1
|
Ghijs S, Wynendaele E, De Spiegeleer B. The continuing challenge of drug recalls: Insights from a ten-year FDA data analysis. J Pharm Biomed Anal 2024; 249:116349. [PMID: 39029352 DOI: 10.1016/j.jpba.2024.116349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
In this study we analyzed drug recall data from the U.S. Food and Drug Administration (FDA) over the period 2012-2023. We identified trends in the number of recalls initiated annually and their underlying causes. On average, 330 drug recalls are initiated each year, showing an overall increasing trend. The average duration of a recall, from initiation to termination date, was 1.3 years and each recall involved on average 400 000 product units, implying considerable resource demands and consequences for all stakeholders. The most frequent cause of these recalls was found to be impurities and contaminants (37 %), followed by control (28 %) and labeling/packaging (19 %) issues. Recalls of medicines causing serious health problems or death (class I), accounted for 14 % of the recall events. Continuous evaluation of recalls is expected to reduce their number, mitigate their impact on the healthcare system and improve drug safety.
Collapse
Affiliation(s)
- Seppe Ghijs
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| |
Collapse
|
2
|
Manchuri KM, Shaik MA, Gopireddy VSR, Naziya Sultana, Gogineni S. Analytical Methodologies to Detect N-Nitrosamine Impurities in Active Pharmaceutical Ingredients, Drug Products and Other Matrices. Chem Res Toxicol 2024; 37:1456-1483. [PMID: 39158368 DOI: 10.1021/acs.chemrestox.4c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Since 2018, N-nitrosamine impurities have become a widespread concern in the global regulatory landscape of pharmaceutical products. This concern arises due to their potential for contamination, toxicity, carcinogenicity, and mutagenicity and their presence in many active pharmaceutical ingredients, drug products, and other matrices. N-Nitrosamine impurities in humans can lead to severe chemical toxicity effects. These include carcinogenic effects, metabolic disruptions, reproductive harm, liver diseases, obesity, DNA damage, cell death, chromosomal alterations, birth defects, and pregnancy loss. They are particularly known to cause cancer (tumors) in various organs and tissues such as the liver, lungs, nasal cavity, esophagus, pancreas, stomach, urinary bladder, colon, kidneys, and central nervous system. Additionally, N-nitrosamine impurities may contribute to the development of Alzheimer's and Parkinson's diseases and type-2 diabetes. Therefore, it is very important to control or avoid them by enhancing effective analytical methodologies using cutting-edge analytical techniques such as LC-MS, GC-MS, CE-MS, SFC, etc. Moreover, these analytical methods need to be sensitive and selective with suitable precision and accuracy, so that the actual amounts of N-nitrosamine impurities can be detected and quantified appropriately in drugs. Regulatory agencies such as the US FDA, EMA, ICH, WHO, etc. need to focus more on the hazards of N-nitrosamine impurities by providing guidance and regular updates to drug manufacturers and applicants. Similarly, drug manufacturers should be more vigilant to avoid nitrosating agents and secondary amines during the manufacturing processes. Numerous review articles have been published recently by various researchers, focusing on N-nitrosamine impurities found in previously notified products, including sartans, metformin, and ranitidine. These impurities have also been detected in a wide range of other products. Consequently, this review aims to concentrate on products recently reported to contain N-nitrosamine impurities. These products include rifampicin, champix, famotidine, nizatidine, atorvastatin, bumetanide, itraconazole, diovan, enalapril, propranolol, lisinopril, duloxetine, rivaroxaban, pioglitazones, glifizones, cilostazol, and sunitinib.
Collapse
Affiliation(s)
- Krishna Moorthy Manchuri
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Mahammad Ali Shaik
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Venkata Subba Reddy Gopireddy
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh 515002, India
| | - Naziya Sultana
- Analytical Research and Development, IPDO, Dr. Reddy's Laboratories Limited, Hyderabad 500090, India
| | - Sreenivasarao Gogineni
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh 522510, India
| |
Collapse
|
3
|
Janmeda P, Jain D, Chaudhary P, Meena M, Singh D. A systematic review on multipotent carcinogenic agent, N-nitrosodiethylamine (NDEA), its major risk assessment, and precautions. J Appl Toxicol 2024; 44:1108-1128. [PMID: 38212177 DOI: 10.1002/jat.4574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 01/13/2024]
Abstract
The International Agency for Research on Cancer has classified N-nitrosodiethylamine (NDEA) as a possible carcinogen and mutagenic substances, placing it in category 2A of compounds that are probably harmful to humans. It is found in nature and tobacco smoke, along with its precursors, and is also synthesized endogenously in the human body. The oral or parenteral administration of a minimal quantity of NDEA results in severe liver and kidney organ damage. The NDEA required bioactivation by CYP450 enzyme to form DNA adduct in the alkylation mechanism. Thus, this bioactivation directs oxidative stress and injury to cells due to the higher formation of reactive oxygen species and alters antioxidant system in tissues, whereas free radical scavengers guard the membranes from NDEA-directed injury in many enzymes. This might be one of the reasons in the etiology of cancer that is not limited to a certain target organ but can affect various organs and organ systems. Although there are various possible approaches for the treatment of NDEA-induced cancer, their therapeutic outcomes are still very dismal. However, several precautions were considered to be taken during handling or working with NDEA, as it considered being the best way to lower down the occurrence of NDEA-directed cancers. The present review was designed to enlighten the general guidelines for working with NDEA, possible mechanism, to alter the antioxidant line to cause malignancy in different parts of animal body along with its protective agents. Thus, revelation to constant, unpredictable stress situations even in common life may remarkably augment the toxic potential through the rise in the oxidative stress and damage of DNA.
Collapse
Affiliation(s)
- Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Devendra Singh
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
4
|
Saleem M, Hanif M, Rafiq M, Ali A, Raza H, Kim SJ, Lu C. Recent Development on Sensing Strategies for Small Molecules Detections. J Fluoresc 2024; 34:1493-1525. [PMID: 37644375 DOI: 10.1007/s10895-023-03387-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Sensors play a critical role in the detection and monitoring of various substances present in our environment, providing us with valuable information about the world around us. Within the field of sensor development, one area that holds particular importance is the detection of small molecules. Small molecules encompass a wide range of organic or inorganic compounds with low molecular weight, typically below 900 Daltons including gases, volatile organic compounds, solvents, pesticides, drugs, biomarkers, toxins, and pollutants. The accurate and efficient detection of these small molecules has attracted significant interest from the scientific community due to its relevance in diverse fields such as environmental pollutants monitoring, medical diagnostics, industrial optimization, healthcare remedies, food safety, ecosystems, and aquatic and terrestrial life preservation. To meet the demand for precise and efficient monitoring of small molecules, this summary aims to provide an overview of recent advancements in sensing and quantification strategies for various organic small molecules including Hydrazine, Glucose, Morpholine, Ethanol amine, Nitrosamine, Oxygen, Nitro-aromatics, Phospholipids, Carbohydrates, Antibiotics, Pesticides, Drugs, Adenosine Triphosphate, Aromatic Amine, Glutathione, Hydrogen Peroxide, Acetone, Methyl Parathion, and Thiophenol. The focus is on understanding the receptor sensing mechanism, along with the electrical, optical, and electrochemical response. Additionally, the variations in UV-visible spectral properties of the ligands upon treatment with the receptor, fluorescence and absorption titration analysis for limit of detection (LOD) determination, and bioimaging analysis are discussed wherever applicable. It is anticipated that the information gathered from this literature survey will be helpful for the perusal of innovation regarding sensing strategies.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan.
