1
|
Aranda RG, Fatima S, Rafid MI, McGill I, Hadwiger JA. Regulatory differences between atypical and typical MAP kinases in Dictyostelium discoideum. Cell Signal 2025; 130:111701. [PMID: 40020888 PMCID: PMC11908898 DOI: 10.1016/j.cellsig.2025.111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Within the large family of mitogen activated protein kinases (MAPKs), one outlier group referred to as atypical MAPKs is not regulated by conventional upstream MAPK kinases (MAP2Ks). This includes the Dictyostelium discoideum atypical MAPK Erk2, a protein kinase essential for chemotactic movement and development. The regulation and functional specificity of Erk2 was investigated through phenotypic analysis of chimeric and mutant MAPKs. Chimeric MAPKs containing regions of Erk2 were created using complementary regions of the more typical MAPK Erk1, that provides very different functions in this amoeba. The chimeric MAPKs were not phosphorylated at levels observed for wild-type MAPKs and none rescued wild-type MAPK function to erk1- or erk2- cells. Endogenous Erk1 and Erk2 MAPKs were destabilized in cells expressing chimeric MAPKs containing the same carboxyl terminus. A carboxyl terminal motif conserved among atypical MAPKs was important but not essential for Erk2 regulation and function and the motif did not confer atypical MAPK regulation when present in Erk1. A kinase-dead version of Erk2 was phosphorylated in response to folate or cAMP chemotactic stimulation, suggesting Erk2 is activated in vivo by an upstream protein kinase, contrary to previous predictions of autophosphorylation. This regulation implies a protein kinase distinct from the single conventional MAP2K in Dictyostelium regulates atypical MAPK signaling. A non-activatable form of Erk2 was not capable of rescuing Erk2 function in erk2- cells. These findings suggest that the regulation of atypical and typical MAPKs is substantially different and carried out by distinct upstream protein kinases.
Collapse
Affiliation(s)
- Ramee G Aranda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Saher Fatima
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Md Ikram Rafid
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Imani McGill
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Jeffrey A Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America.
| |
Collapse
|
2
|
Lin W, Chen T. Development of BODIPY FL SNS 032 as a Versatile Probe for Constitutive Androstane Receptor and Multiple Kinases. ACS Med Chem Lett 2024; 15:1987-1996. [PMID: 39563813 PMCID: PMC11571093 DOI: 10.1021/acsmedchemlett.4c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Human constitutive androstane receptor (hCAR) regulates xenobiotic metabolism. Its large and flexible ligand binding pocket can accommodate structurally diverse compounds. An assay for characterizing the binding of ligands to hCAR is needed but has not been reported. Here, we first discovered the promiscuous kinase inhibitor SNS-032 and its derivative THAL-SNS-032 as binders of hCAR, then developed BODIPY FL SNS 032 (14) as a high-affinity hCAR fluorescent probe (K d: 300 ± 30 nM) in a TR-FRET binding assay and used it to characterize hCAR ligands for their competitive binding activities. BODIPY FL SNS 032 also displayed high binding affinities to multiple kinases, such as hGSK3A (K d: 4.5 ± 0.2 nM), hCDK9/CycT1 (K d: 5.1 ± 0.6 nM), hMAPK15 (K d: 340 ± 20 nM), hCASK (K d: 550 ± 30 nM), and hCAMKK2 (K d: 530 ± 40 nM). BODIPY FL SNS 032 is therefore a versatile probe for hCAR and multiple kinases.
Collapse
Affiliation(s)
- Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
3
|
Actis M, Fujii N, Mackey ZB. A phenotypic screen with Trypanosoma brucei for discovering small molecules that target the SLiM-binding pocket of proliferating cell nuclear antigen orthologs. Chem Biol Drug Des 2024; 103:e14361. [PMID: 37767622 DOI: 10.1111/cbdd.14361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Proliferating cell nuclear antigen (PCNA) is a homo-trimeric protein complex that clamps around DNA to tether DNA polymerases to the template during replication and serves as a hub for many other interacting proteins. It regulates DNA metabolic processes and other vital cellar functions through the binding of proteins having short linear motifs (SLiMs) like the PIP-box (PCNA-interacting protein-box) or the APIM (AlkB homolog 2 PCNA-interacting motif) in the hydrophobic pocket where SLiMs bind. However, overproducing TbPCNA or human PCNA (hPCNA) in the pathogenic protist Trypanosoma brucei triggers a dominant-negative phenotype of arrested proliferation. The mechanism for arresting T. brucei proliferation requires the overproduced PCNA orthologs to have functional intact SLiM-binding pocket. Sight-directed mutagenesis studies showed that T. brucei overproducing PCNA variants with disrupted SLiM-binding pockets grew normally. We hypothesized that chemically disrupting the SLiM-binding pocket would restore proliferation in T. brucei, overproducing PCNA orthologs. Testing this hypothesis is the proof-of-concept for a T. brucei-based PCNA screening assay. The assay design is to discover bioactive small molecules that restore proliferation in T. brucei strains that overproduce PCNA orthologs, likely by disrupting interactions in the SLiM-binding pocket. The pilot screen for this assay discovered two hit compounds that linked to predetermined PCNA targets. Compound #1, a known hPCNA inhibitor, had selective bioactivity to hPCNA overproduced in T. brucei, validating the assay. Compound #6 had promiscuous bioactivity for hPCNA and TbPCNA but is the first compound discovered with bioactivity for inhibiting TbPCNA.
