease vaccines may undermine herd immunity, select for increased virulence, or promote spillover. These imperfections interact with ecological and logistical constraints that are magnified in wildlife, such as poor control and substantial trait variation within and among species. Ultimately, we recommend approaches such as trait-based vaccination, modeling tools, and methods to assess community- and ecosystem-level vaccine safety to address these concerns and bolster wildlife vaccination campaigns.
Collapse
Affiliation(s)
- K M Barnett
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
20
|
Rohde RE, Rupprecht CE. Update on lyssaviruses and rabies: will past progress play as prologue in the near term towards future elimination? Fac Rev 2020; 9:9. [PMID: 33659941 PMCID: PMC7886060 DOI: 10.12703/b/9-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rabies is an ancient, much-feared, and neglected infectious disease. Caused by pathogens in the family Rhabdoviridae, genus Lyssavirus, and distributed globally, this viral zoonosis results in tens of thousands of human fatalities and millions of exposures annually. All mammals are believed susceptible, but only certain taxa act as reservoirs. Dependence upon direct routing to, replication within, and passage from the central nervous system serves as a basic viral strategy for perpetuation. By a combination of stealth and subversion, lyssaviruses are quintessential neurotropic agents and cause an acute, progressive encephalitis. No treatment exists, so prevention is the key. Although not a disease considered for eradication, something of a modern rebirth has been occurring within the field as of late with regard to detection, prevention, and management as well as applied research. For example, within the past decade, new lyssaviruses have been characterized; sensitive and specific diagnostics have been optimized; pure, potent, safe, and efficacious human biologics have improved human prophylaxis; regional efforts have controlled canine rabies by mass immunization; wildlife rabies has been controlled by oral rabies vaccination over large geographic areas in Europe and North America; and debate has resumed over the controversial topic of therapy. Based upon such progress to date, there are certain expectations for the next 10 years. These include pathogen discovery, to uncover additional lyssaviruses in the Old World; laboratory-based surveillance enhancement by simplified, rapid testing; anti-viral drug appearance, based upon an improved appreciation of viral pathobiology and host response; and improvements to canine rabies elimination regionally throughout Africa, Asia, and the Americas by application of the best technical, organizational, economic, and socio-political practices. Significantly, anticipated Gavi support will enable improved access of human rabies vaccines in lesser developed countries at a national level, with integrated bite management, dose-sparing regimens, and a 1 week vaccination schedule.
Collapse
Affiliation(s)
- Rodney E Rohde
- Clinical Laboratory Science, Texas State University, San Marcos, TX, 78666, USA
| | | |
Collapse
|
21
|
Flies AS, Darby JM, Lennard PR, Murphy PR, Ong CEB, Pinfold TL, De Luca A, Lyons AB, Woods GM, Patchett AL. A novel system to map protein interactions reveals evolutionarily conserved immune evasion pathways on transmissible cancers. SCIENCE ADVANCES 2020; 6:6/27/eaba5031. [PMID: 32937435 PMCID: PMC7458443 DOI: 10.1126/sciadv.aba5031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/20/2020] [Indexed: 05/02/2023]
Abstract
Around 40% of humans and Tasmanian devils (Sarcophilus harrisii) develop cancer in their lifetime, compared to less than 10% for most species. In addition, devils are affected by two of the three known transmissible cancers in mammals. Immune checkpoint immunotherapy has transformed human medicine, but a lack of species-specific reagents has limited checkpoint immunology in most species. We developed a cut-and-paste reagent development system and used the fluorescent fusion protein system to show that immune checkpoint interactions are conserved across 160,000,000 years of evolution, CD200 is highly expressed on transmissible tumor cells, and coexpression of CD200R1 can block CD200 surface expression. The system's versatility across species was demonstrated by fusing a fluorescent reporter to a camelid-derived nanobody that binds human programmed death ligand 1. The evolutionarily conserved pathways suggest that naturally occurring cancers in devils and other species can be used to advance our understanding of cancer and immunological tolerance.
Collapse
Affiliation(s)
- Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia.
| | - Jocelyn M Darby
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Patrick R Lennard
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
- The Roslin Institute and Royal School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Peter R Murphy
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Chrissie E B Ong
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Terry L Pinfold
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Alana De Luca
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - A Bruce Lyons
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Amanda L Patchett
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|