- Department of Chemistry, Thal University Bhakkar, Punjab, 30000, Bhakkar, Pakistan.
| | - Muhammad Hanif
- Department of Chemistry, GC University Faisalabad, Sub Campus Layyah-31200, Layyah, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 6300, Pakistan
| | - Anser Ali
- Department of Zoology, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Pakistan
| | - Hussain Raza
- Department of Biological Sciences, Kongju National University, Kongju, Chungnam, Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, Kongju National University, Kongju, Chungnam, Republic of Korea
| | - Changrui Lu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
5
|
Sang SH, Akowuah GA, Liew KB, Lee SK, Keng JW, Lee SK, Yon JAL, Tan CS, Chew YL. Natural alternatives from your garden for hair care: Revisiting the benefits of tropical herbs. Heliyon 2023; 9:e21876. [PMID: 38034771 PMCID: PMC10685248 DOI: 10.1016/j.heliyon.2023.e21876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/30/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Hair shampoos containing botanical ingredients without synthetic additives, such as parabens, petrochemicals, sulfates and silicones are more skin- and environmentally friendly. In recent years, there is a growing demand for shampoo products with botanical extracts. Shampoos with botanical extracts are well-known for their perceived health benefits. They are also generally milder, non-toxic, natural, and less likely to disrupt the hair and scalp's natural pH and oil balance. Many also believe that shampoos with botanical origins have higher standards of quality. Numerous botanical extracts had been used as natural active ingredients in cosmetic formulations to meet consumer demands. In this review, we have revisited six tropical plants commonly added as natural active ingredients in shampoo formulations: Acacia concinna, Camellia oleifera, Azadirachta indica, Emblica officinalis, Sapindus mukorossi, and Garcinia mangostana. These plants have been traditionally used for hair care, and scientific research has shown that they exhibit relevant physicochemical properties and biological activities that are beneficial for hair care and scalp maintenance.
Collapse
Affiliation(s)
- Sze-Huey Sang
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | | | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia
| | - Siew-Keah Lee
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia
| | - Jing-Wen Keng
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Sue-Kei Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Jessica-Ai-Lyn Yon
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai, 71800, Malaysia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Đogo-Mračević S, Laketić T, Stanković M, Lolić A. Toxic element determination in selected cosmetic products: health risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1059. [PMID: 37592113 DOI: 10.1007/s10661-023-11664-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
The aim of this research was to determine the content of arsenic (As), cadmium (Cd), lead (Pb), and nickel (Ni) in selected lipsticks and face foundations of different price categories and the health risk assessment associated with these toxic elements via dermal and oral exposure. The samples (10 lipstick and 10 face foundations) were purchased from local markets in Belgrade, Serbia. The samples were prepared by acid digestion and analyzed by atomic absorption spectrometry (flame atomization for Cd, Pb, and Ni and electrothermal atomization for As). Arsenic was found in 50% of lipstick samples and in only two face foundation samples with the highest concentration of 0.28 mg/kg in the lipstick sample. Lead concentration was in the range of 1.15 to 5.12 mg/kg in ten samples. Nickel was found in five samples out of 20, with the highest concentration of 4.20 mg/kg. Cadmium was found in only one face foundation sample in the cheaper price range (1.11 mg/kg). The obtained results indicate that concentrations of As, Pb, Cd, and Ni were within the permissible limits according to Serbian legislation. Health risk associated with these elements was assessed as non-carcinogenic and carcinogenic risk. Obtained hazard quotients (HQs) and hazard indexes (HIs) were below 1, indicating the absence of significant non-carcinogenic health risk due to exposure to these toxic elements (TEs). The carcinogenic risk results show that investigated cosmetic products can be considered low-risky due to the possibility of causing malignant disease.
Collapse
Affiliation(s)
- Svetlana Đogo-Mračević
- University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11000, Belgrade, Serbia
| | - Tatjana Laketić
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Milan Stanković
- University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11000, Belgrade, Serbia
| | - Aleksandar Lolić
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia.
| |
Collapse
|
7
|
Balwierz R, Biernat P, Jasińska-Balwierz A, Siodłak D, Kusakiewicz-Dawid A, Kurek-Górecka A, Olczyk P, Ochędzan-Siodłak W. Potential Carcinogens in Makeup Cosmetics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4780. [PMID: 36981689 PMCID: PMC10048826 DOI: 10.3390/ijerph20064780] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Facial makeup cosmetics are commonly used products that are applied to the skin, and their ingredients come into contact with it for many years. Consequently, they should only contain substances that are considered safe or used within an allowable range of established concentrations. According to current European laws, all cosmetics approved for use should be entirely safe for their users, and the responsibility for this lies with manufacturers, distributors, and importers. However, the use of cosmetics can be associated with undesirable effects due to the presence of certain chemical substances. An analysis of 50 random facial makeup cosmetics commercially available on the European Union market and manufactured in six European countries was carried out, concerning the presence of substances with potential carcinogenic properties, as described in recent years in the literature. Nine types of facial makeup cosmetics were selected, and their compositions, as declared on the labels, were analyzed. The carcinogens were identified with information present in the European CosIng database and according to the Insecticide Resistance Action Committee's (IRAC) classification. As a result, the following potential carcinogens were identified: parabens (methylparaben, propylparaben, butylparaben, and ethylparaben), ethoxylated compounds (laureth-4, lautreth-7, or ethylene glycol polymers known as PEG), formaldehyde donors (imidazolidinyl urea, quaternium 15, and DMDM hydantoin), and ethanolamine and their derivatives (triethanolamine and diazolidinyl urea), as well as carbon and silica. In conclusion, all of the analyzed face makeup cosmetics contain potential carcinogenic substances. The literature review confirmed the suppositions regarding the potential carcinogenic effects of selected cosmetic ingredients. Therefore, it seems necessary to carry out studies on the long-term exposure of compounds present in cosmetics and perhaps introduce stricter standards and laws regulating the potential presence of carcinogens and their activity in cosmetics.