Collapse
Affiliation(s)
- Marisa Actis
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zachary B Mackey
- Biochemistry Department, Fralin Life Science Institute Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
4
|
Hadwiger JA, Aranda RG, Fatima S. Atypical MAP kinases - new insights and directions from amoeba. J Cell Sci 2023; 136:jcs261447. [PMID: 37850857 PMCID: PMC10617611 DOI: 10.1242/jcs.261447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) have been the focus of many studies over the past several decades, but the understanding of one subgroup of MAPKs, orthologs of MAPK15, known as atypical MAPKs, has lagged behind others. In most organisms, specific activating signals or downstream responses of atypical MAPK signaling pathways have not yet been identified even though these MAPKs are associated with many eukaryotic processes, including cancer and embryonic development. In this Review, we discuss recent studies that are shedding new light on both the regulation and function of atypical MAPKs in different organisms. In particular, the analysis of the atypical MAPK in the amoeba Dictyostelium discoideum has revealed important roles in chemotactic responses and gene regulation. The rapid and transient phosphorylation of the atypical MAPK in these responses suggest a highly regulated activation mechanism in vivo despite the ability of atypical MAPKs to autophosphorylate in vitro. Atypical MAPK function can also impact the activation of other MAPKs in amoeba. These advances are providing new perspectives on possible MAPK roles in animals that have not been previously considered, and this might lead to the identification of potential targets for regulating cell movement in the treatment of diseases.
Collapse
Affiliation(s)
- Jeffrey A. Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Ramee G. Aranda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Saher Fatima
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| |
Collapse
|
5
|
Hadwiger JA, Cai H, Aranda RG, Fatima S. An atypical MAPK regulates translocation of a GATA transcription factor in response to chemoattractant stimulation. J Cell Sci 2022; 135:jcs260148. [PMID: 35916164 PMCID: PMC9481928 DOI: 10.1242/jcs.260148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
The Dictyostelium atypical mitogen-activated protein kinase (MAPK) Erk2 is required for chemotactic responses to cAMP as amoeba undergo multicellular development. In this study, Erk2 was found to be essential for the cAMP-stimulated translocation of the GATA transcription factor GtaC as indicated by the distribution of a GFP-GtaC reporter. Erk2 was also found to be essential for the translocation of GtaC in response to external folate, a foraging signal that directs the chemotaxis of amoeba to bacteria. Erk1, the only other Dictyostelium MAPK, was not required for the GtaC translocation to either chemoattractant, indicating that GFP-GtaC is a kinase translocation reporter specific for atypical MAPKs. The translocation of GFP-GtaC in response to folate was absent in mutants lacking the folate receptor Far1 or the coupled G-protein subunit Gα4. Loss of GtaC function resulted in enhanced chemotactic movement to folate, suggesting that GtaC suppresses responses to folate. The alteration of four Erk2-preferred phosphorylation sites in GtaC impacted the translocation of GFP-GtaC in response to folate and the GFP-GtaC-mediated rescue of aggregation and development of gtaC- cells. The ability of different chemoattractants to stimulate Erk2-regulated GtaC translocation suggests that atypical MAPK-mediated regulation of transcription factors can contribute to different cell fates.
Collapse
Affiliation(s)
- Jeffrey A. Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Ramee G. Aranda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Saher Fatima
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| |
Collapse
|
6
|
Kaur P, Goyal N. Pathogenic role of mitogen activated protein kinases in protozoan parasites. Biochimie 2021; 193:78-89. [PMID: 34706251 DOI: 10.1016/j.biochi.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/29/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023]
Abstract
Protozoan parasites with complex life cycles have high mortality rates affecting billions of human lives. Available anti-parasitic drugs are inadequate due to variable efficacy, toxicity, poor patient compliance and drug-resistance. Hence, there is an urgent need for the development of safer and better chemotherapeutics. Mitogen Activated Protein Kinases (MAPKs) have drawn much attention as potential drug targets. This review summarizes unique structural and functional features of MAP kinases and their possible role in pathogenesis of obligate intracellular protozoan parasites namely, Leishmania, Trypanosoma, Plasmodium and Toxoplasma. It also provides an overview of available knowledge concerning the target proteins of parasite MAPKs and the need to understand and unravel unknown interaction network(s) of MAPK(s).