Collapse
Affiliation(s)
| | - Paweł Biernat
- Department of Drug Forms Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | | - Dawid Siodłak
- Faculty of Chemistry, University of Opole, 45-052 Opole, Poland
| | | | - Anna Kurek-Górecka
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland
| | | |
Collapse
|
8
|
Wang S, Sun F, Wang S, Lv X, Zhao J, Wang J, Yu W, Yu H. N-nitrosamines in Qingdao dried aquatic products and dietary risk assessment. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2023; 16:120-129. [PMID: 36843386 DOI: 10.1080/19393210.2023.2177355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
N-nitrosamines are human carcinogens commonly present in dried aquatic products. A method of gas chromatography - mass spectrometry combined with steam distillation was developed for the determination of 9 N-nitrosamines in dried aquatic products in Qingdao, China, with which 300 samples of fish, squid, shrimp and sea cucumber collected from Qingdao were analysed. A health risk assessment was conducted based on determined levels of N-nitrosamines by using estimated daily intake and slope factors. Results showed that fish products was the category with the highest content of N-nitrosamines, whereas squid and shrimp products were the categories with the highest frequency of presence of N-nitrosamines. The average estimated cancer risk of N-nitrosamines in dried aquatic products in Qingdao ranged from 3.57 × 10-8 to 3.53 × 10-5. Nitrosodimethylamine, N-Nitrosodiethylamine and N-Nitrosodibutylamine could be considered to pose a potential cancer risk to residents in Qingdao.
Collapse
Affiliation(s)
- Shuangyu Wang
- Department of Public Health, Qingdao University, Qingdao, China
| | - Fenglin Sun
- Department of Chemical Laboratory, Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, China
| | - Shuhui Wang
- Department of Chemical Laboratory, Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, China
| | - Xiaojing Lv
- Department of Chemical Laboratory, Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, China
| | - Jinquan Zhao
- Department of Chemical Laboratory, Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, China
| | - Jie Wang
- Department of Hospital Infection, Zhoushan Hospital, Zhoushan, China
| | - Weisen Yu
- Department of Chemical Laboratory, Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, China
| | - Hongwei Yu
- Department of Chemical Laboratory, Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, China
| |
Collapse
|
9
|
Aalizadeh R, Nikolopoulou V, Thomaidis NS. Development of Liquid Chromatographic Retention Index Based on Cocamide Diethanolamine Homologous Series (C( n)-DEA). Anal Chem 2022; 94:15987-15996. [DOI: 10.1021/acs.analchem.2c02893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Varvara Nikolopoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| |
Collapse
|
10
|
Pharmacokinetics and the Dermal Absorption of Bromochlorophene, a Cosmetic Preservative Ingredient, in Rats. TOXICS 2022; 10:toxics10060329. [PMID: 35736937 PMCID: PMC9229563 DOI: 10.3390/toxics10060329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 01/05/2023]
Abstract
The cosmetic industry has flourished in recent years. Accordingly, the safety of cosmetic ingredients is increasing. Bromochlorophene (BCP) is a commonly used cosmetic preservative. To evaluate the effects of BCP exposure, in vitro dermal absorption and in vivo pharmacokinetic (PK) studies were conducted using gel and cream formulations. The Franz diffusion cell system and rat dorsal skin were used for tests according to the Korea Ministry of Food and Drug Safety guidelines for in vitro skin absorption methods. After the dermal application (1.13 mg/cm2) of BCP in the gel and cream formulations, liquid chromatography–mass spectrometry (LC–MS/MS) was used to evaluate the amount of BCP that remained unabsorbed on the skin (WASH), and that was present in the receptor fluid (RF), stratum corneum (SC), and (epi)dermis (SKIN). The total dermal absorption rate of BCP was 7.42 ± 0.74% for the gel formulation and 1.5 ± 0.9% for the cream formulation. Total recovery in an in vitro dermal absorption study was 109.12 ± 8.79% and 105.43 ± 11.07% for the gel and cream formulations, respectively. In vivo PK and dermal absorption studies of BCP were performed following the Organization for Economic Cooperation and Development guidelines 417 and 427, respectively. When intravenous (i.v.) pharmacokinetics was performed, BCP was dissolved in glycerol formal and injected into the tail vein (n = 3) of the rats at doses of 1 and 0.2 mg/kg. Dermal PK parameters were estimated by the application of the gel and cream formulations (2.34 mg/kg of BCP as an active ingredient) to the dorsal skin of the rats. Intravenous and dermal PK parameters were analyzed using a non-compartmental method. The dermal bioavailability of BCP was determined as 12.20 ± 2.63% and 4.65 ± 0.60% for the gel and cream formulations, respectively. The representative dermal absorption of BCP was evaluated to be 12.20 ± 2.63% based on the results of the in vivo PK study.
Collapse
|
11
|
Keire DA, Bream R, Wollein U, Schmaler-Ripcke J, Burchardt A, Conti M, Zmysłowski A, Keizers P, Morin J, Poh J, George M, Wierer M. International Regulatory Collaboration on the Analysis of Nitrosamines in Metformin-Containing Medicines. AAPS J 2022; 24:56. [PMID: 35449372 DOI: 10.1208/s12248-022-00702-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022] Open
Abstract
Recalls of some batches of metformin have occurred due to the detection of N-nitrosodimethylamine (NDMA) in amounts above the acceptable intake (AI) of 96 ng per day. Prior to the recalls, an international regulatory laboratory network had been monitoring drugs for nitrosamine impurities with each laboratory independently developing and validating multiple analytical procedures to detect and measure nitrosamines in metformin drugs used in their jurisdictions. Here, we provide an overview of the analysis of metformin active pharmaceutical ingredients (APIs) and drug products with 1090 samples (875 finished dosage forms (FDFs) and 215 API samples) tested beginning in November of 2019 through July of 2020. Samples were obtained internationally by a variety of approaches, including purchased, received from firms via information requests or selected by regional regulatory authorities (either at wholesalers or during GMP inspections). Only one nitrosamine (NDMA) was detected and was only present in some batches of metformin products. For API samples, 213 out of 215 lots tested had no measurable level of NDMA. For FDF samples tested, the number of batches with NDMA above the AI amount for patient safety was 17.8% (156/875). Based on these data, although the presence of NDMA was of concern, 82.2% of the samples of metformin drug products tested met quality and safety standards for patients. Regulatory agencies continue to collaborate extensively and work with marketing authorization holders to understand root causes of nitrosamine formation and agree on corrective actions to mitigate the presence of NDMA in future metformin batches.
Collapse
Affiliation(s)
- David A Keire
- Office of Testing and Research, Office of Pharmaceutical Quality, Food and Drug Administration, 645 S. Newstead Ave., St. Louis, MO, 63110, USA.
| | - Robert Bream
- European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS, Amsterdam, The Netherlands
| | - Uwe Wollein
- Bayerisches Landesamt Für Gesundheit Und Lebensmittelsicherheit, LGL, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Jeannette Schmaler-Ripcke
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, CVUA Karlsruhe, Weißenburger Str. 3, 76187, Karlsruhe, Germany
| | - Annette Burchardt
- Institute for Pharmaceutical and Applied Analytics - InphA GmbH, Emil-Sommer-Strasse 7, 28329, Bremen, Germany
| | - Massimiliano Conti
- Schweizerisches Heilmittelinstitut (Biol. & Pharm.), OMCL Swissmedic, Hallerstrasse 7, 3012, Bern, Switzerland
| | - Adam Zmysłowski
- National Medicines Institute, NIL, 30/34 Chelmska Street, 00-725, Warsaw, Poland
| | - Peter Keizers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Justin Morin
- Health Canada, 2301 Midland Avenue, Room 200-59, Toronto, M1P 4R7, Canada
| | - Jalene Poh
- Health Sciences Authority, 11 Outram Road, Bukit Merah, 169078, Singapore
| | - Mark George
- TGA Laboratories, 136 Narrabundah Lane, Symonston, A.C.T, 2606, Australia
| | - Michael Wierer
- European Directorate for the Quality of Medicines & HealthCare, 7 Allée Kastner CS 30026, 67081, Strasbourg, France
| |
Collapse
|
12
|
Li Y, Hecht SS. Metabolic Activation and DNA Interactions of Carcinogenic N-Nitrosamines to Which Humans Are Commonly Exposed. Int J Mol Sci 2022; 23:ijms23094559. [PMID: 35562949 PMCID: PMC9105260 DOI: 10.3390/ijms23094559] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Carcinogenic N-nitrosamine contamination in certain drugs has recently caused great concern and the attention of regulatory agencies. These carcinogens-widely detectable in relatively low levels in food, water, cosmetics, and drugs-are well-established and powerful animal carcinogens. The electrophiles resulting from the cytochrome P450-mediated metabolism of N-nitrosamines can readily react with DNA and form covalent addition products (DNA adducts) that play a central role in carcinogenesis if not repaired. In this review, we aim to provide a comprehensive and updated review of progress on the metabolic activation and DNA interactions of 10 carcinogenic N-nitrosamines to which humans are commonly exposed. Certain DNA adducts such as O6-methylguanine with established miscoding properties play central roles in the cancer induction process, whereas others have been linked to the high incidence of certain types of cancers. We hope the data summarized here will help researchers gain a better understanding of the bioactivation and DNA interactions of these 10 carcinogenic N-nitrosamines and facilitate further research on their toxicologic and carcinogenic properties.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: ; Tel.: +1-612-624-8187
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
13
|
Sahmel J, Arnold S, Ramachandran G. Influence of repeated contacts on the transfer of elemental metallic lead between compartments in an integrated conceptual model for dermal exposure assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:89-109. [PMID: 34569450 DOI: 10.1080/15287394.2021.1979435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transfer of contaminants to and from the skin surface has been postulated to occur through a number of different pathways and compartments including: object(s)-to-skin, skin-to-skin, skin-to-clothing, skin-to-gloves, air-to-skin, skin-to-lips, and skin-to-saliva. However, many identified transfer pathways have been only minimally examined to determine the potential for measurable transfer. The purpose of this study was to quantitatively evaluate repeated transfer between different compartments using elemental metallic lead (Pb) in the solid form using a series of systematic measurements in human subjects. The results demonstrated that some transfer pathways and compartments are significantly more important than others. Transfer of Pb could not be measured from skin to cotton clothing or skin to laminate countertop surfaces. However, transfer was consistently measured for skin-to-skin and between the skin and the surface of nitrile gloves, suggesting the potential for significant transfer to or from these compartments in real-world exposure scenarios, and the importance of these pathways. With repeated contacts, transfer increased non-linearly between 1 and 5 contacts, but appeared to approach a steady state distribution among the compartments within 10 contacts. Consistent with other studies, relative to 100% transfer for a single contact, the quantitative transfer efficiency decreased with repeated contacts to 29% after 5 contacts and 11-12% after 10 contacts; for skin-to-skin transfer measurements, transfer efficiency after either 5 or 10 contacts was approximately 50% of the single contact transfer. These data are likely to be useful for refining current approaches to modeling of repeated contacts for dermal exposure and risk assessment.
Collapse
Affiliation(s)
- J Sahmel
- Insight Exposure and Risk Sciences, Boulder, Colorado, USA
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - S Arnold
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - G Ramachandran
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Kim JY, Kim KB, Lee BM. Validation of Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) approaches as alternatives to skin sensitization risk assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:945-959. [PMID: 34338166 DOI: 10.1080/15287394.2021.1956660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was conducted to validate the physicochemical properties of a total of 362 chemicals [305 skin sensitizers (212 in the previous study + 93 additional new chemicals), 57 non-skin sensitizers (38 in the previous study + 19 additional new chemicals)] for skin sensitization risk assessment using quantitative structure-activity relationship (QSAR)/quantitative structure-property relationship (QSPR) approaches. The average melting point (MP), surface tension (ST), and density (DS) of the 305 skin sensitizers and 57 non-sensitizers were used to determine the cutoff values distinguishing positive and negative sensitization, and correlation coefficients were employed to derive effective 3-fold concentration (EC3 (%)) values. QSAR models were also utilized to assess skin sensitization. The sensitivity, specificity, and accuracy were 80, 15, and 70%, respectively, for the Toxtree QSAR model; 88, 46, and 81%, respectively, for Vega; and 56, 61, and 56%, respectively, for Danish EPA QSAR. Surprisingly, the sensitivity, specificity, and accuracy were 60, 80, and 64%, respectively, when MP, ST, and DS (MP+ST+DS) were used in this study. Further, MP+ST+DS exhibited a sensitivity of 77%, specificity 57%, and accuracy 73% when the derived EC3 values were classified into local lymph node assay (LLNA) skin sensitizer and non-sensitizer categories. Thus, MP, ST, and DS may prove useful in predicting EC3 values as not only an alternative approach to animal testing but also for skin sensitization risk assessment.