Collapse
Affiliation(s)
- Pavneet Kaur
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Neena Goyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.
| |
Collapse
|
7
|
Elaadli H, Kim I, Mackey ZB. Depletion of the extracellular-signal regulated kinase 8 homolog in Trypanosoma brucei in vivo reduces its virulence in a mouse target validation study. Mol Biochem Parasitol 2017; 220:1-4. [PMID: 29287675 DOI: 10.1016/j.molbiopara.2017.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/01/2022]
Abstract
Trypanosoma brucei sub-species are vector borne kinetoplastid parasites that cause the potentially lethal disease Human African trypanosomiasis. The target-based therapy for curing this parasitic disease relies on one drug, Eflornithine. The roles of mitogen-activated protein kinases in regulating key cellular processes in eukaryotic cells such as proliferation, stress response and differentiation plus their druggability make them attractive targets for therapeutic exploitation. The extracellular-regulated kinase 8 homolog in T. brucei (TbERK8) is a MAPK that is required for the parasite to proliferate normally in culture. We examined the importance of TbERK8 for permitting T. brucei to thrive in mice. Here we show that depleting TbERK8 in vivo negatively affected the virulence of T. brucei reducing its ability to progress to lethal infections or cause significant pathology in mice, which validates it as an attractive target.
Collapse
Affiliation(s)
- Haitham Elaadli
- Department of Biochemistry and Fralin Life Science Institute, Vector-Borne Disease Division, Virginia Tech, Blacksburg, VA 24061, United States; Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Inyoung Kim
- Department of Statistics, Virginia Polytechnic Institute and State University, United States
| | - Zachary B Mackey
- Department of Biochemistry and Fralin Life Science Institute, Vector-Borne Disease Division, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
8
|
Meyer NO, O'Donoghue AJ, Schulze-Gahmen U, Ravalin M, Moss SM, Winter MB, Knudsen GM, Craik CS. Multiplex Substrate Profiling by Mass Spectrometry for Kinases as a Method for Revealing Quantitative Substrate Motifs. Anal Chem 2017; 89:4550-4558. [PMID: 28322550 DOI: 10.1021/acs.analchem.6b05002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The more than 500 protein kinases comprising the human kinome catalyze hundreds of thousands of phosphorylation events to regulate a diversity of cellular functions; however, the extended substrate specificity is still unknown for many of these kinases. We report here a method for quantitatively describing kinase substrate specificity using an unbiased peptide library-based approach with direct measurement of phosphorylation by tandem liquid chromatography-tandem mass spectrometry (LC-MS/MS) peptide sequencing (multiplex substrate profiling by mass spectrometry, MSP-MS). This method can be deployed with as low as 10 nM enzyme to determine activity against S/T/Y-containing peptides; additionally, label-free quantitation is used to ascertain catalytic efficiency values for individual peptide substrates in the multiplex assay. Using this approach we developed quantitative motifs for a selection of kinases from each branch of the kinome, with and without known substrates, highlighting the applicability of the method. The sensitivity of this approach is evidenced by its ability to detect phosphorylation events from nanogram quantities of immunoprecipitated material, which allows for wider applicability of this method. To increase the information content of the quantitative kinase motifs, a sublibrary approach was used to expand the testable sequence space within a peptide library of approximately 100 members for CDK1, CDK7, and CDK9. Kinetic analysis of the HIV-1 Tat (transactivator of transcription)-positive transcription elongation factor b (P-TEFb) interaction allowed for localization of the P-TEFb phosphorylation site as well as characterization of the stimulatory effect of Tat on P-TEFb catalytic efficiency.
Collapse
Affiliation(s)
- Nicole O Meyer
- Department of Pharmaceutical Chemistry, University of California San Francisco , San Francisco, California 94158, United States
| | - Anthony J O'Donoghue
- Department of Pharmaceutical Chemistry, University of California San Francisco , San Francisco, California 94158, United States
| | - Ursula Schulze-Gahmen
- Department of Molecular and Cell Biology, University of California Berkeley , Berkeley, California 94720, United States
| | - Matthew Ravalin
- Department of Pharmaceutical Chemistry, University of California San Francisco , San Francisco, California 94158, United States
| | - Steven M Moss
- Department of Pharmaceutical Chemistry, University of California San Francisco , San Francisco, California 94158, United States
| | - Michael B Winter
- Department of Pharmaceutical Chemistry, University of California San Francisco , San Francisco, California 94158, United States
| | - Giselle M Knudsen
- Department of Pharmaceutical Chemistry, University of California San Francisco , San Francisco, California 94158, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco , San Francisco, California 94158, United States
| |
Collapse
|
9
|
Nicolae CM, Moldovan GL. ERKing Trypanosoma: PCNA phosphorylation as novel target. Cell Cycle 2016; 15:3167-3168. [PMID: 27635479 DOI: 10.1080/15384101.2016.1232081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Claudia M Nicolae
- a Department of Biochemistry and Molecular Biology , The Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - George-Lucian Moldovan
- a Department of Biochemistry and Molecular Biology , The Pennsylvania State University College of Medicine , Hershey , PA , USA
| |
Collapse
|