Collapse
Affiliation(s)
- Ji Yun Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University Dandae-ro, Cheonan, Chungnam, South Korea
| | - Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| |
Collapse
|
15
|
Tada A, Rodrigues-Silva C, Rath S. On-line solid phase extraction-ultra-high performance liquid chromatography coupled to tandem mass spectrometry for the determination of N-nitrosodiethanolamine in baby shampoo. J Pharm Biomed Anal 2021; 202:114132. [PMID: 34000519 DOI: 10.1016/j.jpba.2021.114132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/01/2022]
Abstract
N-nitrosodiethanolamine (NDELA) is a carcinogenic contaminant of concern in the cosmetics industry. Contaminated raw material, degradation, reactions of ingredients of the formulation, or migration of packaging material can be responsible for the presence of NDELA in the final product. Liquid chromatography coupled to tandem mass spectrometry is the most widely accepted technique for the quantitation of NDELA in cosmetic products. Still, there is no consensus regarding the sample preparation procedure. The aim of this work was to evaluate the performance of two-dimensional liquid chromatography coupled with tandem mass spectrometry for the determination of NDELA in shampoo. In the first dimension an Oasis HLB SPE-column was used and in the second dimension a CSH C18 column. NDELA-d8 was used as an internal standard. The 2D-LC parameters were optimized by a central composite multivariate design. However, before quantitation, a sample preparation step using solid-phase extraction was necessary to eliminate compounds present in the formulation, especially surfactants that were not compatible with the chromatographic columns. Moreover, the complex matrices and singular compositions of shampoo from different manufacturers required adjustments of the sample preparation procedure for each sample. The limit of quantitation of the method for the determination of NDELA in shampoo was in the range of 5-10 ng g-1. The accuracy of the method at the LOQ (10 ng g-1) was 114 % and the inter-day precision of 15.3 % (n = 9). One sample out of 12 presented an NDELA concentration of 54 ng g-1.
Collapse
Affiliation(s)
- Alyne Tada
- Brazilian Federal Institute, Brasília, DF, Brazil
| | - Caio Rodrigues-Silva
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, SP, Brazil
| | - Susanne Rath
- Institute of Chemistry, Department of Analytical Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, SP, Brazil.
| |
Collapse
|
16
|
Bearth A, Kwon S, Siegrist M. Chemophobia and knowledge of toxicological principles in South-Korea: perceptions of trace chemicals in consumer products. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:183-195. [PMID: 33289440 DOI: 10.1080/15287394.2020.1851834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many consumer products are manufactured or synthesized from chemicals. However, consumers may be hesitant to purchase consumer products that are perceived as synthetic or derived with chemical substances. Prior studies suggested a preference for chemicals of natural origin and an irrational fear of synthetic chemicals, a phenomenon that is referred to as chemophobia. The aim of this study was two-fold as follows: to (1) investigate the levels of knowledge with respect to toxicological principles, chemophobia, and trust in stakeholders in South Korea and (2) experimentally test the effect of information provision on acceptance and willingness-to-buy for the specific case of trace chemicals in consumer products. For this purpose, an online survey and experiment was conducted with consumers in South Korea. Data suggested that in South Korea chemophobia correlated with an individual's knowledge regarding toxicological principles. Accordingly, a small intervention providing information on the dose-response mechanism increased consumers' acceptance of the presence of trace chemicals and subsequent willingness to purchase the products in this study. In conclusion, this investigation stresses the importance of educating the public regarding basic principles of toxicology to avoid chemophobia, while simultaneously discussing other factors that need to be taken into account such as attitudes and trust in communicators.
Collapse
Affiliation(s)
- Angela Bearth
- Consumer Behavior, Institute for Environmental Decisions (IED), ETH Zurich , Zurich, Switzerland
| | - Seok Kwon
- Global Product Stewardship, Research and Development, Singapore Innovation Center, Procter & Gamble (P&G) International Operations , Singapore
| | - Michael Siegrist
- Consumer Behavior, Institute for Environmental Decisions (IED), ETH Zurich , Zurich, Switzerland
| |
Collapse
|
17
|
Kodamatani H, Sugihara K, Tanisue T, Kanzaki R, Tomiyasu T. Contamination, Decomposition, and Formation of N-Nitrosodimethylamine in Water Samples at the ng/L Level of Determination. ANAL SCI 2020; 36:1393-1399. [PMID: 32713901 DOI: 10.2116/analsci.20p162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An ultra-sensitive analytical system that can determine the concentration of N-nitrosamines at the ng/L level without preconcentration was used to investigate the contamination, decomposition, and formation of N-nitrosodimethylamine (NDMA) and other N-nitrosamines in water samples during general analytical procedures. A preliminary experiment was performed to estimate the NDMA concentrations in ambient air. Since the air samples contained NDMA at concentrations in the range of 2.0 - 10.7 ng/m3, ambient air was identified as the source of NDMA contamination in water samples. We directly confirmed that the concentration of aqueous 10-ng/L NDMA samples stored in clear glass bottles decreased upon exposure to sunlight. Thus, to maintain the N-nitrosamine concentration, such samples must always be protected from sunlight during sampling. The existence of N-nitrosamines in experimental reagents, such as ranitidine and sodium hypochlorite solutions, was also confirmed, as was the formation of NDMA on an activated carbon solid-phase extraction cartridge.
Collapse
Affiliation(s)
- Hitoshi Kodamatani
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University
| | - Kenta Sugihara
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University
| | - Taketo Tanisue
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University
| | - Ryo Kanzaki
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University
| | - Takashi Tomiyasu
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University
| |
Collapse
|
18
|
Kim MK, Kim KB, Yoon S, Kim HS, Lee BM. Risk assessment of unintentional phthalates contaminants in cosmetics. Regul Toxicol Pharmacol 2020; 115:104687. [PMID: 32474072 DOI: 10.1016/j.yrtph.2020.104687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/28/2023]
Abstract
A risk assessment was performed for three types of phthalates, benzyl butyl phthalate (BBP), dibutyl phthalate (DBP), and di(2-ethylhexyl)phthalate (DEHP) unintentionally contaminated in cosmetics. A total of 100 products of 8 types of cosmetics were analyzed employing gas chromatography-mass spectrometry (GC-MS). By applying the maximum detected values of phthalates based on the worst exposure cases, their systemic exposure dosage (SED) was calculated. Accordingly, DEHP was identified as the main unintentional phthalates contaminants (0.10-600.00 ppm) in the cosmetics, with an SED of 3.37 × 10-9-3.75 × 10-4 mg/kg/day. In the non-cancer risk assessment, a margin of safety (MOS ≥ 100, safe) of 1.28 × 104-1.42 × 109 was estimated. In the cancer risk assessment, the lifetime cancer risk (LCR ≤ 10-5, safe) was determined to be 8.81 × 10-12-9.79 × 10-7. Based on the results of both risk assessments, the levels of unintentional phthalates contaminants in cosmetics were deemed safe. Some phthalates are widely used as plasticizers and are essential for daily life; however, various toxicities, including endocrine disruption, have been reported. Therefore, even under these "worst case" assumptions, an adequate margin of safety is shown such that this might be a low priority for further work although exposure to unintentional phthalates contaminants through cosmetics should be considered as part of cumulative exposure.
Collapse
Affiliation(s)
- Min Kook Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyu Bong Kim
- Division of Toxicology, College of Pharmacy, Dankook University, Cheonan, Republic of Korea
| | - Sungpil Yoon
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyung Sik Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
19
|
Yang J, Marzan TA, Ye W, Sommers CD, Rodriguez JD, Keire DA. A Cautionary Tale: Quantitative LC-HRMS Analytical Procedures for the Analysis of N-Nitrosodimethylamine in Metformin. AAPS JOURNAL 2020; 22:89. [PMID: 32613429 PMCID: PMC7329790 DOI: 10.1208/s12248-020-00473-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022]
Abstract
A private testing laboratory reported in a Citizen Petition (CP) to FDA that 16 of 38 metformin drug products they tested had N-nitrosodimethyl amine (NDMA) amounts above the allowable intake (AI) of 96 ng/day. Because the FDA had been monitoring drugs for nitrosamines, orthogonal analytical procedures had been developed, validated and applied to detect the following nitrosamines in metformin drug products (if present): (i) NDMA (with a dedicated method) or (ii) NDMA (with a second confirmatory method), N-nitroso-diethylamine (NDEA), N-ethyl-N-nitroso-2-propanamine (NEIPA), N-nitroso-diisopropylamine (NDIPA), N-nitroso-di-n-propylamine (NDPA), N-nitroso-methylphenylamine (NMPA), N-nitroso-di-n-butylamine (NDBA) and N-nitroso-N-methyl-4-aminobutyric acid (NMBA). In contrast to the private laboratory results, FDA testing on the same set of 38 samples with orthogonal procedures observed amounts over the AI in only 8 of the 38 products and generally observed lower values than reported by the private testing laboratory. As described here, the investigation into the cause of the discrepancy revealed that N,N-dimethylformamide (DMF) can interfere with NDMA measurements. The data showed that the use of sufficient mass accuracy in the data acquisition and appropriate mass tolerance setting in the data processing to assure the selectivity of mass spectrometry measurements of NDMA in the presence of co-eluting DMF was necessary to prevent overestimation of the level of NDMA in metformin drug products. Overall, care should be taken to assure the necessary specificity in analytical procedures for adequate assessment of the nitrosamine level in drug products that also contain DMF or other potential interfering substances.
Collapse
Affiliation(s)
- Jingyue Yang
- Division of Pharmaceutical Analysis, Food and Drug Administration, 645 S. Newstead Ave., St. Louis, Missouri, 63110, USA
| | - Tim Andres Marzan
- Division of Pharmaceutical Analysis, Food and Drug Administration, 645 S. Newstead Ave., St. Louis, Missouri, 63110, USA
| | - Wei Ye
- Division of Pharmaceutical Analysis, Food and Drug Administration, 645 S. Newstead Ave., St. Louis, Missouri, 63110, USA
| | - Cynthia D Sommers
- Division of Pharmaceutical Analysis, Food and Drug Administration, 645 S. Newstead Ave., St. Louis, Missouri, 63110, USA
| | - Jason D Rodriguez
- Division of Pharmaceutical Analysis, Food and Drug Administration, 645 S. Newstead Ave., St. Louis, Missouri, 63110, USA
| | - David A Keire
- Division of Pharmaceutical Analysis, Food and Drug Administration, 645 S. Newstead Ave., St. Louis, Missouri, 63110, USA.
| |
Collapse
|
20
|
Schmidtsdorff S, Schmidt AH. Simultaneous detection of nitrosamines and other sartan-related impurities in active pharmaceutical ingredients by supercritical fluid chromatography. J Pharm Biomed Anal 2019; 174:151-160. [DOI: 10.1016/j.jpba.2019.04.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 01/24/2023]
|
21
|
Kim JY, Kim MK, Kim KB, Kim HS, Lee BM. Quantitative structure-activity and quantitative structure-property relationship approaches as alternative skin sensitization risk assessment methods. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:447-472. [PMID: 31104613 DOI: 10.1080/15287394.2019.1616437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study aimed to predict skin sensitization potency of selected chemicals by quantitatively analyzing their physicochemical properties by employing quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) approaches as alternative risk assessment methods to animal testing. Correlations between effective concentration for a stimulation index of 3 (EC3) (%), the amount of a chemical required to elicit a threefold increase in lymph node cell proliferative activity (stimulation index, ≥3), were calculated using local lymph node assay (LLNA) and physicochemical properties of 212 skin sensitizers and 38 non-sensitizers were investigated. The correlation coefficients between melting point (MP) and EC3 and between surface tension (ST) and EC3 were 0.65 and 0.69, respectively. The correlation coefficient for MP + ST and EC3 was estimated to be 0.72. Thus, correlation coefficients between EC3 and MP, ST, and MP + ST reliably predicted the skin sensitization potential of the chemicals with sensitivities of 72% (126/175), 70% (122/174), and 73% (116/158); specificities of 77% (27/35), 69% (22/32), and 81% (26/32); and accuracies of 73% (153/210), 70% (144/206), and 75% (142/190), respectively. Our findings suggest that the EC3 value may be more accurately predicted using the ST values of chemicals as opposed to MP values. Thus, information on MP and ST parameters of chemicals might be useful for predicting the EC3 values as not only an alternative approach to animal testing, but as a risk assessment method for skin sensitization.
Collapse
Affiliation(s)
- Ji Yun Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Min Kook Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Kyu-Bong Kim
- b College of Pharmacy , Dankook University , Cheonan , Chungnam , South Korea
| | - Hyung Sik Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Byung-Mu Lee
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| |
Collapse
|
22
|
Park YJ, Kim MK, Kim HS, Lee BM. Risk assessment of lithium-ion battery explosion: chemical leakages. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 21:370-381. [PMID: 30977440 DOI: 10.1080/10937404.2019.1601815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Use of lithium-ion batteries has raised safety issues owing to chemical leakages, overcharging, external heating, or explosions. A risk assessment was conducted for hydrofluoric acid (HF) and lithium hydroxide (LiOH) which potential might leak from lithium-ion batteries. The inhalation no-observed-adverse-effect-level (NOAEL) for HF was 0.75 mg/kg/d. When a lithium-ion battery explodes in a limited space, HF emissions amount to 10-100 ppm. Assuming the worst-case scenario, the conversion rate was calculated to be 81.8 mg/m3, and the average daily dose (ADD) was 19.5 mg/kg/d. Consequently, the margin of exposure (MOE = NOAEL/ADD) was 0.034, a value which constitutes an unsafe inhalation exposure for HF. Conversely, skin toxicity NOAEL for LiOH was 41.35 mg/kg/d-. This LiOH value reflects the amount of lithium in the lithium-ion battery, which is generated upon contact between water and the electrolyte. The quantity of lithium in a mobile phone is approximately 295 mg, and systemic exposure dose (SED) was 4.92 mg/kg/d. Accordingly, the MOE (NOAEL/SED) value was 8.41, and skin exposure of LiOH was deemed as safe for humans. However, it is important that Energy Storage System batteries still require safety measures and technologies for next-generation batteries, to prevent any potential explosions of lithium-ion batteries.
Collapse
Affiliation(s)
- Yoo Jung Park
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Min Kook Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Hyung Sik Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Byung Mu Lee
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| |
Collapse
|
23
|
Kim MK, Kim KB, Lee JY, Kwack SJ, Kwon YC, Kang JS, Kim HS, Lee BM. Risk Assessment of 5-Chloro-2-Methylisothiazol-3(2H)-One/2-Methylisothiazol-3(2H)-One (CMIT/MIT) Used as a Preservative in Cosmetics. Toxicol Res 2019; 35:103-117. [PMID: 31015893 PMCID: PMC6467361 DOI: 10.5487/tr.2019.35.2.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
The mixture of 5-chloro-2-methylisothiazol-3(2H)-one (CMIT) and 2-methylisothiazol-3(2H)-one (MIT), CMIT/MIT, is a preservative in cosmetics. CMIT/MIT is a highly effective preservative; however, it is also a commonly known skin sensitizer. Therefore, in the present study, a risk assessment for safety management of CMIT/MIT was conducted on products containing 0.0015% of CMIT/MIT, which is the maximum MIT level allowed in current products. The no observed adverse effect level (NOAEL) for CMIT/MIT was 2.8 mg/kg bw/day obtained from a two-generation reproductive toxicity test, and the skin sensitization toxicity standard value for CMIT/MIT, or the no expected sensitization induction level (NESIL), was 1.25 μg/cm2/day in humans. According to a calculation of body exposure to cosmetics use, the systemic exposure dosage (SED) was calculated as 0.00423 mg/kg bw/day when leave-on and rinse-off products were considered. Additionally, the consumer exposure level (CEL) amounted to 0.77512 μg/cm2/day for all representative cosmetics and 0.00584 μg/cm2/day for rinse-off products only. As a result, the non-cancer margin of safety (MOS) was calculated as 633, and CMIT/MIT was determined to be safe when all representative cosmetics were evaluated. In addition, the skin sensitization acceptable exposure level (AEL)/CEL was calculated as 0.00538 for all representative cosmetics and 2.14225 for rinse-off products; thus, CMIT/MIT was considered a skin sensitizer when all representative cosmetics were evaluated. Current regulations indicate that CMIT/MIT can only be used at concentrations 0.0015% or less and is prohibited from use in other cosmetics products. According to the results of this risk assessment, the CMIT/MIT regulatory values currently used in cosmetics are evaluated as appropriate.
Collapse
Affiliation(s)
- Min Kook Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon,
Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan,
Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon,
Korea
| | - Seung Jun Kwack
- College of Natural Science, Changwon National University, Changwon,
Korea
| | - Yong Chan Kwon
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon,
Korea
| | - Ji Soo Kang
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon,
Korea
| | - Hyung Sik Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon,
Korea
| | - Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon,
Korea
| |
Collapse
|
24
|
Lee BM, Kwon S, Cho YM, Kim KB, Seo K, Min CS, Kim K. Perspectives on trace chemical safety and chemophobia: risk communication and risk management. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:186-199. [PMID: 30741122 DOI: 10.1080/15287394.2019.1575625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Safety issues regarding consumer products contaminated with trace amounts of chemicals are of great concern to consumers, with the degree of concern occasionally escalating to the psychological syndrome, chemophobia (i.e., the fear of chemicals). Hazardous substances frequently implicated in safety concerns include heavy metals (arsenic, mercury, cadmium, and lead), volatile organic compounds (VOC) such as benzene and o-toluidine, pesticides, carcinogens, radioactive substances, and endocrine disrupting chemicals (EDC) such as bisphenol A and phthalates. To improve communication of risk to society, members of academia, government, consumer organizations, and industry participated in this workshop to discuss and exchange perspectives on trace chemical safety. From the perspective of academia, integrated risk assessments need to be implemented to encompass various exposure sources and routes. The identification and investigation of new exposure-related biomarkers are also recommended to verify direct causal relationships between specific chemical exposure and effects on human health. As for regulation, governments need to establish and maintain acceptable limits for trace chemicals in products. In addition, harmonized efforts need to be undertaken among government agencies to share regulatory limits and effectively control trace chemicals in consumer products. Manufacturers need to faithfully abide by Good Manufacturing Practice (GMP) guidelines, monitor sources of contamination, and minimize these for consumer safety. To effectively resolve safety issues arising from trace chemicals exposure, collaborative efforts are needed involving academia, government, consumer organizations, and industry. Further, scientific evidence-based risk assessment is a critical approach to effectively manage trace chemical safety issues.
Collapse
Affiliation(s)
- Byung-Mu Lee
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| | - Seok Kwon
- b SA Singapore Branch, Global Product Stewardship , Procter & Gamble International Operations , Singapore
| | - Yun Mi Cho
- c Korea Consumer Rights Forum , Seoul , Republic of Korea
| | - Kyu-Bong Kim
- d College of Pharmacy , Dankook University , Cheonan , South Korea
| | - Kyungwon Seo
- e Pharmaceuticals and Medical Devices Research Department , National Institute of Food and Drug Safety Evaluation , Cheongju , Republic of Korea
| | - Choong Sik Min
- f Department of Cosmetics Research , National Food and Drug Safety , Cheongju , Republic of Korea
| | | |
Collapse
|
25
|
Hyun Kim D, Min Choi S, Soo Lim D, Roh T, Jun Kwack S, Yoon S, Kook Kim M, Sil Yoon K, Sik Kim H, Wook Kim D, Lee BM. Risk assessment of endocrine disrupting phthalates and hormonal alterations in children and adolescents. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1150-1164. [PMID: 30415604 DOI: 10.1080/15287394.2018.1543231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Risk assessment and hormone evaluation were carried out for di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP), endocrine disrupting chemicals (EDCs), in 302 Korean children (n = 223) and adolescents (n = 79) (< age 19). Urinary and serum concentrations of DEHP, MEHP (mono(2-ethylhexyl) phthalate), DBP, MBP (monobutyl phthalate), and PA (phthalic acid, a common final metabolite of phthalates) were detected in children and adolescents. Daily exposure levels were estimated to be 16.45 ± 36.50 μg/kg b.w./day for DEHP, which is one-third of the tolerable daily intake (TDI) value (50 μg/kg b.w./day), but 14 out of 302 participants had a hazard index (HI = intake/TDI) value >1. The mean daily exposure level of DBP was 1.23 ± 1.45 μg/kg b.w./day, which is one-eighth of the TDI value (10 μg/kg b.w./day), but 1 out of 302 participants had a HI value > 1. Positive correlations were observed between serum DBP or MEHP, and serum estradiol (E2) and/or luteinizing hormone (LH) in prepubescent children. In addition, serum MBP levels were found to be negatively correlated with serum triiodothyronine (T3) or thyroxine (T4) in male participants, and serum DEHP levels with serum thyroid stimulating hormone (TSH) in female adolescents. Low-density lipoprotein (LDL) levels were positively correlated with serum PA levels in children and adolescents. DEHP, DBP or its metabolites may be associated with altered hormone levels in children and adolescents. Data suggest that exposure levels of DEHP and DBP in Korean children need to be reduced to levels below TDI to protect them from EDC-mediated toxicities. Abbreviations: DBP: dibutyl phthalate; DEHP: di(2-ethylhexyl) phthalate; E2: estradiol; EDC: endocrine disrupting chemical; EFSA: European Food Safety Authority; FSH: follicle stimulating hormone; HDL: high density lipoprotein; HI: hazard index; LDL: low density lipoprotein; LH: luteinizing hormone; MEHP: mono(2-ethylhexyl) phthalate; MBP: monobutyl phthalate; PA: phthalic acid; PPAR: peroxisome proliferator-activated receptor gamma; PVC: polyvinyl chloride; T3: triiodothyronine; T4: thyroxine; TDI: tolerable daily intake; TG: triglyceride; TSH: thyroid stimulating hormone; UPLC/MS/MS: Ultra Performance Liquid Chromatography/Tandem Mass Spectrometry; WWF: World Wildlife Fund.
Collapse
Affiliation(s)
- Dong Hyun Kim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Seul Min Choi
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Duck Soo Lim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Taehyun Roh
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Seung Jun Kwack
- b College of Natural Science , Changwon National University , Changwon , Gyeongnam , Korea
| | - Sungpil Yoon
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Min Kook Kim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Kyung Sil Yoon
- c Lung Cancer Branch , Research Institute, National Cancer Center , Goyang , Gyeonggi-do , South Korea
| | - Hyung Sik Kim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Dong Wook Kim
- d College of Statistics , Sungkyunkwan University , Seoul , South Korea
| | - Byung-Mu Lee
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| |
Collapse
|
26
|
Soo Lim D, Min Choi S, Kim KB, Yoon K, Kacew S, Sik Kim H, Lee BM. Determination of fragrance allergens and their dermal sensitization quantitative risk assessment (QRA) in 107 spray perfumes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1173-1185. [PMID: 30415634 DOI: 10.1080/15287394.2018.1543232] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cutaneous allergy occurs primarily as a result of using cosmetic, household, and laundry products available on the market that contain fragrances. The aim of this study was to develop a rapid and specific high-performance liquid chromatography with ultraviolet detection (HPLC-UV) method for quantification of 25 fragrance allergens (amyl cinnamyl alcohol, benzyl alcohol, benzyl benzoate, benzyl cinnamate, benzyl salicylate, citronellol, cinnamyl alcohol, citral, coumarin, eugenol, farnesol, geraniol, hydroxycitronellal, HICC (4-(4-hydroxy-4-methylpentyl)-3-cyclohexene-1-carboaldehyde), isoeugenol, isoeugenyl acetate, lilial (butyl phenyl methyl propional), limonene, linalool, methyl 2-octynoate, etc.). In addition, an exposure-based quantitative risk assessment (QRA) was performed to determine safe levels of fragrance ingredients in 107 perfumes. In 76 women's and 31 men's fragrances, 25 allergens were identified at concentrations ranging from undetectable (N.D.) to 8,997.68 mg/kg, and from N.D. to 17,352.34 mg/kg, respectively. An exposure-based sensitization QRA revealed that the ratios of acceptable exposure level (AEL) to consumer exposure level (CEL) of fragrance ingredients were greater than 1, suggesting an absence of skin sensitizing potential. However, the maximum level used in the exposure scenario was determined by the product purpose and application type, and AEL/CEL ratios of lilial, HICC, citral, isoeugenol, and methyl 2-octynoate analyzed in women's perfume were 0.53, 0.67 0.19, 0.13, and 0.57, respectively. As the ratios of AEL:CEL of these fragrance ingredients were below 1, the utilization of these potential skin sensitizers is not considered safe. Our findings indicate that the sensitization risk of allergens with AEL:CEL ratios below 1 detected in fragrances needs to be reduced to the appropriate human safety level for risk management.
Collapse
Affiliation(s)
- Duck Soo Lim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| | - Seul Min Choi
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| | - Kyu-Bong Kim
- b College of Pharmacy , Dankook University , Cheonan , South Korea
| | - Kyungsil Yoon
- c Lung Cancer Branch, Research Institute , National Cancer Center , Goyang , South Korea
| | - Sam Kacew
- d McLaughlin Centre for Population Health Risk Assessment, University of Ottawa , Ottawa , ON , Canada
| | - Hyung Sik Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| | - Byung-Mu Lee
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , South Korea
| |
Collapse
|
27
|
Kim MK, Kim KB, Yoon K, Kacew S, Kim HS, Lee BM. IL-1α and IL-1β as alternative biomarkers for risk assessment and the prediction of skin sensitization potency. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:830-843. [PMID: 30020862 DOI: 10.1080/15287394.2018.1494474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Potential biomarkers of skin sensitization in RAW264.7 mouse macrophages were investigated as alternatives to animal experiments and risk assessment. The concentrations that resulted in a cell viability of 90% (CV90) and 75% (CV75) were calculated by using a water-soluble tetrazolium salt (WST)-1 assay and used to analyze the skin sensitization potency of 23 experimental materials under equivalent treatment conditions. In addition, the expression of interleukin (IL)-1α, IL-1β, IL-31, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2), and cyclooxygenase-2 (COX-2) was analyzed utilizing Western blotting. In the cell viability analysis, skin sensitizers were generally more cytotoxic and exhibited increased skin sensitization potency. However, nonsensitizers did not show any marked cytotoxic tendency. Biomarker analysis demonstrated that IL-1α, IL-1β, and the combination of IL-1α and IL-1β (IL-1α + IL-1β) predicted reliably skin sensitization potential (1) sensitivities of 94.4%, 83.3%, and 83.3%, specificities of 100%, 100%, and 100%, and (2) accuracies of 95.7%, 87%, and 87%, respectively. These observations correlated most reliably as indicators for skin sensitization potency. Data suggest that IL-1α and IL-1β may serve as potential biomarkers for skin sensitization and provide an alternative method to animal experiments for prediction of skin sensitization potency and risk assessment.
Collapse
Affiliation(s)
- Min Kook Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Kyu-Bong Kim
- b College of Pharmacy , Dankook University , Cheonan , Chungnam , South Korea
| | - Kyungsil Yoon
- c Lung Cancer Branch , Research Institute, National Cancer Center , Goyang , Gyeonggi-do , South Korea
| | - Sam Kacew
- d McLaughlin Centre for Population Health Risk Assessment,University of Ottawa, Ottawa, ON, Canada
| | - Hyung Sik Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Byung-Mu Lee
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| |
Collapse
|